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Case 2: kŴk = wm andŴ TS(z)h(x)es > 0
In this case, it can be seen from (34) that

S
T (z�)

_̂
W =
 S

T (z)S(z�)�
ST (z)Ŵ ŴTS(z�)

kŴk2
h(x)es

�
h(x)jesj S
T (z)S(z�) +

ST (z)ŴŴTS(z�)

kŴk2
:

SinceST (z)Ŵ andŴTS(z�) are scalar functions and bounded by
jŴ j1, we obtain

S
T (z�)

_̂
W � 
h(x)jesj l+

jŴ j21

kŴk2
:

By the relationshipjŴ j21 � lkŴk2, it is shown thatST (z�)
_̂
W �

2
lh(x)jesj.

Combining the above two cases, we conclude thatST (z�)
_̂
W �

2
lh(x)jesj.
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A Linear Matrix Inequality (LMI) Approach to Robust
Sampled-Data Control for Linear Uncertain Systems

Li-Sheng Hu, James Lam, Yong-Yan Cao, and Hui-He Shao

Abstract—In this paper, we consider the sampled-data control for
uncertain linear systems by the impulse response interpretation of the
norm. Two measures for sampled-data systems are considered. The ro-
bust optimal control procedures subject to these two criteria are pro-
posed. The development is primarily concerned with a multirate treatment
in which a periodic time-varying robust optimal control for uncertain linear
systems is presented. To facilitate multirate control design, a new result of
stability of hybrid system is established. Moreover, the single-rate case is
also obtained as a special case. The sampling period is explicitly involved in
the result which is superior to traditional methods. The solution procedures
proposed in this paper are formulated as an optimization problem subject
to linear matrix inequalities. Finally, we present a numerical example to
demonstrate the proposed techniques.

Index Terms— performance, multirate, optimal control, robust con-
trol, sampled-data system, uncertain system.

I. INTRODUCTION

TheH2 performance of optimal control has a significant physical
background in practice. The robustH2 problem, rooted from the ef-
forts to provide stability margin to theH2-optimal (LQG) regulator,
has been a focal point of research since the 1970s. The main difficulty
encountered in this problem is the tradeoff between robustness andH2

performance. A wealth of literature on the simultaneous considerations
of robustness andH2 performance, such asH2 andH1 mixed per-
formances in various forms (see [6] and [13]) has been reported. In
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[6], a review of the methods, robustH2 performance analysis in the
state-space, and operator version of the robustH2 performance (which
views theH2 norm as the worst case response under a suitable class
of signals) are provided. Nowadays, digital control, digital signal pro-
cessing, and digital communication in networks are widely used. Tra-
ditionally, the synthesis and analysis methods for these applications are
all based on discretized and continuous-based formulations. However,
these are approximate formulations [7]. During the last few years, the
development of sampled-data system control (controllers are composed
of a sampler-and-hold device and a digital controller), which takes into
account of the effects of the intersampling behavior of the system and
has no degradation of the closed-loop performance, has received wide
attention [4], [7]. Moreover, past research had also revealed that sam-
pled-data control exhibits some additional favorable properties. For in-
stance, the effects of the sampler and the holder are taken into account
in the control design. A complex digital controller, such as time-varying
or periodically time-varying, can be easily constructed by the piece-
wise static controllers. The multirate output feedback control is equiv-
alent to state feedback control. In particular, it is very suitable to be
used to control nonlinear systems, and can asymptotically stabilize al-
most all classes of nonlinear systems in which some of them cannot be
asymptotically stabilized, even locally, using smooth feedback. How-
ever, a sampled-data system is a hybrid system which involves both
continuous-time and discrete-time signals. This makes traditional syn-
thesis and analysis methodologies using purely discrete-time and con-
tinuous-time formulations difficult to apply. Many research studies on
H2 andH1 control for the sampled-data systems reported are based
on the frequency response [1], [16], the lifting technique [3], and the
L2-induced norm [15]. Moreover, the results of the robustness and sta-
bility of the uncertain sampled-data systems are studied [5], [9], [14]. In
[4], the authors discussedH2 performance measures of sampled-data
systems in detail and providedH2 sampled-data control procedures
for linear systems using the lifting technique. However, theH2 sam-
pled-data optimal control for uncertain systems is still open. In this
paper, we will show that theseH2 performance criteria can be ex-
tended to the case of uncertain linear systems. Robust multirateH2

sampled-data optimal control (a time-varying periodic control) proce-
dure for such systems is provided. Moreover, we also present a result
on the robust single-rate sampled-data control for the uncertain linear
systems to minimize theseH2 measures as a special case. The solution
procedures proposed in this paper are formulated as an optimization
problem subject to linear matrix inequalities.

