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Vortex arrays for sinh-Poisson equation of two-dimensional fluids:
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The sinh-Poisson equation describes a stream function configuration of a stationary
two-dimensional2D) Euler flow. We study two classes of its exact solutions for doubly periodic
domains(or doubly periodic vortex arrays in the plgnd3oth types contain vortex dipoles of
different configurations, an elongated “cat-eye” pattern, and a “diag@syatimetrig configuration.

We derive two new solutions, one for each class. The first one is a generalization of the Mallier—
Maslowe vortices, while the second one consists of two corotating vortices in a square cell. Next,
we examine the dynamic stability of such vortex dipoles to initial perturbations, by numerical
simulations of the 2D Euler flows on periodic domains. One typical member from each class is
chosen for analysis. The diagonally symmetric equilibrium maintains stability fgewdin strony
perturbations, whereas the cat-eye pattern relaxes to a more stable dipole of the diagonal type.
© 2004 American Institute of Physid®DOI: 10.1063/1.1772331

I. INTRODUCTION The first example is a known solution from Class Il and
the second example is the new solution for Class I. For con-
venience we shall term them the sn-sn and sn-dn dipoles
based on their analytical structure, or alternatively, vortex
solitons,not in a strict mathematical sense, but by loose as-
(= V2= g+ Yy = (). (1) _sociat_ion with _soliton-style type models _and expansio_n used
in their derivation. Both examples consist of vortex dipoles
Our convention for 2D velocity here {81,v)=(-4y,#). The  on a fundamental doubly periodic domain, but they differ in
function f could be arbitrary, but in many statistical theories their configuration and the vortex shape: elongdted-eye
of 2D turbulence in fluids and plasmas, and numericsoliton versus a diagonally symmetric type.

Any stationary two-dimension@RD) Euler flow, free of
body forces, has stream fieldand vorticity { satisfying the
functional relation,

simulation$ ™t appears in the form of a hyperbolic sine, We study the dynamic stability of both vortex arraygs
) ) vortex soliton$ to initial perturbations. The diagonally sym-
Vi=1(y)=-osinhy, (0>0), (2 metric configuration proves to be structurally stable to any

called the sinh-Poisson equation (high leve) noise, and relaxes to a similar dipole state. We

The sinh-Poisson equation is closely related to som onfirm it by the analysis of th@_’;-g scg_tte_r plot,_ and by
known integrable soliton models, and has a number of exa Hrther companison of the dynamic equilibrium with the ex-

solutions important in theoretical studies and applications. Aatctb?nalync tsoluuo:?. Thte gai_—eye sghtoln prov?ts to tbe un-
well-known solution of(2) is the array of counterrotating stable(even to small perturbationsand relaxes after a tran-

Mallier—Maslowe vorticeg;® as well as doubly periodic so- SOy Phase to a diagonally symmetiieear-lineay soliton

lutions (in the x andy directiong.®™2 state. ' .
our goal here is twofold. We shall review the known The relaxation of 2D Navier—Stokes flows to large-scale

e . 3-18
vortex arrayqgClasses | and Il, Sec.)lland derive two new equilibrium  states was obsgrved in several works: .
solutions(Sec. I1l). The first one is a doubly periodic gener- There were also analytic studies based on the Arnold stability

alization of the Mallier—Maslowe vortices. The second onecr'te”a' e.g., Mallier-Maslowe or Stuart vortice3. Our

consists of two corotating vortices in a square cell. Second{vork focuses on dy”a'f“ic stability_for doubly periodic vortex
we shall examine the dynamic stability of vortex equilibria arrays for the sinh-Poisson equation.

using a numeri¢semi-Lagrangiancode to simulate 2D Eu-

ler flows, and we take one example from each class as an

illustration (Sec. V). Il. BACKGROUND ON VORTEX EQUILIBRIA

Telephone: (216) 368-2857; fax: (216) 368-5163. Electronic mail: Our classification scheme is based on the following
dxg5@case.edu mathematical features and analytic formulation, as well as

PAuthor to whom correspondence should be addressed. Telephon¢he resulting flow pattern:
(852 2859 2641; fax: (852 2858 5415. Electronic mail: ] o )
kwchow@hkusua.hku.hk ()  The first category of doubly periodic arrays of vorti-
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FIG. 3. Values of the stream function of Ed.4) vs x near a “point singu-

