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Semiclassical transport theory of inhomogeneous systems
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Based on the probability-conserved Boltzmann equation, we develop a formal and general transport theory
for the conductivity in inhomogeneous systems. In particular, we show that the local current density inside the
sample can be expressed as a boundary value integral, so that the local electric field need not be calculated
explicitly. The theory is first applied to multilayer systems and shown to recover the previous theory. More
importantly, by including spin-dependent interface scattering and bulk scattering, we employ our theory suc-
cessfully to account for the giant magnetoresistance in magnetic granular systems.

Magnetotransport in inhomogeneous magnetic structurespugh interfaces. For convenience, we do not include the
such as magnetic multilayérsand magnetic granular spin freedoms for a while. In the presence of an external
solids?? exhibits often a feature of very large and negativeelectric fieldE®*, the Boltzmann equation describing this in-
magnetoresistanc@R). This effect has attracted much at- homogeneous system can be written as
tention in recent years. The physical interpretation of the _
giant MR effect is usually based on spin-dependent interface v-Vg+(g—g)/r=ev-E, @
scattering as well as on spin-dependent bulk scatteringyherer is the relaxation timeg is a function characterizing
Semiclassical models® based on the Boltzmann equation the deviation of the distribution functiohfrom the equilib-
and quantum theorié8 starting from the Kubo formula have rium distribution fo, Wwhich satisfies the relation
been proposed to account for the giant MR effects inf=f,+g(afy/0e), and g(v,r)=(4m) 1fdQ, g(v,r).
multilayer structures, for currents being both in the planeg(r) is the actual electric field in the system. Since interface
(CIP) and perpendicular to the plane of the layeZ®P. On  scattering is also considered as impurity scattering in thin
the other hand, theories of the MR in granular systems havgixing films? all of the scattering effect is included in the
not been quite well developed as the spatial distributions ofosition-dependent relaxation tim¢r). Notice that, within
the field and the currents are more complicated in these inthis model, the continuity of the curreRt: J=0 is automati-
homogeneous systems. cally satisfied.

In the earlier publication$? it is assumed that the trans-  Equation(1) can be solved by the path integral approfch,
port in granular systems is very closed to the CPP case ignd the current density is obtained as
multilayers, which is equivalent to an assumption of a uni-
formly distributed current density. This approximation ne- R
glects the effect that the currents tend to bypass the ob- J(r)zcef d®r"Fod(r,r’)
stacles, leading to an underestimation of the value of the
conductivity. In this paper, based on a probability-conservedvhere C.=3n.e%/2mv with vg the Fermi velocity andn
Boltzmann equation, we develop a transport theory of inhothe effective mass,o=(r—r’)/|r—r’|, and
mogeneous systems with impurity scattering and interface
scattering included. The theory is first applied to multilayers , 1 ds’
for the CIP and CPP cases and is found to recover the pre- ®(r,r’)= 4 |r_r,|2exr{ N J'r,ﬁr T
vious theory. For granular systems, within the mean-field ap-
proximation, an analytical expression for the MR is derivedwith N(r)=ve7(r) as the mean free path of carriers. The
and the results obtained agree well with the experimentahtegral is along the straight line connecting the poménd
measurements on the MR effect. r', andds’ is the element of the line segment at the point

Formal theory.Let us consider a general inhomogeneousr”. g(r) is in connection with the electric field via the rela-
system in which charge carriers scatter with impurities andion

a(r’) . ,
WHO'E(Y)}. (2
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or’) . _ |
m"’fo- E(r )

@ J,= (rzﬁsz-l- C.D Awu, 9

§(r)=f d3r'd(r,r')
with u=GD4ER". From Eq.(9) and by some algebra, we

In the above expressions, the argument of velocity is omittedbtain

since it takes the constant value. It is useful to define the

two-point ductivity t b ' ' ’
0-point conductivity tensow,z by Ja(f)=f r' o2 y(r 1 )Ezﬁ(r ), (10)

