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[6], a review of the methods, robu&f, performance analysis in the Consider the following uncertain linear system:

state-space, and operator version of the roBlssperformance (which

views theH> norm as the worst case response under a suitable class  @(t) = (A + AA)x(t) + Biw(t) + (B2 + ABa)u(t) (1)

of signals) are provided. Nowadays, digital control, digital signal pro- 2(t) = Cra(t) + Digu(t) (2)
cessing, and digital communication in networks are widely used. Tra-

ditionally, the synthesis and analysis methods for these applications gffere

all based on discretized and continuous-based formulations. However;(¢) ¢ R™  state vector of the plant;

these are approximate formulations [7]. During the last few years, they(t) € R™ control vector;

development of sampled-data system control (controllers are composed(+) ¢ R?  output of the plant to be controlled;

of a sampler-and-hold device and a digital controller), which takes into(¢t) € R? impulsive disturbance vector.

account of the effects of the intersampling behavior of the system andi and A B, are uncertainties satisfying

has no degradation of the closed-loop performance, has received wide

attention [4], [7]. Moreover, past research had also revealed that sam- AA=H(AE,, ABy; = H;AFE,

pled-data control exhibits some additional favorable properties. For in-

stance, the effects of the sampler and the holder are taken into accaum¢re A, B, B», Cy, D12 and Hy, H-, E1, E> are the real matrices
in the control design. A complex digital controller, such as time-varyingith compatible dimensions. The uncertain matkisatisfiesA” A <

or periodically time-varying, can be easily constructed by the piecé: In this paper, we assume that the uncertainty is linear time-invariant
wise static controllers. The multirate output feedback control is equiglT1).

alent to state feedback control. In particular, it is very suitable to beFor the system in (1) and (2), tH&: sampled-data optimal control
used to control nonlinear systems, and can asymptotically stabilize mleblem is to design a single-rate digital control and a multirate digital
most all classes of nonlinear systems in which some of them cannotdeatrol to minimize an upper bound of ti#&; measure of the system.
asymptotically stabilized, even locally, using smooth feedback. Howhe traditionalH> measure is defined as

ever, a sampled-data system is a hybrid system which involves both

continuous-time and discrete-time signals. This makes traditional syn-

thesis and analysis methodologies using purely discrete-time and con- J = AZEI;Q
tinuous-time formulations difficult to apply. Many research studies on ' -
H; and H~ control for the sampled-data systems reported are basgflere {¢,},=, ..., are the standard basis R, 5(¢) the impulse
on the frequency response [1], [16], the lifting technique [3], and thgyplied att = 0,7...(A) is a closed-loop system from to = in-
L2-induced norm [15]. Moreover, the results of the robustness and s{@tving a sampled-data controll€F{,, (A) is periodic with period’.).
bility of the uncertain sampled-data systems are studied [3], [9], [14]- #hus, there is no transfer function in the usual sense such théb its
[4], the authors discusseld; performance measures of sampled-datgorm could be minimized. Measure (3) will be used to circumvent this
systems in detail and providell, sampled-data control proceduresproplem [4]. Sincd.., (A) is time-varying, in [4] the authors proposed

for linear systems using the lifting technique. However, thesam-  ap, alternative specification, a generalizéd measure defined as
pled-data optimal control for uncertain systems is still open. In this

paper, we will show that thesH> performance criteria can be ex- (/1 ) >1/2
Jodr
0

p 1/2
> ||Tzw<A>a<t>ei||%> 3)

=1

tended to the case of uncertain linear systems. Robust mulfifate Iy = (4)
sampled-data optimal control (a time-varying periodic control) proce-
dure for such systems is provided. Moreover, we also present a resuds considered where
on the robust single-rate sampled-data control for the uncertain linear y
systems to minimize thed#, measures as a special case. The solution L ) 5
procedures proposed in this paper are formulated as an optimization Jr = o < ||TZW(A)bf(t)ei”2>
problem subject to linear matrix inequalities. ) = V=t