FIG. 1. Streamlines of the vortical pattern defined by E§s.and (10): r larity,” r=1, A=0.4.
=2.1082,5=1.6667,k=0.5,k;=0.6.

ces can be expressed in terms of products of elliptic

functions® (Il The second category of doubly periodic patterns can

sk, be expressed in terms of rational expression@usti-

y=4 tanﬁl{( ; 2)cn(rx,k)cn(sy,k1)], ally linear or quadratic products )f elliptic
ryl-k f . 6,9,10
unctions:
— A2 2

rk(1 - k) = s%qG(1 -kp), 3) In the first subdivision the flow will consist of a se-
204 o2 o2 quence of cat-eye pattertiexcept for some special param-
rA(1-20) + %1 -2 =o. eter values

k, k; are distinct, independent parameténsoduli) of the
Jacobi elliptic functions.
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FIG. 2. Streamlines of the vortical pattern defined by EQl): r=1, A FIG. 4. Streamlines of the vortical pattern of E4) for a larger value of
=0.4. A=0.7,r=1.
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- (1 = K)Y4dn(rx, k) + (1 = k?)Ydn(sy,k,) L)os@-k)Y | dn(rx,k)  (1-KA)V4
! =4 tanh! L N7
2r(1-V1-k3L(1-k9) dn(rx,k)
F(L+V1-K) =s(1+V1 -k, (4) dn(sy.ky) _ (1-kp™
(1-K)Y4  dn(syky)
o=-rH1-1-K)2+42\V1 - K. — ©®)
( ) . (1 -K)M[1-V1 -kl =r%(1 - k)M 1 -1 -K?],
(b)
| Vksnin k) = Vigsnsy,ky)
=4 tanh? , T P N 2 2 2
4 1+ Vkkgsrr,K)srsy ko) o=r6\1 - K- 2 +k2] + 46\1 - k2 - 2 +K3].
5

k2= 2 _
S-k)’=o+ar’k sl+k)=r1+k). These solutions are obtained by the Hirota bilinear

In the second subdivision the flow will consist of arrays of method, a well-established technique in the modern theory of
rectangular cells with alternating signs of vorticity. nonlinear waves! through the following intermediate steps:
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FIG. 6. Snapshots of vorticityleft
pane) and stream function(right
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eddy-turnover units 7=1/max |
(from top).
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earlier work$® The main idea is to find combinations of

- 19 2. 12 -
=4 tanh l<f): (Dx+Dy+C)(g-f) =0, theta functions where the Hirota derivatives are proportional

to themselves. As an independent check, we verify the valid-
ity of the new solutions below by direct differentiation and
substitution in(2) with the softwarevATHEMATICA .

(7
(D +D;+C+0)gf=0.

C is a constant an@® is the Hirota bilinear operator defined

by
lll. FURTHER EXACT SOLUTIONS
mong .tz _ 0\
DyDig- = IxX  ox' gt ot' Here we present a new solution of each category.
XX O F(X )y =t - (8)  A. First new solution
The trick here is to simplify the Hirota derivatives Proceeding along this line of reasoning a new solution of

through theta-function identiti€$,as is documented in our (2) belonging to Categoryl) is
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ksn(rx, k)dn(sy, k cosy1 +a’x
¥=4 tan [\ T 1)]' 9 y=4tanht| —— (13)
(1-k)) V1 + a? coshay
B. Second new solution
r’k=s2\1-K, r(1+k})=oc+s2-K). (10)

A new solution for categoryll) is

The two expressions @fL0) define the constraints relat-
ing the wave number¢r,s) and the distinct, independent
moduli (k,k;) of the elliptic functions. The solution will defi-
nitely be nonsingular ik< \rki The interesting feature of
(9) is the choice of the elliptic function dn, which has no real
zero. In terms of flow patterns, there will be straight stream-
lines in one direction only, and thus the flow configuration
cannot be confined to a rectangular ¢€llg. 1). Examination
of Fig. 1 reveals that the Mallier—Maslowe vortices are re-
covered by allowing the period in the vertical direction to be
indefinitely large. Mathematically, this is achieved by taking

=4 tanh?

