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ABSTRACT

We study the properties of dense matter in neutron stars and calculate the structure of the stars based
on the Zimanyi & Moszkowski (ZM) model in the relativistic mean-field theory. We also compare these
results with those based on the Boguta & Bodmer (BB) model with a recent satisfactory parameter set.
The two models satisfy the requirements from the observations of the masses of binary radio pulsars, the
rotation frequencies of millisecond pulsars, the redshifts of the e annihilation lines of some y-ray bursts
if they are neutron stars, and the crustal moment of inertia of neutron stars deduced from the glitch
events. Other observations may provide a way to discriminate between the two models. We suggest that
the most important observational discriminant between these two models is found by observing the
surface radiation of neutron stars, since the BB model leads to a large photon fraction of neutron star
matter and rapid cooling of neutron stars, but the ZM model does not.

Subject headings: dense matter — pulsars: general — relativity — stars: interiors — stars: neutron

1. INTRODUCTION

Usually, after knowing an equation of state (EOS) for
dense matter, one can calculate neutron star properties such
as the mass range, the mass-radius relationship, and the
moment of inertia, and one can determine the composition
of the matter and the thickness of the crust in a neutron
star. These theoretical results can be compared with astro-
nomical observations. First, the observations of binary radio
pulsars perhaps give neutron star masses of 1.4 Mg <
M,.. <185 Mg (Taylor & Weisberg 1989; Joss &
Rappaport 1984), which may be used to constrain the EOS
of a neutron star. Second, the discovery of the 1.56 ms
pulsar PSR 1937+ 21 (Backer et al. 1982) initiated the inves-
tigation of a growing group of millisecond pulsars (with
P <10 ms). Up to now, more than 30 millisecond pulsars
have been detected (Taylor, Manchester, & Lyne 1993).
These observations have stimulated the study of the
maximum rotation frequency, which is determined by the
maximum mass of a neutron star and the radius of the star
(Friedman, Ipser, & Parker 1989; Lattimer et al. 1990;
Cook, Shapiro, & Teukolsky 1994). Third, one has seen
glitch events of about 20 pulsars. According to the neutron-
superfluid vortex creep theory (Alpar et al. 1984), the post-
glitch recovery in a pulsar is largely dependent upon the
ratio of the moment of inertia for the inner crust neutron
superfluid of the star to the total moment of inertia. Fourth,
the surface gravitational redshifts of neutron stars have
been observed from e*/e” annihilation lines of Her X-1
(Triimper et al. 1978) and possibly some gamma-ray bursts
(Harding 1991). Theoretical redshifts can be calculated
directly through the masses and radii of neutron stars.
Finally, the Einstein, EXOSAT, and ROSAT satellites have
detected the thermal radiation from the surfaces of some
neutron stars (Ogelman 1995). Theoretically, one can study
the thermal evolution of a neutron star by giving an EOS in
the star’s interior (Tsuruta 1995, and references therein).
The comparison between observed and theoretical results
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may set some limits on an EOS for dense matter. Hence, the
determination of an EOS for dense matter is crucial in
studying the physics of neutron stars.

Among the many approaches (for a brief review, see
Prakash, Ainsworth, & Lattimer 1988) to determine an
EOS for dense matter through the many-body theory of
interacting hadrons, the relativistic many-body approach to
nuclear systems is of growing interest during recent years.
The relativistic Brueckner-Hartree-Fock theory reproduces
the saturation property of nuclear matter, which is not pos-
sible in the nonrelativistic approach unless one introduces
three-body force by hand (Brockmann & Machleidt 1990).
Moreover, rather promising results within the framework of
this theory have been obtained by Miither, Machleidt, &
Brockmann (1990) and Li, Machleidt, & Brockmann (1992),
and the application of this theory to neutron stars has been
investigated by Engvik et al. (1994), Bao et al. (1994), and
Sumiyoshi, Oyamatsu, & Toki (1995b). On the other hand,
the relativistic mean field (RMF) theory is successful both
for elastic scattering and for nuclear ground-state property
(Walecka 1974; Chin 1977; Serot & Walecka 1986). Hence,
the RMF theory has been suggested for calculating the EOS
for neutron-star matter (Walecka 1974). This approach con-
tains both nucleonic and mesonic degrees of freedom (o, w,
and p) and can be considered as phenomenological. The
coupling constants and meson masses of the effective
meson-nucleon Lagrangian are taken as free parameters
which are adjusted to fit the properties of nuclear matter
and finite nuclei.