This paper is organized as follows. In Section II, we present a fognds, (+) = §(+ — 7),0 < r < Ts. Clearly, ifr = 0, then.J, = J.
mulation of problems considered in this paper and some preliminggyr. , is LTI, then.J. = .J for all r and.J, = /T%.J which implies
materials. Furthermore, a new result on the stability of hybrid systeriat.7, is a generalization of the traditionsl, measure. Thél, mea-
is established to facilitate a multirate control design. Section Ill coRyres in (3) and (4) are considered in [2], [4], and [10] for sampled-data
tains results on robust sampled-data optimal control of uncertain lin@trol systems using the so-called lifting technique. In this paper, they
systems for twdi, measures. A multirate robust sampled-data contrglj|| be extended to uncertain sampled-data control systems.
(a piecewise constant periodic control) procedure for uncertain linearan jmportant sampled-data control problem is concerned with de-
systems is proposed. Moreover, the single-rate solution is providedsgghing a control
a special case. Numerical examples are provided in Section IV. Finally,

2

concluding remarks are given in Section V. u(t) = afte], fort € (tr,tes1], to=0 (5)
aty] = Fx(ty), k=0,1.2,..., (6)
II. PROBLEM FORMULATION to stabilize the system in (1) and (2) and minimize upper bounds of the

H, measures in (3) and (4). Equation (6) denotes a digital controller
In the following, T’s is used to denote the sampling period, withwith static gainF’ and (5) indicates that the digital control is fed into

which all the states of the system are sampled simultaneously thye continuous system by means of an ideal zeroth-order hold. In this
ideal samplers. The discrete-time signals will be representeld Jby situation, all the states are sampled by ideal samplers, and the control
and with the associated variable (for example,]. For a matrix action is synchronously switched with a common sampling pefiod
M, (M)(a(M)) denotes the maximum (minimum) singular value offhis is called asingle-rate digital control.
M. If M is real symmetricM < 0(M > 0) denotesl/ is negative In this paper, we will explore the procedure of computing a robust
(positive) definite. periodic time-varying sampled-data optimal contfdlt) with period
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T, for the uncertain linear systems of (1) and (2). The control actiofisr ¢ € (¢ + T, tx + (¢ + 1)T),i =0,1,2,..., Ny — 1, where
are switched with a shorter peridd andNr = (T, /T). Here, T, is

referred to as the frame period aiNe the input multiplicity. Moreover, A= {A Bg} B, = {31 } , A= {I 0}
the time-varying digital control signals are fed into the plant with ideal 0 0 0 0 0
- i iT,i ismi i 5[0 - - [Hi H.
zeroth-order holds. At every instamt+ i7", its mechanism is described b= . Cy=[C, D), H= 1 2
as I 0 0
oy . . ~ E, 0 < A0
u(t) =ali|tg], fort € (4 +iT,tx + (i + 1)T] @) E = 0 B A= 0 A
fori = 0,1,2,..., Ny — 1, whereali | ] is defined as Co=[I 0, I=[I 0.

alt | tx] :== F(i)x(ty), fori=0,1,2,...,Np —1 (8) Clearly, if Ny = 1, the multirate sampled-data control problem is
reduced to the single-rate one.
where, with a slight abuse of notation, we havg) := F(:T') time-

varyingandperiodi¢’(i) = F(i+Ny) (thatis,F (iT+T.) = F(iT)). m
In the frame period, the control gain is switched at ¢, + i7". Con-

sequently, the problem is cast into the design of a periodic time-varyingFirst, we consider the multirate sampled-data control problem of
controller (7) and (8) to optimally stabilize plant (1) and (2) and minitinimizing an upper bound of thé; measure/, in (4) for the system
mize certain upper bounds of th#, criteria in (3) and (4). In contrast in (1) and (2).

. MAIN RESULTS

with the single-rate case, such a control problemrastirateone. Theorem 1: For the system in (1) and (2), if there exists a time-
To facilitate later developments, we consider the following nonlineXrying periodic matrix functionX (¢) = X(t + T.) > 0 fort €
hybrid system: (iT, (i + T], t > T, defined as
o) = f(tw(t)), tE(tyt) ) X(t) = X(it)+ _TZT(X(i +1)-X@Y) A

a(t]) =Lty a(t)), j=0,12....20)=xz (10)

wherel; : Ry x R" — R", f(t,z(t)) is uniformly norm-bounded in With the notationsY (i + 1) := X ((i + 1)T), X (i) := X ((:I)"),
x(t) (thatis,||f(t, 2(t))|| < «lx(t)|| for some constant > 0)and fori=10,1,.... Np — 1, matricesl’ > 0, A = diag(A11, A21) >0
Lipschitz on the intervalt;, t;.1] with right limit at¢,, £(0,0) = 0. andZ(i), such that the linear matrix inequalities