Alsn(rx, ko)dn(ry, ko) + dn(rx,kg)sn(ry, ko)
1 +11 - 2A%n(rx, ky)en(ry, ko) ’

(14)

1
0<A< —-=.

1
kO— \“‘JEI \2

This is a one parametéA) family of solutions but only

these special limits,

k—0, k;—1, Ilimsnzk) =sinz,
k—0

(11

lim dn(z k;) = sechz.

k1—>1

With the balance
( o ) f 2 2 2
k= T+ V1-ki, re=1+a°, (12

one reproducegafter a simple phase shift ofr/2) the
Mallier—Maslowe vortices,

for a very special modulus of the Jacobi elliptic functions.
The wave numbers in the y directions must be identical. A
straightforward calculation shows that the vorticity param-
eter of (2), o, is zero(almost everywhene and thus it is
tempting to conclude that the flow is irrotational. An inspec-
tion of the flow configuration associated witth4) (Fig. 2
clearly shows otherwise. The patterns consist of square cells
of alternating signs of rotation. Within each cell there are two
corotating_ vortices. Each side of the square cell is of the
length 2(2K/r, whereK is the elliptic integral of the first
kind with modulusk,=1/+2.

de

V1-(sir 6)/12 (19

K(ko) = K(1/\ 2)= f

Owing to the complexity in handling elliptic functions,
the structure of the singularities is best appreciated by exam-
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FIG. 8. Comparison between the equilibriated vorti¢lgft) and the sn-sn dipole with modulés-0.13, estimated from the best-fit sinh plot. For the sake of
comparison the vortex cores are shifted here to the center of the rectangle.

ining the flow properties. As an example, consider0.4, for most vortical patterns here. Omitting the details, one can
where one center of the vortices is determined to be at amlso show that the same fact applies to vortical pattéfins
proximately x=0.438 854,y=3.269 295. The subtle feature and (5) of category(ll). For (3) of category(l) and the
regarding this singularity is that the stream function remainsimple case =s,k;=\1-k?, the flow reduces to an array of
finite, but probably exhibits a cusfFig. 3). The velocities point vortices located at where the Jacobi elliptic cosine
(derivatives of the stream functipattain large values and do function cn is one. The same reasoning applies to the new
display a sharp jump across the potential location of thesolutions(9) and (10) here, except that the point vortices
point singularity. The situation is then very similar to a line now are located at where the Jacobi elliptic functions sn and
vortex in the classical theory of potential flow, but the struc-dn are one.
ture here is considerably more complex, as elliptic functions  However, these statements will mak&4) even more
and the sinh-Poisson equation are involved.A\Bicreases striking, as the stream function does not seem to become
from 0 to 1//2, the locations of the two point vortices shift infinite, and yet the velocities tend to become large. The
from the edges of the square cell to the center of the celstructures need further elucidation, and await future efforts.
(Fig. 4. . _

A common feature for thgse tw.o. caFegorles of vortl'cal IX' DYNAMIC STABILITY
patterns is that the onset of singularities is usually associate
with o=0. The stream function usually becomes infinite at  To address the dynamic stability of 2D flows, a few gen-
isolated points. The flow, for this special regime of param-eral comments are in order. The ideal 2D Euler fluid is not a
eters, becomes irrotational almost everywhere except at thehysical model that one can experiment with or test numeri-
point singularities. The situation fqi6) of category(ll) is  cally. Indeed, any form of numeric discretization will pro-
explained in an earlier pap&tThis scenario seems to repeat duce small-scal¢subgrid mixing and/or dissipation in the
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Euler equations. Such subgrid scales and processes are oftamdn dipole. The numerical simulations exploit a 2D semi-

representedparametrizeyl as Navier—Stokes viscosity. Let Lagrangian advective code developed by Gurarie.