This paper is organized as follows. In Section II, we present a for-
mulation of problems considered in this paper and some preliminary
materials. Furthermore, a new result on the stability of hybrid systems
is established to facilitate a multirate control design. Section III con-
tains results on robust sampled-data optimal control of uncertain linear
systems for twoH2 measures. A multirate robust sampled-data control
(a piecewise constant periodic control) procedure for uncertain linear
systems is proposed. Moreover, the single-rate solution is provided as
a special case. Numerical examples are provided in Section IV. Finally,
concluding remarks are given in Section V.

II. PROBLEM FORMULATION

In the following, Ts is used to denote the sampling period, with
which all the states of the system are sampled simultaneously by
ideal samplers. The discrete-time signals will be represented by[ � ]
and with the associated variable (for example~u[tk]. For a matrix
M; ��(M)(�(M)) denotes the maximum (minimum) singular value of
M . If M is real symmetric,M < 0(M > 0) denotesM is negative
(positive) definite.

Consider the following uncertain linear system:

_x(t) = (A+�A)x(t) +B1w(t) + (B2 +�B2)u(t) (1)

z(t) = C1x(t) +D12u(t) (2)

where
x(t) 2 n state vector of the plant;
u(t) 2 m control vector;
z(t) 2 q output of the plant to be controlled;
w(t) 2 p impulsive disturbance vector.

�A and�B2 are uncertainties satisfying

�A = H1�E1; �B2 = H2�E2

whereA;B1; B2; C1;D12 andH1; H2; E1; E2 are the real matrices
with compatible dimensions. The uncertain matrix� satisfies�T� �
I . In this paper, we assume that the uncertainty is linear time-invariant
(LTI).

For the system in (1) and (2), theH2 sampled-data optimal control
problem is to design a single-rate digital control and a multirate digital
control to minimize an upper bound of theH2 measure of the system.
The traditionalH2 measure is defined as

J = sup
�:� ��I

p

i=1

kTzw(�)�(t)eik22
1=2

(3)

wherefeigi=1;2;...;p are the standard basis inp; �(t) the impulse
applied att = 0; Tzw(�) is a closed-loop system fromw to z in-
volving a sampled-data controller (Tzw(�) is periodic with periodTs).
Thus, there is no transfer function in the usual sense such that itsH2

norm could be minimized. Measure (3) will be used to circumvent this
problem [4]. SinceTzw(�) is time-varying, in [4] the authors proposed
an alternative specification, a generalizedH2 measure defined as

Jg =
T

0

J
2
� d�

1=2

(4)

was considered where

J� = sup
�:� ��I

p

i=1

kTzw(�)�� (t)eik22
1=2

and�� (t) = �(t � � ); 0 � � � Ts. Clearly, if � = 0, thenJ� � J .
If Tzw is LTI, thenJ� = J for all � andJg =

p
TsJ which implies

thatJg is a generalization of the traditionalH2 measure. TheH2 mea-
sures in (3) and (4) are considered in [2], [4], and [10] for sampled-data
control systems using the so-called lifting technique. In this paper, they
will be extended to uncertain sampled-data control systems.

An important sampled-data control problem is concerned with de-
signing a control

u(t) = ~u[tk]; for t 2 (tk; tk+1]; t0 = 0 (5)

~u[tk] = Fx(tk); k = 0; 1; 2; . . . ; (6)

to stabilize the system in (1) and (2) and minimize upper bounds of the
H2 measures in (3) and (4). Equation (6) denotes a digital controller
with static gainF and (5) indicates that the digital control is fed into
the continuous system by means of an ideal zeroth-order hold. In this
situation, all the states are sampled by ideal samplers, and the control
action is synchronously switched with a common sampling periodTs.
This is called asingle-rate digital control.