In the standard model of Walecka (1974), the incompress-
ibility of nuclear matter is overestimated. There are two
ways to solve this question. First, Boguta & Bodmer (1977,
hereafter BB) introduced cubic and quartic terms for the
scalar field into the Lagrangian. This shifts the incompress-
ibility to reasonable values in comparison with empirical
data. Along this direction, many authors (Glendenning
1982, 1985, 1987a, b; Weber & Weigel 1989a, b; Kapusta &
Olive 1990; Ellis, Kapusta, & Olive 1991; Sumiyoshi, Toki,
& Brockmann 1992; Sumiyoshi & Toki 1994; Sumiyoshi,
Kuwabara, & Toki 1995a) have studied the EOS for dense
matter and the properties of neutron stars. Zimanyi &
Moszkowski (1990, hereafter ZM) proposed an alternative
nonlinear model, in which the nonlinearity is contained in
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the connection between the effective nucleon mass and the
scalar field. Thus, the Lagrangian of this model has no extra
terms, and consequently it deals with fewer parameters as
compared with the BB model. The ZM model also yields
reasonable values of incompressibility and an effective
nucleon mass for nuclear matter. This model has been used
recently to study the possibility of quark-hadron phase
transition in proto—neutron stars (Prakash, Cooke, & Latti-
mer 1995). The scope of our work is to derive the EOS for
asymmetric nuclear matter and to study the properties of
neutron stars, by using the ZM model. To our knowledge,
this has not been done before. In addition, we will compare
the results with those based on the BB model with a rather
satisfactory parameter set. Note that the ZM and BB
models are usually referred to as the nonlinear o models.

It is well known that the applications for the nonlinear
ow models to finite nuclei and semi-infinite matter are quite
complicated on a purely quantum mechanical level, since
the evaluation of energies and particle density distribution
within the Hartree approximation demands the knowledge
of wave functions of all occupied single-particle states. To
avoid this task, Centelles et al. (1992, 1993) recently pro-
posed the extended Thomas-Fermi approximation (ETF)
extended up to second order in % based on a semiclassical
method. In the ETF approximation, the total energy of a
nuclear system is expressed as a function of the local parti-
cle density and its gradients. But for infinite nuclear matter
(e.g., neutron star matter), the Hartree and ETF approx-
imations turn out to be the same.

In this paper, we choose two recent sets of parameters
named ZM and SRK3M7, which correspond to the ZM
and BB models, respectively. These parameter sets have
been shown to reproduce the experimental properties of
many nuclei and to fit accepted nuclear matter data (e.g.,
Centelles et al. 1992). By using the nonlinear ow models to
calculate the EOS for dense matter and to study the proper-
ties of neutron stars, we show that the extrapolation of these
models to neutron star matter at high densities is rather
different. We arrange this paper as follows. In § 2, we
describe the framework based on the nonlinear ow models,
and we give the semiclassical energy densities. In § 3, we
calculate the properties of neutron stars and compare the
results from the ZM model with those from the BB model.
A detailed discussion of our results is presented in § 4.

2. NONLINEAR ¢w MODELS
In the relativistic mean field theory, the strong interaction
is described by the exchange of mesons between nucleons
through the Yukawa couplings. But in the model of
Walecka (1974), only ¢ and @ mesons are included. In order
to describe actual nuclear systems, it is necessary to intro-
duce proton-neutron asymmetry effects. This is done by
adding the p-meson contribution and the electromagnetic
field. We follow the notation of Centelles et al. (1992, 1993).
The Lagrangian density of the nuclear system is given by
& =Yy (0" — g,V") — m*Iy

+ 30, $0"¢ — m$?)

- %b¢3 - %C¢4 - %F‘WFILV

+ 3mV,V* — tH, H"

- e'/—/'))u %(1 + 73)Au‘// - %Guv K Cale

+%m127bu.bu_%gp‘pyut.”‘wa (1)

where
F,=0,Y,-0,V,, (03]
H,=0,A,—0,A4,, 3)
G, =0,b,—0,b,. @)

Here y, ¢, V*, and b* denote the fields of the baryon, the
attractive isoscalar-scalar (¢) meson, the repulsive isoscalar-
vector (w) meson, and the isovector-vector (p) meson with
masses of m,, m,,, and m,, respectively. A* is the electromag-
netic field. The constants g,, g,,, and g, are coupling con-
stants for interactions between mesons and nucleons. The
coefficients b and ¢ are self-coupling constants for the o
meson field. The m* is the effective nucleon mass. In the ZM
model,

m
= = *=—‘
b=c=0 and m T+ g.0/m" (%)
but in the BB model,
b#0, c¢c#0, and m*=m—g,¢. (6)

Several authors (Glendenning 1985, Ellis et al. 1991) have
studied the neutron star matter in the RMF theory with
strangeness degrees of freedom and discussed the contami-
nation of strange hadrons in neutron stars. The possibility
of strange quark stars has been also discussed (e.g., Witten
1984; Alcock, Farhi, & Olinto 1986; Haensel, Zdunik, &
Schaeffer 1986). The pion condensation and the kaon con-
densation in the RMF theory and their applications to
neutron stars have been studied (Glendenning, Hecking, &
Ruck 1983; Thorsson, Prakash, & Lattimer 1994). In this
work, however, we investigate only nuclear matter without
strangeness, and we do not consider the pion condensation,
the kaon condensation, and the fields of strange hadrons.

