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Based on the probability-conserved Boltzmann equation, we develop a formal and general transport theory
for the conductivity in inhomogeneous systems. In particular, we show that the local current density inside the
sample can be expressed as a boundary value integral, so that the local electric field need not be calculated
explicitly. The theory is first applied to multilayer systems and shown to recover the previous theory. More
importantly, by including spin-dependent interface scattering and bulk scattering, we employ our theory suc-
cessfully to account for the giant magnetoresistance in magnetic granular systems.

Magnetotransport in inhomogeneous magnetic structures,
such as magnetic multilayers1 and magnetic granular
solids,2,3 exhibits often a feature of very large and negative
magnetoresistance~MR!. This effect has attracted much at-
tention in recent years. The physical interpretation of the
giant MR effect is usually based on spin-dependent interface
scattering as well as on spin-dependent bulk scattering.
Semiclassical models4–6 based on the Boltzmann equation
and quantum theories7,8 starting from the Kubo formula have
been proposed to account for the giant MR effects in
multilayer structures, for currents being both in the plane
~CIP! and perpendicular to the plane of the layers~CPP!. On
the other hand, theories of the MR in granular systems have
not been quite well developed as the spatial distributions of
the field and the currents are more complicated in these in-
homogeneous systems.

In the earlier publications,2,9 it is assumed that the trans-
port in granular systems is very closed to the CPP case in
multilayers, which is equivalent to an assumption of a uni-
formly distributed current density. This approximation ne-
glects the effect that the currents tend to bypass the ob-
stacles, leading to an underestimation of the value of the
conductivity. In this paper, based on a probability-conserved
Boltzmann equation, we develop a transport theory of inho-
mogeneous systems with impurity scattering and interface
scattering included. The theory is first applied to multilayers
for the CIP and CPP cases and is found to recover the pre-
vious theory. For granular systems, within the mean-field ap-
proximation, an analytical expression for the MR is derived
and the results obtained agree well with the experimental
measurements on the MR effect.

Formal theory.Let us consider a general inhomogeneous
system in which charge carriers scatter with impurities and

rough interfaces. For convenience, we do not include the
spin freedoms for a while. In the presence of an external
electric fieldEex, the Boltzmann equation describing this in-
homogeneous system can be written as

v•¹g1~g2ḡ!/t5ev•E, ~1!

wheret is the relaxation time,g is a function characterizing
the deviation of the distribution functionf from the equilib-
rium distribution f 0 , which satisfies the relation
f5 f 01g(] f 0 /]«), and ḡ(v,r )5(4p)21*dVv g(v,r ).
E(r ) is the actual electric field in the system. Since interface
scattering is also considered as impurity scattering in thin
mixing films,8 all of the scattering effect is included in the
position-dependent relaxation timet(r ). Notice that, within
this model, the continuity of the current¹•J50 is automati-
cally satisfied.

Equation~1! can be solved by the path integral approach,5

and the current density is obtained as

J~r !5CeE d3r 8 r̂0F~r ,r 8!F ḡ~r 8!

el~r 8!
1 r̂0•E~r 8!G , ~2!

whereCe53nee
2/2mvF with vF the Fermi velocity andm

the effective mass,r̂05(r2r 8)/ur2r 8u, and

F~r ,r 8!5
1

4pur2r 8u2
expF2E

r8→r

ds9

l~r 9!G , ~3!

with l(r )5vFt(r ) as the mean free path of carriers. The
integral is along the straight line connecting the pointsr and
r 8, andds9 is the element of the line segment at the point
r 9. ḡ(r ) is in connection with the electric field via the rela-
tion
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ḡ~r !5E d3r 8F~r ,r 8!F ḡ~r 8!

el~r 8!
1 r̂0•E~r 8!G . ~4!

In the above expressions, the argument of velocity is omitted
since it takes the constant valuevF . It is useful to define the
two-point conductivity tensorsab by

Ja~r !5E d3r 8sab~r ,r 8!Eb~r 8!, ~5!

where the summation is indicated by two same coordinate
labels. It is convenient to employ the matrix representation
and represent formally the integrals over coordinates by ma-
trix multiplications. Equation~4! is first solved by iteration,
and then by substituting the solution into Eq.~2!, we arrive at
a series expression for the two-point conductivity tensor:

sab5sab
c 1sab

d , ~6!

where sab
c (r ,r 8)5Cer 0ar 0bF(r ,r 8) and sab

d 5
CeDaLGDb , with

G5~12FL!21511FL1•••, ~7!