Ja(f)Zf A3’ o 51,1 )Eg(r"), (5)  whereE®"=E®~V u. Equation(10) or Eq.(9) is the formal
solution of the Boltzmann equatidi), which can be used in
where the summation is indicated by two same coordinatgeneral cases and is a central result of this work. In this
labels. It is convenient to employ the matrix representatiorpaper, it is applied to three cases: superlattices with CIP,
and represent formally the integrals over coordinates by masuperlattices with CPP, and magnetic granular solids.
trix multiplications. Equatiorn(4) is first solved by iteration, It is worthwhile to mention that the above results can also
and then by substituting the solution into E8), we arrive at  be obtained by using an effective Boltzmann equation
a series expression for the two-point conductivity tensor: v-Vg+g/r=ev-E®". Since this effective equation does not
. 4 satisfy the continuity of currents, the effective electric field
Tap=0apt Tag, (6)  E®fi(r) should be determined from the continuity condition
c , , d of currents, which is nontrivial. This equation could be con-
where  op(r 1) =Celoalop® (1) and 0= gigeredto be a phenomenological version of our theory, with
CeD,AGDg, with E®f(r) as the internal field.

i —1_ o Notice that there exist two conventional definitions of the
G=(1-24A) THPAS--, ™ average conductivity, i.e{J)/E® and (J)/(E®™. For mac-
D (r,r')=ro,®(r,r'), andA(r,r'y=8(r—r")I\(r). roscopic systems, it is expected that they should be equiva-

In principle, the actual local electric fiel(r) in Eq. (1)  lentsince the contact resistance is negligible when compared
needs to be determined self-consistently from the spatiallyvith the resistance of the sample. This point can be justified
redistributed charge induced by the field itself, which isas follows. Multiplying Eq.(9) and Eq.(10) by 1/\(r) and
highly nontrivial. Fortunately, we can show it is unnecessanytaking the averages over the whole sample, we can find
to calculate this field explicitly if we only attempt to calcu- E=*=(E®").

late the conductivity. It is direct to find from Ed6) the Application to superlatticesWe first apply our general
relation theory to investigate transport in superlattices. If ztexis is
chosen along the stacked direction of the layers, the two-
d , d ) point conductivity is found to be diagonalized for the coor-
(;Ta‘faﬁ(” ):Eaaﬁ(r’r )=0, dinate labels ¢8). Due to the translation invariance, Eq.

(10) reduces to the one-dimensional form
which is essentially a deduction of the continuity condition
of currents. Now, we can transform the volume integral in L o\ effs
Eq. (5) into the surface integral over the sample, Ja(z):j dZ'0,,(2,2)E,(Z). (12)

B , , , The two-point conductivity is now given by (z,z')
Jalr)= 3§sampléds )pTap(1,r)U(rY), ®  —C.F.(&)/4, where £=|[%,dZ'IN(2")| and F (1) =E4(t)
—E5(t) for CIP andF ,(t) =2E;(t) for CPP withE,(t) the

ijhs’f,fe‘? It?] th?helectrlc pOtfn]E'?rI] Satlsfylr:&=e—f8V,UHand nth order exponential integral function. Since the applied
(dS')4 is the Sth component of the area elemel8'’. Here, electric field is simply a constant, the integral

we consider that the sampl_e is linked to the reservoirs by, d%'D (r,r")E%in u is found to be zero in the case of
ideal electrodes so that the field in the electrodes far from th YH ex L

: : o o IP. ThereforeE®"=E®* for CIP. The average conductivity
sample is zero and its contribution to the current inside the oo , ; :
sample vanishes. From E@), we reach a crucial conclusion 'S 1€ =L""J¢dzf ~.0,(2,2"), with L the period of the
that the local current density depends only on the electricafuPeriattice. For the case of CPP, one can verify directly that
potential on the boundary, not the specific distribution of thethe ~ effective  field is  E®'=E®NM\(z)  with
electric field inside the sample, which is essentially similar tor =L~ '/5dZ/\(z). Consequently, the average conductiv-
the results obtained by Landauer-Buettiker scatteringty is evaluated to ber, =ne’\/2kg .% Those results previ-
theory® Its merit lies in the fact that, rather than solving the ously obtained in Refs. 7 and 8 are recovered in the present
coupled problem of charge and field distributions self-general theory.
consistently, one can obtain the full spatial information from Magnetoresistance in magnetic granular systehres. us
a two-point conductivity tensor. Therefore, in the calculationturn to investigate the transport in granular systems within
of the conductivity, one can choose the electric field in Eqthe framework of a mean-field treatment in our formal
(8) [or Eq.(5)] with some freedom, as long as the boundarytheory. We consider thl ,-particle system to be realized by
conditions are suitably considered. It is quite convenient tadding one particle, which will be called the central particle,
choose the applied uniform fiel8** in the calculation as it to the system oN,—1 particles. The effective field in the
could give the same boundary value integral as the actualystem ofN,—1 particles is written a&", which is essen-
field. Equation(5) becomes tially the sum of the applied field and the field produced by
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the accumulated charge on thh,—1 particles. The r—c« and the fixed potential drop between the ends of the
Np-particle problem is then treated roughly as that one of arsample must be considered. In fact, we need only to consider
isolated particle is in the background fie®. the former condition as the later can be included in the rede-