{t;}j=0,1,2,... is the sequence of jumps withy, — ¢; equals a con-

stant. Assume the system (9) and (10) satisfies the conditions for the [ U BT >0 (18)
existence and uniqueness of the solution [11]. [IBr X(i+1)
Lemma 1: Leta > 0,0 > 0 andc > 0 be real scalars. Consider rv BIIT
system (9) and (10), if there exists a Lyapunov functiéft, x(t)) 1B, X(ﬁ)] >0 (19)
:/_vh_ereV : HJ| X Il'ﬁ" L—> Hﬁ' i§ co_ntinuouhs ﬁrltjvt]qq] with right r X(iT) X@GHCT XGEHET
imit at ¢; and locally Lipschitzian in:, such that CLX (i) I 0 <0 (20)
allel® < V(t.x) < bl (11) LEXGT) 0 A ]
and [ X(i+1) X@E+1)CT X(i+1)E?
] ) CiX(i+1) -I 0 <0 (21
DYV (t,x) < —c||2| (12) EX(i+1) 0 _A
fort € (t;,#;11) and X cliz'e” BZ(0)
BzC,  —-XT4AxAT BZ <0 (22
ENpHI—1 v ~p I 7 _
Z B 7°B —1F X(Np)l
S V)~ Vet <0 (13) 27O (M)
kN whereX (i*) = (1/T)(X (i*)— X (i+1))+ AX (it)+ X (i) A" +
fork = 0,1,...,1 = 1,2,..., Nz, some integetNz > 0, then HAH", )x(: +1) = (/T)(X( ) — X(i+ 1)):1—44)3'(77 +1)+
system (9) and (10) is asymptotically stable. X(i+D)A"+HAH" X = =X (0Y)+ AX(N;)A" +BZ(0)Ca +
The detailed proof of Lemma 1 is given in the Appendix . Ctzv (BT, X = diag(X(l),X(Q),...,X(Nl - 1), Xt =
Remark 1:Lemma 1 is an adaptation of [11, Th. 3.7.3]. |ndiag(¥(1+) X, X((Ne-Dh),2=(Z2"(1),27(2).....
Theorem 3.7.3, at the all sampling instants, the Lyapunov functidh’ (N, — })) L Z(1) = FOI"X(Np)LA = dlag(A A, A),
is decreasing, which is relaxed in Lemma 1. While the decrease the= diag(B, B,..., B), hold, thenF (i) = Z(i)(I" X (N4))~" for
of Lyapunov function is accumulatively evaluated over every frame= 0,1,..., Ny — 1, are stabilizing periodic time-varying feedback

period in this lemma. In the frame period, jumping up of Lyapunogains with which thed, measure/, in (4) of the closed-loop system
function values at the sampling instants is admitted. At a certagatisfies

instant, the accumulation of jumping must be negative from the

beginning of the frame period as shown in (13). Jy < /Tstrace(U).

Leti(t) = (7 (t),u(¢))T, the closed-loop system composed of

the system in (1) and (2), and the controller in (7) and (8) is rewmté:ﬁjr'[hermore a set of optimal feedback gains can be obtained by solving
as e following optimization:

#(t) = (A+ HAE)#(t) + Biw(t) (14) " : 11(1f+ trace(U) (23)
) - - _ AUZ(i),X(i41),X(i+),i=0,1,...,Np—1
F(tF +4T) = Ai(ty + iT) + BF(i)Caii(ty) (15) 5
2(t) = Chi(t) (16) subject to linear matrix inequalities (18)—(22).
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Proof: Leti(t) = («T(¢),u(t))T, choose a Lyapunov func- where
tion candidatd’ (¢, %) = &" (t)P(t)#(t), whereP(t) = P(t+T,) > 1Y