In this paper, we will explore the procedure of computing a robust
periodic time-varying sampled-data optimal controlF (t) with period
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Ts for the uncertain linear systems of (1) and (2). The control actions
are switched with a shorter periodT , andNT = (Ts=T ). Here,Ts is
referred to as the frame period andNT the input multiplicity. Moreover,
the time-varying digital control signals are fed into the plant with ideal
zeroth-order holds. At every instanttk+ iT , its mechanism is described
as

u(t) = ~u[i j tk]; for t 2 (tk + iT; tk + (i+ 1)T ] (7)

for i = 0; 1; 2; . . . ; NT � 1, where~u[i j tk] is defined as

~u[i j tk] := F (i)x(tk); for i = 0; 1; 2; . . . ; NT � 1 (8)

where, with a slight abuse of notation, we haveF (i) := F (iT ) time-
varyingandperiodicF (i) = F (i+NT ) (that is,F (iT+Ts) = F (iT )).
In the frame period, the control gain is switched att = tk + iT . Con-
sequently, the problem is cast into the design of a periodic time-varying
controller (7) and (8) to optimally stabilize plant (1) and (2) and mini-
mize certain upper bounds of theH2 criteria in (3) and (4). In contrast
with the single-rate case, such a control problem is amultirateone.

To facilitate later developments, we consider the following nonlinear
hybrid system:

_x(t) = f(t; x(t)); t 2 (tj ; tj+1) (9)

x(t+j ) = Ij(tj ; x(tj)); j = 0; 1; 2; . . . ; x(0) = x0 (10)

whereIj : + �
n ! n; f(t; x(t)) is uniformly norm-bounded in

x(t) (that is,kf(t; x(t))k � �kx(t)k for some constant� > 0) and
Lipschitz on the interval(tj ; tj+1] with right limit at tj ; f(0; 0) = 0.
ftjgj=0;1;2;... is the sequence of jumps withtj+1 � tj equals a con-
stant. Assume the system (9) and (10) satisfies the conditions for the
existence and uniqueness of the solution [11].

Lemma 1: Let a > 0; b > 0 andc > 0 be real scalars. Consider
system (9) and (10), if there exists a Lyapunov functionV (t; x(t))
whereV : + � n ! + is continuous on(tj ; tj+1] with right
limit at tj and locally Lipschitzian inx, such that

akxk2 � V (t; x) � bkxk2 (11)

and

D+V (t; x) < �ckxk2 (12)

for t 2 (tj ; tj+1) and

kN +l�1

j=kN

fV (t+j ; x(t
+
j ))� V (tj ; x(tj))g � 0 (13)

for k = 0; 1; . . . ; l = 1; 2; . . . ; NT , some integerNT � 0, then
system (9) and (10) is asymptotically stable.

The detailed proof of Lemma 1 is given in the Appendix .
Remark 1: Lemma 1 is an adaptation of [11, Th. 3.7.3]. In

Theorem 3.7.3, at the all sampling instants, the Lyapunov function
is decreasing, which is relaxed in Lemma 1. While the decrease the
of Lyapunov function is accumulatively evaluated over every frame
period in this lemma. In the frame period, jumping up of Lyapunov
function values at the sampling instants is admitted. At a certain
instant, the accumulation of jumping must be negative from the
beginning of the frame period, as shown in (13).

Let ~x(t) = (xT (t); uT (t))T , the closed-loop system composed of
the system in (1) and (2), and the controller in (7) and (8) is rewritten
as

_~x(t) = ( �A+ ~H ~� ~E)~x(t) + �B1w(t) (14)

~x(t+k + iT ) = ~A~x(tk + iT ) + ~BF (i) �C2~x(tk) (15)

z(t) = �C1~x(t) (16)

for t 2 (tk + iT; tk + (i+ 1)T ); i = 0; 1; 2; . . . ; NT � 1, where

�A =
A B2

0 0
; �B1 =

B1

0
; ~A =

I 0

0 0

~B =
0

I
; �C1 = [C1 D12]; ~H =

H1 H2

0 0

~E =
E1 0

0 E2
; ~� =

� 0

0 �

�C2 = [I 0]; = [I 0]T :

Clearly, ifNT � 1, the multirate sampled-data control problem is
reduced to the single-rate one.