us note, however, that the 2D viscosity has a different mean-

ing from its three-dimensional counterpart. Most often it rep-A. The sn-sn dipole

resents eddy V|_sc03|ty r_ather than molecular viscous friction. We restrict our attention to a square geomtyek,).
The numerical studies of decaying 2D turbulence reveal o ) ;

the formation of large-scale structures, which eventually re:l_he rangeﬁ of moduli 'S_ the_n confined to Jthe—mtzerval

lax to an equilibrium statedipole, multipole, or bar* Some ~ 0<k<3-\8, and the period isT=T,,=4K(k)y1-6k+k"

of these vortex structures closely resemble the doubly perfAS k increases the period decreases from the maximal value

odic solitons found theoretically. of 27 to 0, while the vortex cores narrow and strengthen.
It raises the problem of dynamic stability of these vortexHence, the parametérmeasures the degree of nonlinearity

solitons/arrays with respect to Eulerian or Navier—Stokes dyof such a solitonk=0 corresponding to a linedFourie

namics. Here we shall address it for two cases: solifgn  eigenmode, while increasirigyields strong, localized vorti-

called the sn-sn dipole here, and solit¢®), called the ces(Fig. 5).
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FIG. 10. The long-time evolution of maximal vorticitleft) and stream functiogright) for both dipolesi(a) sn-sn andb) sn-dn. The latte¢b) undergoes a
rapid transition from elongated/parallel to a round/diagonal configuration in the range-aft Z0100r.

B. The sn-dn dipole servation of vorticity along Lagrangian paths, and a suitable
Here, a square geometry confines the modiius a approximation of Lagrangian paths through velocity and ac-

range of 0.17kk<0.242. The choice ofk=0.24(k,  celeration of the flow. At each time steyt we compute the

=0.67) corresponds to two elongated counterrotating vorticed-agrangian trajectories on a fixed grid, then advect the grid

inside parallel walls, as opposed to the diagonal orientatiofoints backward in time, and estimate the vorticity at shifted
of a symmetric sn-sn dipole. This configuration is slightly grid points using spline interpolation of its values at nearby

more general than the Mallier—Maslowe vortices. sites. While the code attempts to strictly conserve vorticity
. along Lagrangian path&@s one expects of an ideal Euler
C. Numerical code fluid), small-scalgsubgrid mixing creeps in due to interpo-

Here we provide only a brief description of the semi- lation. Let us note, however, that any physical 2D flow will
Lagrangian advective code used for simulation. Further dealways maintain some amount of local mixing, either
tails will appear elsewhere. The code exploits material conthrough eddy viscosity, and/or other unresolvetibgrid

-99.436551inh[0.359955 x]

100 + |
50 1
FIG. 11. Scatter plot and its sinh fit for
the sn-dn soliton at a latérelaxed
0 state. One observes a “near-linear”
(Fourier modg dipole with a low k
~0.048.
-50 r J
-100 ¢ 1
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processes. The code maintains one important feature of 2Mear lineay sn-sn dipole. Indeed, the best sinh fit gives an
turbulence, namely, the inverse cascitihat drives the sys- estimate of the modulus &s=0.048(Fig. 1. Hence, long-
tem to a large-scale equilibrium. Similar to earlier Navier—term relaxation of the weakly perturbed sn-dn dipole drives it
Stokes work<? most of our numeric experiments typically to a linear(Fourien mode, p(X,y) =exdi(xxxy)].

result in the dipole or bar states.

D. Dipole perturbations

We now discuss the detailed results for each case. The
sn-sn dipole appears to be stable to(allen largg perturba- V. CONCLUSIONS
tions, as anyrandom initial state tends to relax to a dipole ) )
equilibrium. Here we perturb the sn-sn dipgke=0.15 with Tvyo-dlmen5|onal turbulent flows have attracted recent
a high-level random noisgs0% of the maximum value of attentlor!, as robugt monopole or dlpqle sstructures f.requently
the initial vorticity), and run it on a 128 128 lattice of the ©Merge in the Navier—Stokes smulgﬂ&ﬁ’é. Indeed, similar
unit square &x,y<1. The flow equilibrates after several Vortices also arise in many experimental configurations in
hundredturnover periods(defined here as=1/max¢| at stratified or rot.atmg fluids® or fluids .under.the |r.1fluenc.:<-a.of
time t=0). The relaxation process is demonstrated in Fig. 6¢lectromagnetic forcé¥. The three-dimensional instabilities
with three snapshotgop to bottom at timest=5 r,40+,  Of the Mallier—Maslowe vortices have been studied as a
and 126- The relaxed near equilibrium stas=500 7) hasa  model for the evolution of mixing layers and other free-shear
vorticity-stream scatter plot that accurately fits the sinh proflows® The instabilities depend on various factors, e.g., the