Da(r ,r 8)5r 0aF(r ,r 8), andL(r ,r 8)5d(r2r 8)/l(r ).
In principle, the actual local electric fieldE(r ) in Eq. ~1!

needs to be determined self-consistently from the spatially
redistributed charge induced by the field itself, which is
highly nontrivial. Fortunately, we can show it is unnecessary
to calculate this field explicitly if we only attempt to calcu-
late the conductivity. It is direct to find from Eq.~6! the
relation

]

]r a
sab~r ,r 8!5

]

]r b8
sab~r ,r 8!50,

which is essentially a deduction of the continuity condition
of currents. Now, we can transform the volume integral in
Eq. ~5! into the surface integral over the sample,

Ja~r !5 R sample~dS8!bsab~r ,r 8!U~r 8!, ~8!

whereU is the electric potential satisfyingE52¹U and
(dS8)b is thebth component of the area elementdS8. Here,
we consider that the sample is linked to the reservoirs by
ideal electrodes so that the field in the electrodes far from the
sample is zero and its contribution to the current inside the
sample vanishes. From Eq.~8!, we reach a crucial conclusion
that the local current density depends only on the electrical
potential on the boundary, not the specific distribution of the
electric field inside the sample, which is essentially similar to
the results obtained by Landauer-Buettiker scattering
theory.10 Its merit lies in the fact that, rather than solving the
coupled problem of charge and field distributions self-
consistently, one can obtain the full spatial information from
a two-point conductivity tensor. Therefore, in the calculation
of the conductivity, one can choose the electric field in Eq.
~8! @or Eq. ~5!# with some freedom, as long as the boundary
conditions are suitably considered. It is quite convenient to
choose the applied uniform fieldEex in the calculation as it
could give the same boundary value integral as the actual
field. Equation~5! becomes

Ja5sab
c Eb

ex1CeDaLm, ~9!

with m5GDbEb
ex. From Eq.~9! and by some algebra, we

obtain

Ja~r !5E d3r 8sab
c ~r ,r 8!Eb

eff~r 8!, ~10!

whereEeff5Eex2¹m. Equation~10! or Eq.~9! is the formal
solution of the Boltzmann equation~1!, which can be used in
general cases and is a central result of this work. In this
paper, it is applied to three cases: superlattices with CIP,
superlattices with CPP, and magnetic granular solids.

It is worthwhile to mention that the above results can also
be obtained by using an effective Boltzmann equation
v•¹g1g/t5ev•Eeff. Since this effective equation does not
satisfy the continuity of currents, the effective electric field
Eeff(r ) should be determined from the continuity condition
of currents, which is nontrivial. This equation could be con-
sidered to be a phenomenological version of our theory, with
Eeff(r ) as the internal field.

Notice that there exist two conventional definitions of the
average conductivity, i.e.,̂J&/Eex and ^J&/^Eeff&. For mac-
roscopic systems, it is expected that they should be equiva-
lent since the contact resistance is negligible when compared
with the resistance of the sample. This point can be justified
as follows. Multiplying Eq.~9! and Eq.~10! by 1/l(r ) and
taking the averages over the whole sample, we can find
Eex5^Eeff&.

Application to superlattices.We first apply our general
theory to investigate transport in superlattices. If thez axis is
chosen along the stacked direction of the layers, the two-
point conductivity is found to be diagonalized for the coor-
dinate labels (ab). Due to the translation invariance, Eq.
~10! reduces to the one-dimensional form

Ja~z!5E dz8saa
c ~z,z8!Ea

eff~z8!. ~11!

The two-point conductivity is now given bysaa
c (z,z8)

5CeFa(j)/4, where j5u*z8
z dz9/l(z9)u and Fa(t)5E1(t)

2E3(t) for CIP andFa(t)52E3(t) for CPP withEn(t) the
nth order exponential integral function. Since the applied
electric field is simply a constant, the integral
*d3r 8Da(r ,r 8)Ea

ex in m is found to be zero in the case of
CIP. Therefore,Eeff5Eex for CIP. The average conductivity
is thens i5L21*0

Ldz*2`
` sxx(z,z8), with L the period of the

superlattice. For the case of CPP, one can verify directly that
the effective field is Eeff5Eexl̄/l(z) with
l̄215L21*0

Ldz/l(z). Consequently, the average conductiv-
ity is evaluated to bes'5ne2l̄/2kF .