III. M AIN RESULTS

First, we consider the multirate sampled-data control problem of
minimizing an upper bound of theH2 measureJg in (4) for the system
in (1) and (2).

Theorem 1: For the system in (1) and (2), if there exists a time-
varying periodic matrix functionX(t) = X(t + Ts) > 0 for t 2
(iT; (i + 1)T ]; t � �Ts, defined as

X(t) = X(i+) +
t� iT

T
(X(i+ 1)�X(i+)) (17)

with the notationsX(i+ 1) := X((i+ 1)T );X(i+) := X((iT )+),
for i = 0; 1; . . . ; NT � 1, matricesU > 0;� = diag(�1I; �2I) > 0
andZ(i), such that the linear matrix inequalities

U BT
1

T

B1 X(i+ 1)
> 0 (18)

U BT
1

T

B1 X(i+)
> 0 (19)

�X(i+) X(i+) �CT
1 X(i+) ~ET

�C1X(i+) �I 0
~EX(i+) 0 ��

< 0 (20)

�X(i+ 1) X(i+ 1) �CT
1 X(i+ 1) ~ET

�C1X(i+ 1) �I 0
~EX(i+ 1) 0 ��

< 0 (21)

~X �CT
2

T T ~BZ(0)
�C2 � + + T

ZT (0) ~BT T T � TX(NT )

< 0 (22)

where �X(i+) = (1=T )(X(i+)�X(i+1))+ �AX(i+)+X(i+) �AT +
~H� ~HT ; �X(i + 1) = (1=T )(X(i+) � X(i + 1)) + �AX(i + 1) +
X(i+1) �AT + ~H� ~HT ; ~X = �X(0+)+ ~AX(NT ) ~A

T + ~BZ(0) �C2+
�CT
2 Z

T (0) ~BT ; = diag(X(1);X(2); . . . ; X(NT � 1)); + =
diag(X(1+);X(2+); . . . ; X((NT �1)+); = (ZT (1); ZT (2); . . . ;
ZT (NT � 1))T ; Z(i) = F (i) TX(NT ) ; = diag( ~A; ~A; . . . ; ~A);

= diag( ~B; ~B; . . . ; ~B), hold, thenF (i) = Z(i)( TX(NT ) )�1 for
i = 0; 1; . . . ; NT � 1, are stabilizing periodic time-varying feedback
gains with which theH2 measureJg in (4) of the closed-loop system
satisfies

Jg < Tstrace(U):

Furthermore, a set of optimal feedback gains can be obtained by solving
the following optimization:

inf
�;UZ(i);X(i+1);X(i );i=0;1;...;N �1

trace(U) (23)

subject to linear matrix inequalities (18)–(22).
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Proof: Let ~x(t) = (xT (t); uT (t))T , choose a Lyapunov func-
tion candidateV (t; ~x) = ~xT (t)P (t)~x(t), whereP (t) = P (t+Ts) >
0 is a piecewise continuous function ont � �Ts. Here, takeP (t) =
X�1(t), whereX(t) defined in (17) is a solution of the linear matrix
inequalities (18)–(22). Let

2 = �CT
2

�CT
2 � � � �CT

2

T

= diag(P (1); P (2); . . . ; P (NT � 1))
+ = diag(P (1+); P (2+); . . . ; P ((NT � 1)+)

= diag(F (1); F (2); . . . ; F (NT � 1)):

For t 2 (tk + iT; tk + (i + 1)T ), noting that (14), for any� =
diag(�1I; ���2I) > 0, we have

D
+
V (t; ~x(t)) � ~xT (t)(D+

P (t) + P (t) �A+ �AT
P (t)

+P (t) ~H� ~HT
P (t) + ~ET��1 ~E)~x(t):

From the construction in (17), the periodic matrix functionX(t) is
convex on the interval(iT; (i + 1)T ] and is a convex combination of
X(i+) andX(i + 1). As the convex combination of (20) and (21) is
negative definite, we have

X(i+)�X(i+ 1)