) “ee )
0 is a piecewise continuous function o> —T. Here, takeP(t) = AT P BF (1) S ... 0
X 1(t), whereX (t) defined in (17) is a solution of the linear matrix == : ( >. (1)C ll
inequalities (18)—(22). Let : : . :
L It ATP(Ny —DNBFE(Ny —1)Ca 0 -+ Swnp_
sz[CZT cro... CQT] and / 2 =t
P = diag(P(1), P(2),..., P(Np — 1))
PT = diag(P(17), P(2%),..., P(Nr - 1)T) M = —P(Ny)+ (A + BF(0)C5)" P(0V)(A + BF(0)Cy)
F = diag(F(1), F(2),..., F(Np —1)). Npe—1 ) )
, . . + > CYFT ()BT P(iT)BF(i)Cs
Fort € (tp +iT,t; + (i + 1)T), noting that (14), for anA = e

diag(A1 I, X21) > 0, we have S = ATP(#)A — PG).

DTV (t,&(t)) < # (t)(DTP(t) + P(t)A + A" P(t)

A g . For O(t, , if
+P(t)HAH" P(t)+ ETAT'E)#(t). oro(t) # 0.1

[1]
A

From the construction in (17), the periodic matrix functi@r(¢) is (26)

convex on the intervali T\ (i + 1)T] and is a convex combination of ;.
X (i) and X (i + 1). As the convex combination of (20) and (21) is
negative definite, we have

XENH) - X@E+1)
T

SOV +iT @) = V(te +iT, )] + V(L&) < V(te, @),
n \aT ira 7T i=1
+AX(t)+ X()A" + HAH @7)

+XHETATEX(H) + X(H)CT C1X (1) < 0. (24 _ _ _
®) ®) HCT X () (24) From (25) and (27) and the constructionft¢), if there exist solu-

Pre- and post-multiplying (24) b¥(#) and notingP(#) X (t) = I, we tions to (20) and (21), then (17) shows that the piecewise linear matrix
obtain X (t) satisfying

DTV (t,#(t) < —i' ()C{ Crie(t) <0 (25) X () > min{a(X (i), a(X(i + 1)}

' (=(Y(:TF (Y (1
fort € (tx +iT, ¢, + (¢+1)T). The computational problem of tHé, X(#) < max{a (X)), (X (0 + 1) H

measure/, in (4) is equivalent to an LQ problem of the system withor ¢ ¢ (¢, + T, t; + (i + 1)T], which implies thatP(t) is bounded

an initial conditionz(fo) = o excited by animpulsé-(t) = 6(f — and the Lyapunov function satisfies bounds of the type in (11) of
7).0 < 7 < T, in all the input channels and the system respondg@dmma 1. It is easy to obtain that & are negative definite from
autonomously [4]. Consider the LQ problem for the system with a fixe@g), which impliesS™_ [V () + T, &) = V(tx + iT.7)] < 0,
initial condition att = —7 given by#_, := #(—7) = Bie; and N0 for; = (,1,..., Ny — 1. Then, by Lemma 1 with (25) and (27), the
external input thereafter closed-loop system is asymptotically stable. B&) and F(i) are

Je(i_s) = sup |23 periodic with periodl, then we have
A:ATALT

Npr—1—k
Let % be the largest integer such th&f < 7. The effect of the impulse Z [Vt +iT, &) — V(tp +iT.2)] <0
8- (1) in theith channel is given by i=—k.
J(F_r) which implies
= sup (/ (?T(f)éffﬁf(t) + DTV (t,#(1)) Jo(#—7) < inf V(=7.&)= inf L P(=T)F .
A \J_r A, A,
— DV, .I'(t))) dt> Summing the effect of the impulses over the channels, we have
14
. R sup S [Teu(A)8 (e}
< inf <— [ o (t,;(t))dt) A:ATASI; 3
p
N |[Np—1—k ) 5
. . . . . e < sup  ||T:w(A)8- (e
= inf (V(—ﬂw) +N11_ngXtZ [ > (V(H +iT, @) ;A:ATASI 2
k=0 i=—k P
= J.(Biey)
— Vit +:T, l’)) - Vit + (JV'[ — Z)T,i) . i=1
P
< inf CTBIP(—T)BW,;
Let ; FA,P
Ote) = (" (), 7 (th + )o@ (e + (Np — 1)T))T < inf trace (B?uTP(—T)uBl) .
we have Then, the generalizeH. measure has the following upper bound:
Np—1