6 Those results previ-
ously obtained in Refs. 7 and 8 are recovered in the present
general theory.

Magnetoresistance in magnetic granular systems.Let us
turn to investigate the transport in granular systems within
the framework of a mean-field treatment in our formal
theory. We consider theNp-particle system to be realized by
adding one particle, which will be called the central particle,
to the system ofNp21 particles. The effective field in the
system ofNp21 particles is written asEbc, which is essen-
tially the sum of the applied field and the field produced by
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the accumulated charge on theNp21 particles. The
Np-particle problem is then treated roughly as that one of an
isolated particle is in the background fieldEbc.

With the help of our formal theory, the above consider-
ations can be represented more concretely. From Eq.~7!, we
can write

GNp
5GNp211GNp

V1GNp21 ~12!

and

V15FNp
LNp

2FNp21LNp21

'F1L12F0L0 , ~13!

where the subscriptNp corresponds toNp-particle system
and the subscript 0 represents the bulk medium with no par-
ticle embedded. The second equality in Eq.~13! is a reason-
able approximation in the low-density limits. By using Eq.
~13!, we obtain

mNp
5mNp211GNp

V1mNp211GNp21D1,bEb
ex

1GNp
V1GNp21D1,bEb

ex. ~14!

SinceV1 is localized in the small region of the central par-
ticle, we can neglect the interference of the other particles in
the factorGNp

in the second term, and it thus becomes

G1V1mNp21 . Similarly, we approximate the third and fourth

terms in Eq.~14! as G0D1,bEb
ex andG1V1G0D1,bEb

ex, re-
spectively. Consequently, Eq.~14! is derived to be

mNp
5mNp211G1D1,bENp21,b

eff . ~15!

By taking gradient on the both sides of Eq.~15!, we obtain

Eeff5Ebc2¹~G1D1,bEb
bc!, ~16!

whereEeff5ENp
eff and Ebc5ENp21

eff . Equation~16! is highly

useful for us to determine the effective electric field in the
Np-particle system, because we need only to solve the prob-
lem of an isolated particle in the background electric field. In
the above calculations, we have used the approximation that
the background field is uniform, which is reasonable in the
small region of the central particle, and so Eq.~16! is appro-
priate only in this small region. Nevertheless, using this
equation in the region of each particle, we are able to obtain
the field in the whole system.

To obtain the conductivity analytically, we now take the
local limits, i.e.,

sab
c ~r ,r 8!5s~r !dabd~r2r 8!, ~17!

wheres(r )5ne2l(r )/2mvF , which is reasonable when the
mean free path is much less than the distance between the
particles. In this case, since the essential transport of the
system is determined mainly by the scattering at interfaces,
in medium and inside particles, as usual, it is quite accept-
able to takel(r ) effectively asl I , l0 , andlF .

6,8,11 Since
¹3Eeff50, it is convenient to define a scalar potential by
Eeff(r )52¹Ueff(r ). Then continuity equation of currents
becomes the Poisson’s equation of the scalar potential in all
regions. Associated with this equation, the boundary condi-
tion that let the effective field be the background fieldEbc for

r→` and the fixed potential drop between the ends of the
sample must be considered. In fact, we need only to consider
the former condition as the later can be included in the rede-
fined background field. Solving Poisson’s equation, we have

Ueff~r ,u!52cos~u!H cdEbcr1D/r 2, r.a1d,

C1r1C2 /r
2, a1d.r.a

EFr , a.r ,

,

whered anda are, respectively, the thickness of the mixing
film and the radius of the particle,D, C1 , C2 , andE

F are
constants to be determined from the continuity conditions at
the two surfaces of the interlayer. In particular, asd!a, the
effective field in the particle is

EF5
3l0E

bc

2l01lF12l0lFRI /a
, ~18!

whereRI5d/l I . If we let CeRI /35r s , we can find that Eq.
~18! is the same as Eq.~7! in Ref. 11, apart from the differ-
ence ofEbc andE. The conditionCeRI /35r s links the two
phenomenological parameters characterizing the interface
scattering in two different models: A interface is modeled by
a mixing film, and characterized by a resistance that leads to
voltage drop between the two sides. HoweverEbc cannot be
replaced by the applied field; otherwise, unphysical results
such as positive MR~Ref. 12! in Ref. 11 may be obtained.