T
+ �AX(t) +X(t) �AT + ~H� ~HT

+X(t) ~ET��1 ~EX(t) +X(t) �CT
1
�C1X(t) < 0: (24)

Pre- and post-multiplying (24) byP (t) and notingP (t)X(t) = I , we
obtain

D
+
V (t; ~x(t)) < �~xT (t) �CT

1
�C1~x(t) � 0 (25)

for t 2 (tk+iT; tk+(i+1)T ). The computational problem of theH2

measureJg in (4) is equivalent to an LQ problem of the system with
an initial conditionx(t0) = x0 excited by an impulse�� (t) = �(t �
� ); 0 � � � Ts, in all the input channels and the system responded
autonomously [4]. Consider the LQ problem for the system with a fixed
initial condition att = �� given by~x

�� := ~x(��) = �B1ei and no
external input thereafter

J�(~x�� ) := sup
�:� ��I

kzk22:

Let �k be the largest integer such that�kT � � . The effect of the impulse
�� (t) in the ith channel is given by

J�(~x�� )

= sup
�

1

��

~xT (t) �CT
1
�C1~x(t) +D

+
V (t; ~x(t))

�D
+
V (t; ~x(t)) dt

< inf
�;P

�
1

��

D
+
V (t; ~x(t))dt

= inf
�;P

V (��; ~x) + lim
N!1

N

k=0

N �1��k

i=��k

(V (t+k + iT; ~x)

� V (tk + iT; ~x))� V (tk + (NT � �k)T; ~x) :

Let

�(tk) := (~xT (tk); ~x
T (tk + T ); . . . ; ~xT (tk + (NT � 1)T ))T

we have
N �1

i=0

[V (t+k + iT; ~x)� V (tk + iT; ~x)] = �T (tk)��(tk)

where

� =

M � � � � �
~ATP (1+) ~BF (1) �C2 S1 � � � 0

...
...

. . .
...

~ATP ((NT � 1)+) ~BF (NT � 1) �C2 0 � � � SN �1

and

M = �P (NT ) + ( ~A+ ~BF (0) �C2)
T
P (0+)( ~A+ ~BF (0) �C2)

+

N �1

i=1

�CT
2 F

T (i) ~BT
P (i+) ~BF (i) �C2

Si = ~AT
P (i+) ~A� P (i):

For�(tk) 6= 0, if

� < 0 (26)

then

N �1

i=1

[V (t+k + iT; ~x)� V (tk + iT; ~x)] + V (t+k ; ~x) < V (tk; ~x):

(27)

From (25) and (27) and the construction ofX(t), if there exist solu-
tions to (20) and (21), then (17) shows that the piecewise linear matrix
X(t) satisfying

X(t) � minf�(X(i+)); �(X(i+ 1))gI

X(t) � maxf��(X(i+)); ��(X(i+ 1))gI

for t 2 (tk + iT; tk + (i+ 1)T ], which implies thatP (t) is bounded
and the Lyapunov function satisfies bounds of the type in (11) of
Lemma 1. It is easy to obtain that of� are negative definite from
(26), which implies l

i=0
[V (t+k + iT; ~x) � V (tk + iT; ~x)] < 0,

for l = 0; 1; . . . ; NT � 1. Then, by Lemma 1 with (25) and (27), the
closed-loop system is asymptotically stable. AsP (t) andF (i) are
periodic with periodTs, then we have

N �1��k

i=��k:

[V (t+k + iT; ~x)� V (tk + iT; ~x)] < 0

which implies

J�(~x�� ) < inf
F;�;P

V (��; ~x) = inf
F;�;P

~xT��P (��)~x�� :

Summing the effect of the impulses over the channels, we have

sup
�:� ��I

p

i=1

kTzw(�)�� (t)eik
2
2

�

p

i=1

sup
�:� ��I

kTzw(�)�� (t)eik
2
2

=

p

i=1

J�( �B1ei)

<

p

i=1

inf
F;�;P

e
T
i
�BT
1 P (��) �B1ei

� inf
F;�;P

trace B
T
1

T
P (��) B1 :

Then, the generalizedH2 measure has the following upper bound:

J
2
g < inf

F;�;P

T

0

trace B
T
1

T
P (��) B1 d�:
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Let U be such that