- . ~ - . ~ r —_ , ; Ty ,
Z [V (thr +iT. %) =Vt +iT.2)] = Ch (te)EO(tr) Jj < FiI{fP/ trace (BlTﬂTP(—T)HBl) dr.
24l 0

1=0
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Let U be such that matrix inequality (LMI) formulation of the multiratél, sampled-data
; . control. In fact, similar results can be obtained if we chodgg) =
U>Bi I P(=7)1B 1 X(t+T,) > 0,fort > 0(t > —T.) with the structure
o (T G+0)T -7, -
=Bl <TX(Z )+ X+ 1)) 1B X=X+ o) (XG+1)— X))t € (T, (i + )T
forr € [iT,(i + 1)T), then wherep((iT)") = 0, ande((i + 1)T) = 1, for the multirate case,
, ) wherey(t) is a real monotonic increasing function. Of course, it is
Iy <Ts F.}\DIQU trace(U). possible to choos& (¢) as a constant, but it is clearly less flexible to

. N ) ‘obtain a solution.
These directly lead to (23) and (18) and (19). Condition (26) is equiv- As discussed earlier, the single-rate control problem is a special case

alent to of the multirate one withVz = 1. From Theorem 1 and Corollary 1,
—~P(Ny) 0 (A4 BF(0)C.)" ciF'B" we obtain the following results for the single-rate case.
0 P 0 AT’ Corollary 2: For the system in (1) and (2), if there exists a matrix
A+ BF(0)C, 0 —-P71(0") 0 <0 function X (t) = X(t+ T,) > 0 fort > —T,, defined as
BFC, A 0 — (P! ot n :
X)) =X(0")+ =(X(1) - X(07)), forte(0,T.] (29)
which is again equivalent to T,
—X(0) 0 A+ BF(())C} 01 [X(Ng) 0 matricesZ, U > 0 andA = diag(A( 1, X=1) > 0, such that the linear
{ 0 —X*} [ BEC, A] [ 0 X] matrix inequalities
(A+ BF(0)C2)" CiF'B" R
1 0.
- { 0 ar ]S B x| 0 (30)
rorr T,T
Expand the second group on the left side of the above inequality IIII; 5;()&)] >0 (31)
. - } LBy AL R
{A + BF(0)C; 0} {MNT) 0] [ X(0F) X0 X(07)E"
G LA aXOY) T 0 [ <o (32)
" {(A +BF0)C)" CF B ] | EX(0T) 0 -A
oA o [ X)) X@ef XE!
AX(N7)A 0 T, [ BEO)C: 0 CiXx(1) I 0 <0 (33)
= M+ M 1
{ 0 F\XF\T} " ~y+l , + BFC, 0 | EX(1) 0 —A
{X(NT) 0] [CZTFT(O)BT CQTFTBT} [~X (") +AX(WAT + ] 27T + B2C, Bz ] _
0 X 0 0 | zZ"B" —17X (1)1
where (34)
= {“NLX(NT)C_/V%'FT(O)BT "‘iX(A’TT)C%YFTBT] ' hold, thenF = Z(I' X(1)I)~" is a stabilizing feedback gain with
) 0 0 which theH» measureJ, in (4) of the closed-loop system satisfies
Let F(i)1” X (Np)l:= Z(i), we directly have the inequality (22). We J, < \/Tetrace(U).
then obtain the desired result. [ |

As explained in Section Il, th&> measureJ is a special case of the Furthermore, an optimal control gain can be obtained by solving the
generalized?; measurée,,. The following is a direct result of Theorem following optimization:
1 by settingr = 0. ] -
Corollary 1: For the system in (1) and (2), if there exists a matrix Z,A,Lr',)?(loﬂ),‘\’(l) trace(U)
functionX (t) = X (¢t+7,) > 0defined as (17), matricés > 0,A =
diag(\ I, X\2T) > 0 andZ (i), such that the linear matrix inequalitiessubject to linear matrix inequalities (32)—(34).