We proceed to include the boundary condition of a fixed
voltage drop. In fact, the field satisfying the boundary con-
dition is the sums of the field of the charge on the particle
and the field produced by a series of properly arranged
imaginary charges outside the sample. Since the imaginary
charge is very far from the central particle, its field is uni-
form in the small region of the central particle. Therefore, the
boundary condition of the fixed voltage drop can be included
simply by redefining the background fieldEbc to include the
field of the imaginary charge.

Now we need to calculate the average of the effective
electric field. We emphasize that even when the thickness
goes to zero, the contribution from the field in the interlayer
cannot be neglected. Considering that the field in the particle
is a uniform valueEF, and is a dipolar one outside which is
included in the background field of other particles, we obtain
the relation determiningEbc:

Eex5@~12 f !1~gF1g I ! f #E
bc, ~19!

where f is volumetric filling factor, gF5EF/Ebc, and
g I52RIgFlF /a. The average conductivity is evaluated
from ^J&/Eex:

s

s0
5

~12 f !1 fgFlF /l0

2~12 f !12~gF1g I ! f
, ~20!

with s05ne2l0 /mvF .
In order to account for the giant MR effect, the spin free-

doms should be included. We focus on the cases where the
spin diffusion length is much larger than the mean free path,
so that the total conductivity is the sum from the two spin
channels and for each channel the previous formulas can be
extended straightforwardly. If we letl I

↑(↓) andlF
↑(↓) denote
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the mean free path of electrons with majority~minority!
spin4 in the mixing films and in the particles, respectively,
we obtain

sD

s0
5

2~12 f !1 f ~gF
↑lF
↑1gF

↓lF
↓ !/l0

2~12 f !1~gF
↑1gF

↓1g I
↑1g I

↓! f
~21!

for the demagnetized state and

sM

s0
5
1

2 (
s5↑,↓

~12 f !1 fgF
slF

s /l0

~12 f !1~gF
s1g I

s! f
~22!

for the magnetized state. From Eqs.~21! and ~22!,
Ds5sM2sD is found to be always positive, which corre-
sponds to a negative MR.

In Fig. 1, we plot the MR amplitude as a function of the
radius. The spin-dependent scattering in the particles and in
the mixing films is considered to come from the same
mechanism,7 and so we assume that the spin-asymmetric fac-
tor l I

↓/l I
↑ in the particles equalsRI

↑/RI
↓ in the mixing film.

From Fig. 1 we find that the MR first increases and then
decreases with increasing the particle size, and a maximum
occurs in the middle region. As seen from the experimental
observations,2 there is always an optimum annealing tem-
perature in preparing the magnetic granular sample for MR.
In view of the fact that the sizes of the particles are always
increased with increasing the annealing temperature,3 our re-
sults are in good agreement with these observations. Notice

that, as observed by experiments,3 the resistivity itself given
by our theory~dashed line! is also a strong function of the
radius~or annealing temperature!, and varies inversely with
particle size. Particularly, as shown in the upper panel of Fig.
1, the dependence of the resistivity on the inverse of the
radius is approximated to be linear in a broaden region. This
result is consistent with both quantum theory9 and the experi-
mental data.3

In summary, we have presented an efficient approach to
calculate the conductivity in inhomogeneous systems based
on the Boltzmann equation, with which the complicated
computation in determining the actual electric field in the
system can be skipped. In particular, a formal and general
semiclassical transport theory is developed and has been suc-
cessfully applied to superlattices with CIP and CPP. Within a
mean-field framework the theory is also used to calculate the
giant MR effect in magnetic granular systems, and the ob-
tained results are in good agreement with experimental ob-
servations. Moreover, it is expected that our formal theory
can be widely employed to investigate the transport proper-
ties in other inhomogeneous systems.
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FIG. 1. Percent magnetoresistanceDs/sM

versusa/l0 for three different spin-asymmetric
factorsN5lF

↓ /lF
↑5RI

↑/RI
↓ ~solid lines!. The be-

havior of the zero-magnetic-field resistivity
rD/r05s0 /s

D for N512 is also shown via the
relation @6(rD/r0)20.8# ~dashed line! for clar-
ity. The resistivity against the inverse of the par-
ticle size is illustrated in the upper panel. The
other parameters aref50.3, lF

↑50.8l0 , and
RI
↑51.0.
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