U > B
T
1

T
P (��) B1

= B
T
1

T � � iT

T
X(i+) +

(i+ 1)T � �

T
X(i+ 1)

�1

B1

for � 2 [iT; (i + 1)T ), then

J
2
g < Ts inf

F;�;P;U
trace(U):

These directly lead to (23) and (18) and (19). Condition (26) is equiv-
alent to

�P (NT ) 0 ( ~A+ ~BF (0) �C2)
T T

2
T T

0 � 0 T

~A + ~BF (0) �C2 0 �P�1(0+) 0

2 0 �( +)�1

< 0

which is again equivalent to

�X(0+) 0

0 �
+ +

~A + ~BF (0) �C2 0

2

X(NT ) 0

0

�
( ~A+ ~BF (0) �C2)

T T
2

T T

0 T < 0:

Expand the second group on the left side of the above inequality

~A + ~BF (0) �C2 0

2

X(NT ) 0

0

�
( ~A+ ~BF (0) �C2)

T T
2

T T

0 T

=
~AX(NT ) ~A

T 0

0 T + ~M + ~MT +
~BF (0) �C2 0

2 0

�
X(NT ) 0

0

�CT
2 F

T (0) ~BT T
2

T T

0 0

where

~M =
~AX(NT ) �C

T
2 F

T (0) ~BT ~AX(NT )
T
2

T T

0 0
:

Let F (i) TX(NT ) :=Z(i), we directly have the inequality (22). We
then obtain the desired result.

As explained in Section II, theH2 measureJ is a special case of the
generalizedH2 measureJg. The following is a direct result of Theorem
1 by setting� = 0.

Corollary 1: For the system in (1) and (2), if there exists a matrix
functionX(t) = X(t+Ts) > 0 defined as (17), matricesU > 0;� =
diag(�1I; �2I) > 0 andZ(i), such that the linear matrix inequalities
(20)–(22), and

U BT
1

T

B1 X(NT )
> 0 (28)

hold, thenF (i) = Z(i)( TX(NT ) )�1 for i = 0; 1; . . . ; NT � 1, are
stabilizing periodic feedback gains with which theH2 measureJ in
(3) of the closed-loop system satisfies

J < trace(U):

Furthermore, a set of optimal feedback gains can be obtained by solving
the following optimization:

inf
�;U;Z(i);X(i+1);X(i );i=0;1;...;N �1

trace(U)

subject to linear matrix inequalities (20)–(22) and (28).
Remark 2: The piecewise continuous matrix functionX(t) in (17)

is linear and its positive definiteness convex int, which leads to a linear

matrix inequality (LMI) formulation of the multirateH2 sampled-data
control. In fact, similar results can be obtained if we chooseX(t) =
X(t+ Ts) > 0, for t � 0(t � �Ts) with the structure

X(t) = X(i+) + '(t)(X(i+ 1)�X(i+)); t 2 (iT; (i+ 1)T ]

where'((iT )+) = 0, and'((i + 1)T ) = 1, for the multirate case,
where'(t) is a real monotonic increasing function. Of course, it is
possible to chooseX(t) as a constant, but it is clearly less flexible to
obtain a solution.

As discussed earlier, the single-rate control problem is a special case
of the multirate one withNT = 1. From Theorem 1 and Corollary 1,
we obtain the following results for the single-rate case.

Corollary 2: For the system in (1) and (2), if there exists a matrix
functionX(t) = X(t+ Ts) > 0 for t � �Ts, defined as

X(t) = X(0+) +
t

Ts
(X(1)�X(0+)); for t 2 (0; Ts] (29)

matricesZ; U > 0 and� = diag(�1I; �2I) > 0, such that the linear
matrix inequalities

U BT
1

T

B1 X(1)
> 0 (30)

U BT
1

T

B1 X(0+)
> 0 (31)

�X(0+) X(0+) �CT
1 X(0+) ~ET

�C1X(0+) �I 0
~EX(0+) 0 ��

< 0 (32)

�X(1) X(1) �CT
1 X(1) ~ET

�C1X(1) �I 0
~EX(1) 0 ��

< 0 (33)