With the help of our formal theory, the above consider-fined background field. Solving Poisson’s equation, we have
ations can be represented more concretely. From(Bgwe

can write cdE*Y +D/r?, r>a+d,
Gn =GN -11tGN ViGN 1 (12 Uef(r,6)= —cog #){ Car +Co/r?, atd>r>a,
p p p p F
Er, a>r,
and

whered anda are, respectively, the thickness of the mixing
Vi=®n An,~ Py -1AN -1 film and the radius of the particl®), C;, C,, andE" are

constants to be determined from the continuity conditions at

~®1A; = PoAo, (13 the two surfaces of the interlayer. In particular,casa, the

where the subscripN, corresponds tdN,-particle system effective field in the particle is
and the subscript O represents the bulk medium with no par-
ticle embedded. The second equality in Etf) is a reason-
able approximation in the low-density limits. By using Eq.
(13), we obtain

3\oEP®

EF=

(18

whereR,=d/\,. If we let C.R,/3=rg, we can find that Eq.

= o -1t O Visn -1t GNp,lDlﬁEz’( (18) is the same as Eq7) in Ref. 11, apart from the differ-
ence ofEP® andE. The conditionC.R,/3=r links the two
+ GNleGNp—lDl,gEf;X- (14  phenomenological parameters characterizing the interface

. . . . . scattering in two different models: A interface is modeled by
S_mceVl is localized in the small region of the centra_l par- 5 mixing film, and characterized by a resistance that leads to
ticle, we can ne'glect the interference of thg other particles iYoltage drop between the two sides. HoweE&f cannot be

the factor Gy in the second term, and it thus becomes,oniaceq by the applied field; otherwise, unphysical results
G1Viun,-1. Similarly, we approximate the third and fourth such as positive MRRef. 12 in Ref. 11 may be obtained.

terms in Eq.(14) as GoD; zE* and G,V,GoD 4 gEZ, re- We proceed to include the boundary condition of a fixed
spectively. Consequently, E¢L4) is derived to be voltage drop. In fact, the field satisfying the boundary con-
dition is the sums of the field of the charge on the particle

MNp:Mprl'}_GlDlﬁEﬁlf:)fl,,B' (15 and the field produced by a series of properly arranged

imaginary charges outside the sample. Since the imaginary
charge is very far from the central particle, its field is uni-
eff_ =bc__ b form in the small region of the central particle. Therefore, the
E=E>-V(G1D14Ep), (16 boundary condition of the fixed voltage drop can be included
where E®T=ES" and EP°= Eﬁf’ffl_ Equation(16) is highly ~ simply by redefining the background fieef° to include the
useful for us to determine the effective electric field in thefi€ld of the imaginary charge. _
Np-particle system, because we need only to solve the prob- NOW we need to calcullate the average of the ef_fectlve
lem of an isolated particle in the background electric field. In€l€ctric field. We emphasize that even when the thickness
the above calculations, we have used the approximation thgoes to zero, the contrlbutlpn f_rom the f|eld. in the mterlayer
the background field is uniform, which is reasonable in the_cannot.be neglecteg. Congldenr}g that the f|eld-|n the par'glcle
small region of the central particle, and so Etf) is appro- 1S @ uniform valueE™, and is a dipolar one outside which is
priate only in this small region. Nevertheless, using thisincluded in the background field of other particles, we obtain
' ' ; I
equation in the region of each particle, we are able to obtaif® relation determining>"
the field in the whole system. b
To obtain the conductivity analytically, we now take the E¥=[(1-H+(ve+7)fIE™ (19)
local limits, i.e.,