file, namely, symmetry properties of the perturbations and the Reynolds
5 ] number of the ensuing Navier—Stokes simulations.
Viy=-asinhby), Here we review two classes of vortex solitons according

with parametersa=12.9, b=0.75 (Fig. 7). Any solution of to, or basgd on, their mathematical structure an_d the resulting
the latter is expressed through the basic sinh soliras flow configuration, and derive one new solution for each
class. We study the dynamic stability of vortex arrays by
R S s e I choosing a typical member from each class for analysis. The
v= wa[VabXVab)"k(Vab)]' issue of stability is addressed by simulating 2D Eule(i@an
inviscid) flows with a semi-Lagrangian advective code. A
o sn-sn diagonal dipole, found earlier in the literature, is shown
best-fit sinh curve and obtak=0.13. It comes close 0 the , e gynamically stable, and relaxes to a sinh-dipole state at
initial value k=0.15, as if the nonlinear Euler dynamics has ; o |atively high nonlinearity, i.e., strongly localized vortex

filtered out the initial random noise. The computed relaxedpair_ On the contrary, a sn-dn parallel dipole is unstable, and

g'pﬁle clotiely r:asergbles the sr;sn sollton;r?ﬂ.llft. Flgu:e ndergoes a transition to a rouf@lagonal-typé dipole with
shows the relaxed quasiequiibrium on the [elt panel, an fairly low value for the moduluk of the associated Jacobi

the exack=0.13 soliton on the right panel. Furthermore, we _." . . . ! : .

. . elliptic functions, i.e., nearly lineagFourier modég equilib-
estimated a relative-square-mean error between the conll " oyolution and stability of other periodic arrays in
puted (t=500 and predicted(soliton) vorticity fields, and ' y P y

found a 6% error fot, and a even smaller ori@bout 1%, SEC-Olller vcg?lfcaa?]dtr)eeszitder?tljseiiwirleorteﬁer directions, and raises
for their stream functiong. k

Our second example, sn-dn dipole, tells a different storyfSeveral iss_ues. A f"?t _questiqn concerns the role of a square
It appears to be unstable to aéven small initial perturba- geom(_atry in m_auntalnmg soliton stability. Let us note that
tions. Here, we perturb it with a relatively low noise, 5% of analytical solutions of Sec. Il allow any rectangular geom-
the maximal value of the initial vorticity, and run over sev- €Y With an arbitrary aspect ratio, but the questions of their
eral hundred turnover periodsig. 9). The (elongatedl par- ana!yn.c structure gnd stablll_ty require further study. Some
allel dipole structure is maintained for about 70 time units,Preliminary numeric results indicate that rectangular flows
after which it undergoes a rapid transformation to a diagonaltend 10 relax to a different pattern—a parallel *bar state”
type (round dipole state. Figure 9 demonstrates three snapdets), ~ rather than dipoles.
shots ofZ and ¢ at points in timeg=>5r, 707, and 245. The Comparing our numeric approach with earlier works, let
transition occurs within the time range of 78t< 100r. us mark some important distinctions: unlike earlier warks,
One can see this transition in the long-time series of twdve neither introduce Navier—Stokes viscogigr se nor do
diagnostic variables: the maximal vorticitleft pane) and we make a concerted effort to conserve vorticity contour
the maximal stream functiofright panej of Fig. 10. The dynamics:® Rather, our code attempts to reproduce inviscid
upper set(a) of Fig. 10 shows along-time series of sn-sn Eulerian dynamics with a subgrid mixing. The qualitative
soliton and the lower ongb), the sn-dn soliton. Let us note conclusions, however, are similar to the Navier—Stokes or
that the maximal vorticity of the sn-dn plgb) stays nearly contour advection approaches. Let us note that the relaxation
constant, while its stream field undergoes a steep ascent fine scales to equilibrium in our case are comparable with
the range of 70-100 turnovers. those obtained in earlier work&!® This suggests that large-

Once the terminal round dipole state is reached, the rescale organization of 2D flows may be robysisensitive to
sulting quasiequilibrium strongly resembles a low modulusits small-scale details and resolution.

We can estimate its perio@i= JVab and modulus from the
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