�X(0+) + ~AX(1) ~AT + �CT
2 Z

T ~BT + ~BZ �C2
~BZ

ZT ~BT
�

TX(1)
<0

(34)

hold, thenF = Z( TX(1) )�1 is a stabilizing feedback gain with
which theH2 measureJg in (4) of the closed-loop system satisfies

Jg < Tstrace(U):

Furthermore, an optimal control gain can be obtained by solving the
following optimization:

inf
Z;�;U;X(0 );X(1)

trace(U)

subject to linear matrix inequalities (32)–(34).
Corollary 3: For the system in (1) and (2), if there exists a periodic

matrix functionX(t) = X(t + Ts) > 0 for t � 0, defined as (29),
matricesU > 0;� = diag(�1I; �2I) > 0; andZ, such that linear
matrix inequalities (32)–(34) and

U BT
1

T

B1 X(1)
> 0 (35)

hold, thenF = Z( TX(1) )�1 is a stabilizing feedback gain with
which theH2 measureJ in (3) of the closed-loop system satisfies

J < trace(U):

Furthermore, an optimal feedback gain can be obtained by solving the
following optimization:

inf
Z;�;U;X(0 );X(1)

trace(U)

subject to linear matrix inequalities (32)–(34) and (35).
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TABLE I
VALUES OF PARAMETERS FOR DIFFERENT

FLOW RATES

TABLE II
SUMMARY OF RESULTS

IV. NUMERICAL EXAMPLE

Consider a robust optimal control problem of a 2-input gas absorber
in [8] and [12]. The plant model is

_x(t) =

b c 0 0 0 0

a b c 0 0 0

0 a b c 0 0

0 0 a b c 0

0 0 0 a b c

0 0 0 0 a b

x(t) +

b 0

0 0

0 0

0 0

0 0

0 c

u(t) (36)

wherea = Lk=(H� + h); b = (Lk + Gk�)=(H� + h); c =
Gk�=(H� + h). The nominal parameter values are� =
0:72; H = 1; h = 75. Five different pairs of flow rates,Lk

andGk; k = 1; 2; . . . ; 5, are given in Table I.
We try to design digital control procedures with single-rate and mul-

tirate to minimize the following index:

J =
1

0

(xTQx+ uTRu)dt

whereQ = I; R = I . After performing a Cholesky factorization, we
have

[C1 D12]
T [C1 D12] =

Q 0

0 R

and define

z(t) = C1x(t) +D12u(t) (37)

and assume the disturbancew(t) is injected to the system through all
the state channels. That is,B1 = I . In the example, the above system is
converted into the form of systems in (1) and (2). We choose the nom-
inal parameters to be:L0

k = (1=5) k=5
k=1 Lk; G

0
k = (1=5) k=5

k=1Gk,
and assumeLk = L0

k+(max(Lk)�L
0
k)�1; Gk = G0

k+(max(Gk)�
G0
k)�2, where�1 and�2 are uncertain real scalars withj�1j < 1; j�2j <

1. Then, (36) and (37) can be rewritten as (1) and (2), where the ma-
tricesA;B2; H; E;H1; andE1 can be easily obtained. The above LQ
problem is now cast into theH2 problem. Using the proposed proce-
dures and choosingTs = 1 andNT = 2, the result is summarized in
Table II.

The result shows the upper bounds of the generalizedH2 measure
(Jg) are larger than that of the traditionalH2 measure(J). In fact, what
we computed for the generalizedH2 measure case is an upper bound
of the accumulated effect excited by impulses in the interval(0; Ts].

V. CONCLUSION

In this paper, twoH2 measures are used to design uncertain linear
systems. Under the framework of hybrid systems, the multirate and

single-rateH2 sampled-data control procedures are proposed for the
uncertain linear systems. The sampling period is explicitly involved in
the result which is superior to traditional methods. The solution proce-
dures proposed in this paper are formulated as an optimization problem
subject to linear matrix inequalities. A numerical example is also pre-
sented to demonstrate the proposed techniques.