(20)—(22), and Corollary 3: For the system in (1) and (2), if there exists a periodic
. . matrix functionX (¢) = X (¢t + T,) > 0 fort > 0, defined as (29),
{ U Bl ] >0 (28) Mmatricest’ > 0,A = diag(A:1,\2]) > 0, andZ, such that linear
1B:  X(Nt) matrix inequalities (32)—(34) and
hold, thenF (i) = Z()) (1" X (N 1)~ fori = 0,1,..., Ny — 1, are v BI" 0 35
stabilizing periodic feedback gains with which tlhe measure/ in [IIBl X(1) } > (35)

(3) of the closed-loop system satisfies
hold, thenF = Z(1"X(1)I)~" is a stabilizing feedback gain with

J < y/trace(U). which theH> measureJ in (3) of the closed-loop system satisfies
Furthermore, a set of optimal feedback gains can be obtained by solving J < y/trace(U).

the following optimization:
Furthermore, an optimal feedback gain can be obtained by solving the
vz N race(U) following optimization:
subject to linear matrix inequalities (20)—(22) and (28). Y \11(1(]f+) X“)tface(U)
Remark 2: The piecewise continuous matrix functidgh(t) in (17) T T
is linear and its positive definiteness convex,iwhich leads to a linear subject to linear matrix inequalities (32)—(34) and (35).
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TABLE | single-rateH, sampled-data control procedures are proposed for the
VALUES OF PARAMETERS FOR DIFFERENT uncertain linear systems. The sampling period is explicitly involved in

FLOW RATES the result which is superior to traditional methods. The solution proce-
k 1 2 3 4 5 dures proposed in this paper are formulated as an optimization problem
L. | 40.8 | 35.8 | 35.8 | 45.8 | 45.8 subject to linear matrix inequalities. A numerical example is also pre-
G | 66.7 | 61.7 | 71.7 | 71.7 | 61.7 sented to demonstrate the proposed techniques.

TABLE I APPENDIX

SUMMARY OF RESULTS PROOF OFLEMMA 1

Proof: For a given scalaf > 0, consider the system in (9) and

;};{Eth(’dsl (Jg <)\/§321§1é2 trace(U) | (J <)v/min tracel (10) with an initial stater(to) = w, satisfying||zo|| < é. Lets > 0
eorem : be a scalar such that-> > b8%. For anyt > to, letk be the largest
Corollary 1 / 2.8587 nonnegative integer such that the jumping instansatisfyingt; <
Corollary 2 3.1228 / PR g e have g Jumping 9t =
Corollary 3 / 2.8120 - .fo, w v
/ DYV (r,x)dr =V (t,x) — V(t] ., z)
.
IV. NUMERICAL EXAMPLE ’ Fet
7 . +
Consider a robust optimal control problem of a 2-input gas absorber + Z”’ (tigr,2) = V(t]. )
in [8] and [12]. The plant model is B V’? ) - Vit
b ¢ 00 0 0 b0 _'(;"’_'0"‘)
a b ¢ 00 0 00 T ey
= |0 @ b e 00 00 g - YY) (V) = Vi(t,)
=100 a b ¢ o™V o o™ (36) k:(j i=kNp
000 adbd e 0 0 b
+ e
0000 ab 0 ¢ = D (V) = Vit ).
wherea = Li/(Ha 4+ h),b = (Ly + Gra)/(Ha + h),c = =lypINe
Gra/(Ha + h). The nominal parameter values are = Thatis )
0.72.H = 1.h = 75. Five d_n‘ferent pairs of flow rates]; allzl? < Vit 2) :/ DV (r,2)dr + Vito, 2)
andGy, k = 1,2,...,5, are given in Table I. to
We try to design digital control procedures with single-rate and mul- [Ej_1,
. L. . . N (k+1)Np—1
tirate to minimize the following index: o .
oo B + Z Z (V (ti ,;B) -V (t,-,;t))
J= / (' Qe+ u" Ru) dt k=0 i=kNp
0 R
whereQ = I, R = I. After performing a Cholesky factorization, we + Z (V (¢, 2) = V(ti,2))
hay ) i 5T,
ave =l REINT
[C‘l D12]T[Cl Dlz] = |:602 ;] S ‘I(to,:l?) S b”’ﬂo”2 < b(52 < (10'2
. from which we obtairj|x|| < ¢ for¢ > #,. Then, we claim that
and define Jim inf [l«()] = 0. (38)
2(t) = Cra(t) + Dizu(t) (37) Ifthis is not true, then there exists a scajay 0 such that
la(t)l > 7. ¢ > T+t (39)