By taking gradient on the both sides of H45), we obtain

where f is volumetric filling factor, yp=E"/E"®, and
ozﬁ(r,r’)zcr(r)5a55(r—r’), (17) ]B;gng?f))//rz)‘;f; /a. The average conductivity is evaluated

wherea(r)=ne?\(r)/2mvg, which is reasonable when the

mean free path is much less than the distance between the o (A—F)+fyeNp/Ng

particles. In this case, since the essential transport of the (,_0: 2(1—f)+2(ye+y)f’ (20

system is determined mainly by the scattering at interfaces,

in medium and inside particles, as usual, it is quite acceptwith To=NENo/MvE.

able to take(r) effectively as\;, A, and\g.>® Since In order to account for the giant MR effect, the spin free-

VX E®f=0, it is convenient to define a scalar potential by doms should be included. We focus on the cases where the

E®f(r)=—VU®f(r). Then continuity equation of currents spin diffusion length is much larger than the mean free path,

becomes the Poisson’s equation of the scalar potential in a#io that the total conductivity is the sum from the two spin

regions. Associated with this equation, the boundary condichannels and for each channel the previous formulas can be

tion that let the effective field be the background fiERf for ~ extended straightforwardly. If we let] ) and\ ) denote
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ol FIG. 1. Percent magnetoresistander/o™
versusa/\, for three different spin-asymmetric
ol s factorsN=\E/\L=R//R} (solid lineg. The be-
L havior of the zero-magnetic-field resistivity
gl pPlpo=o0¢/oP for N=12 is also shown via the
- L relation [6(pP/py) —0.8] (dashed ling for clar-
S 7t ity. The resistivity against the inverse of the par-
35 ticle size is illustrated in the upper panel. The
6 other parameters aré=0.3, A\;=0.8\,, and
R/ =1.0.
5 -
4

a/he (10-2)

the mean free path of electrons with majoritsinority)  that, as observed by experimeithe resistivity itself given
spirf in the mixing films and in the particles, respectively, by our theory(dashed lingis also a strong function of the
we obtain radius(or annealing temperatureand varies inversely with

particle size. Particularly, as shown in the upper panel of Fig.
1) 1, the dependence of the resistivity on the inverse of the
radius is approximated to be linear in a broaden region. This
result is consistent with both quantum thebayd the experi-
mental data.

In summary, we have presented an efficient approach to
calculate the conductivity in inhomogeneous systems based
on the Boltzmann equation, with which the complicated
for the magnetized state. From Eqg$21) and (22), computation in determining the actual electric field in the
Ao=oM—-0oP is found to be always positive, which corre- system can be skipped. In particular, a formal and general
sponds to a negative MR. semiclassical transport theory is developed and has been suc-

In Fig. 1, we plot the MR amplitude as a function of the cessfully applied to superlattices with CIP and CPP. Within a
radius. The spin-dependent scattering in the particles and imean-field framework the theory is also used to calculate the
the mixing_films is considered to come from the samegjant MR effect in magnetic granular systems, and the ob-
mechanisnf,and so we assume that the spin-asymmetric factained results are in good agreement with experimental ob-
tor \{/\| in the particles equal®|/R; in the mixing film.  servations. Moreover, it is expected that our formal theory

From Fig. 1 we find that the MR first increases and thencan pe widely employed to investigate the transport proper-
decreases with increasing the particle size, and a maximuss in other inhomogeneous systems.

occurs in the middle region. As seen from the experimental

observationg, there is always an optimum annealing tem-  This work was supported by the RGC research grant of
perature in preparing the magnetic granular sample for MRHong Kong under No. HKU 262/95P, a CRCG grant at the
In view of the fact that the sizes of the particles are alwaydJniversity of Hong Kong, in part by a joint grant of the
increased with increasing the annealing temperatotg,re- NSFC and NAMCC, and in part by the National Natural
sults are in good agreement with these observations. Notic8cience Foundation of China.
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for the demagnetized state and
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