APPENDIX

PROOF OFLEMMA 1

Proof: For a given scalar� > 0, consider the system in (9) and
(10) with an initial statex(t0) = x0, satisfyingkx0k < �. Let � > 0
be a scalar such thata�2 > b�2. For anyt > t0, let �k be the largest
nonnegative integer such that the jumping instantt�k satisfyingt�k �
t � t0, we have

t

t

D+V (�; x)d� = V (t; x)� V (t+�k ; x)

+

�k�1

i=0

(V (ti+1; x)� V (t+i ; x))

= V (t; x)� V (t0; x)

�

[ ]�1

k=0

(k+1)N �1

i=kN

(V (t+i ; x)� V (ti; x))

�

�k

i=[ ]N

(V (t+i ; x)� V (ti; x)):

That is

akxk2 � V (t; x) =
t

t

D+V (�; x)d� + V (t0; x)

+

[ ]�1

k=0

(k+1)N �1

i=kN

V t+i ; x � V (ti; x)

+

�k

i=[ ]N

V t+i ; x � V (ti; x)

� V (t0; x) � bkx0k
2 < b�2 < a�2

from which we obtainkxk < � for t � t0. Then, we claim that

lim
t!1

inf kx(t)k = 0: (38)

If this is not true, then there exists a scalar
 > 0 such that

kx(t)k � 
; t � �T + t0 (39)

for some�T > 0. From the conditions in (12), (13), and (39), we obtain

lim
t!1

V (t; x) = lim
t!1

t

t

D+V (�; x)d� + V (t0; x0)

+ lim
�k!1

[ ]�1

k=0

(k+1)N �1

j=kN

V t+j ; x � V (tj ; x)

+

�k

j=[ ]N

V t+j ; x � V (tj ; x)

� V (t0; x0)� lim
t!1

t

t

ckx(�)k2d�

� V (t0; x0)� c
2 lim
t!1

t

t +�T

ds = �1

which is a contradiction.
We now claim thatlimt!1 sup kx(t)k = 0, if this is not true, then

we can choose a scalar" > 0 such that" < limt!1 sup kx(t)k. Since
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(38) holds, we can find sequencesf~tigi=1;2;... andf�tigi=1;2;...; t0 <
~ti < �ti � ~ti+1 < �ti+1, such that

kx(~ti)k =
"

2
; kx(�ti)k = "

and
"

2
< kx(t)k < "; t 2 (~ti; �ti); i = 1; 2; . . . : (40)

Of course, we could have, instead of the relationship in (40)

kx(~ti)k = "; kx(�ti)k =
"

2
and

"

2
< kx(t)k < "; t 2 (~ti; �ti); i = 1; 2; . . . : (41)

The value of" can be chosen such that at least an infinite sequence
of intervals satisfies either (40) or (41) with no sampling instants in
(~ti; �ti). As f(t; x) is uniformly norm-bounded inx andkxk < � for
t � t0, then we can deduce thatkD+xk is bounded; that is, there exists
a scalarM > 0 such that

kD+xk = kf(t; x)k �M; for t 2 (tk; tk+1):

This implies that for anyx(t1) andx(t2); t2 > t1; t1; t2 2 (tk; tk+1),
we have

jkx(t2)k � kx(t1)kj � kx(t2)� x(t1)k �M(t2 � t1)

and hence

D+kxk = lim
t !t

kx(t2)k � kx(t1)k

t2 � t1
�M:

SinceD+kxk � M , from (40), we obtain the relation�ti � ~ti �
("=2M). In view of (12) and (13), we have

lim
n!1

V (�tn; x(�tn))

= V (t0; x(t0)) + lim
n!1

�t

t

D+V (�; x)d�

+ lim
n!1

n

i=[ ]N

V t+i ; x � V (ti; x)

+

[ ]�1

k=0

(k+1)N �1

i=kN

V t+i ; x � V (ti; x)

� V (t0; x(t0)) + lim
n!1

0�i�n

�t

~t

D+V (s; x(s))ds

� V (t0; x(t0))� lim
n!1

n

i=0

c
"

2

2 "

2M

= �1

which is a contradiction. Thus,kx(t)k ! 0 as t ! 1 and hence
x(t) ! 0 as t ! 1. The case whenD+kx(t)k is bounded from
below can be proved using (41) with similar arguments. All of these
showed the desired results, which complete the proof.
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