and assume the disturbaneét) is injected to the system through all B
the state channels. That; = I. In the example, the above system idor somel’ > 0. From the conditions in (12), (13), and (39), we obtain
converted into the form of systems in (1) and (2). We choose the nom- ..~ . . L S e
inal parameters to be), = (1/5) 1=7 Ly, GY = (1/5) 1= G, :pf&‘ (t,2) = lim, /[0 DTV (7, z)dr + V(to, o)
andassumé; = L)+ (max(Li)—LY)61, Gy = GL+ (max(Gy) —
G?)82, whered, ands, are uncertain real scalars with | < 1, 62| < . i »
1. Then, (36) and (37) can be rewritten as (1) and (2), where the ma- + ,—}E‘o‘o Z Z (V (1] 2) = Vit 0))
tricesA4, B, H, E, H,, andE, can be easily obtained. The above LQ k=0 J=kNr
problem is now cast into th&- problem. Using the proposed proce-
dures and choosingl; = 1 and N7 = 2, the result is summarized in
Table Il.

The result shows the upper bounds of the generalZedneasure
(Jg4) are larger than that of the traditiondl, measuré./). In fact, what R . rt 5

. . < V(to,z0) — lim clla()|| dr

we computed for the generalizéfl, measure case is an upper bound oo /,0

of the accumulated effect excited by impulses in the intefyval’; . N ¢
< Vito,x0) — ey~ lim ds = —co
t—oo to+T

(87171 (k1) Np 1

Y (V) - V)

V. CONCLUSION which is a contradiction.

In this paper, twaH, measures are used to design uncertain linear We now claim thatim;— .. sup ||«(¢)|| = 0, if this is not true, then
systems. Under the framework of hybrid systems, the multirate an@ can choose a scalar> 0 such that < lim;_.. sup ||=(#)||. Since
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(38) holds, we can find sequenclig }i=1,2,... and{#; }i=1,2, . to < [4]
1?,; < iT, < {,‘,J,.] < iTi.t,.] s such that [5]
ln(Eoll = 5. )l = = "
and
% <|le®) < =t € (Fi,F), i=1,2,.... 40 7

Of course, we could have, instead of the relationship in (40)

(il = = (T = & .
and
C el <ste i) =12 @y 9

The value of= can be chosen such that at least an infinite sequencg )
of intervals satisfies either (40) or (41) with no sampling instants in
(ti, ). As f(t,«) is uniformly norm-bounded in and||z|| < o for ~ [11]
t > to, then we can deduce thab ™ z|| is bounded; that is, there exists

a scalarM > 0 such that [12]

IDT || = ||f(t,a)|| < M, fort € (t,trr1).

(13]
This implies that for any:(¢1 ) anda(t2), t2 > t1,¢1,t2 € (Ek, tet1),
we have 4
Nt = el < l2(tz) — 2(t)]| < M(ts — 1) 25
and hence
z(to)|| = [l= [16]
|D* ||l = le)ll = =@l o

lim
to—tf ty — 1

Since DY||z|| < M, from (40), we obtain the relatioh — #;, >
(e/2M). In view of (12) and (13), we have
lim V(#,,z(1,))

n— 00

i
= V{to,2(to)) + lim / DYV (r.x)dr
t

n—0o0
0

n

+ lim Z (V (z‘j' 1) — V(t,',:c))

n—oc . n 7\7
=l Ny

[N71= ()N —1

Y Y (V) V)

i=kNrp

5
< V(to,z(to)) + lim Z DTV (s,2(s))ds
n*‘oo(]g‘iﬁn #i

n

N2
< V(to,z(to)) — nlEI;QZC (5) :

=0

)

iy
=

= —00

which is a contradiction. Thug|z(¢)|| — 0 ast — oo and hence
z(t) — 0 ast — oc. The case wheD™ ||z(¢)|| is bounded from
below can be proved using (41) with similar arguments. All of these
showed the desired results, which complete the proof. [ |
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