The semiclassical energy density (Centelles et al. 1992) of
the Lagrangian density is written as

e =eg+e; —mp+g,Vop +edop, + 3693 + 5cds
+ 3[(Vo) + mZdp3] — 3[(VVo)* + miVE] — 3(VAo)
- %[(Vbo)z + m;27 b(z)] + %gp bO(pp - pn) s (7)

where
e0=§i5(k,-€$+kl3:e,-——m*4lnkFTt€£> E ®)
e, = ; [X ((Vp)* + X,(Vp, * Vm*) + X3 (Vm*)*], (9)
X, = 54—11:,:?% <€F + 2kF1n'—‘F—m+*—€E> .

here q denotes the charge state of each nucleon, p = p, + p,
is the baryon number density, kg, = (3n%p,)'/? is the Fermi
momentum, and e, = (kf, + m*’)"/>. The ¢, term is the
usual Thomas-Fermi approach, while the e, term is the
rela‘;ivistic correction of the energy density of the order
of h*.

The semiclassical ground-state density p,, the meson
field, and photon field are obtained by the Euler-Lagrange
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TABLE 1
PARAMETERS OF THE NONLINEAR ¢ MODELS

Parameter M BB

5.824 8.132
6.417 9.598
2.746 7.520
0 8.425
0 17.398

938 939

420 500

783 783

763 763

equations to the energy density e*°,

€pg — M + ng/O + 7]1er - 2X1qV2pq

0X X
—X,,VPm* — 4 (Vp)* — 2 ——2(Vp, - Vm*)

0p, om
(B o+ 2 gy = 03
(V2 =m)Vo = —g,p, 14)
(V2 —=mDbo = —39,(p, — P1) » (15)
(V2 —=m)po = —Lgsps + b + c¢3 (16)
VA4, = —ep,, (17)
where p, = 0e*°/0m* is the semiclassical scalar density, n, =
0 and n, = —1 for the neutron, n, = 5, = 1 for the proton,

{ = 1 for the BB model, and { = (m*/m)? for the ZM model,
respectively, and p, is the chemical potential of nucleon g.
In solving the above differential equations, V,, b,, and 4,
can be found directly. The scalar field ¢, is solved by iter-
ation until a self-consistent solution is obtained.

From Centelles et al. (1992), we choose the two parameter
sets denoted ZM and SRK3M7 listed in Table 1. We have
also used these parameter sets to calculate the binding
energy, radius, and diffuseness of both “°Ca and 2°8Pb. The
results are well consistent with those of Centelles et al.
(1992) (for details, see Yao 1995). As shown in the next
section, these parameter sets also yield satisfactory satura-
tion properties (incompressibility, saturation density, and
binding energy per nucleon) of symmetric nuclear matter.

In the present study, we consider static infinite matter so
that we can obtain simplified equations, in which all the
derivative terms in the above Euler-Lagrange equations
vanish automatically due to the translational invariance of
infinite matter. We will study the properties of nuclear
matter and neutron star matter and calculate the structure
of neutron stars in the next section.

3. RESULTS

3.1. Properties of Nuclear Matter and Neutron Star Matter

In Figure 1 we show the energy per nucleon of symmetric
nuclear matter calculated in the ZM model and the BB
model with SRK3M7. As a comparison, we also display the
result based on the relativistic Brueckner-Hartree-Fock
(RBHF) theory calculated by Brockmann & Machleidt
(1990). It is obvious that the result of the ZM model resem-
bles that of the RBHF theory, but the difference in the
energy per nucleon between the ZM and BB models
increases with baryon density at high densities. The satura-

Vol. 464

40

30 o e

energy per boryon (MeV)

0.1 0.2 0.3 0.4
baryon density (lm'3)

FiG. 1.—The energy per nucleon vs. baryon density for symmetric
nuclear matter based on the ZM model, the BB model, and the Brueckner-
Hartree-Fock theory.

tion property of nuclear matter is reproduced by the com-
bination of the attractive scalar ¢ meson and the repulsive
vector w meson. The energy per nucleon increases linearly
with baryon number density at high densities. This is
because the repulsive vector @ meson becomes the domi-
nant contribution to the energy per nucleon at high den-
sities. For the ZM model, the incompressibility, saturation
density, and binding energy per nucleon of nuclear matter
are 225 MeV, 0.16 fm~3, and —16.0 MeV, respectively,
while for the BB model they are 300 MeV, 0.15 fm ™3, and
—16.0 MeV. These values are very close to those derived
from the nuclear experiments.

We apply the nonlinear sw models to neutron star
matter, which is composed of neutrons, protons, and elec-
trons under the conditions of beta equilibrium and charge
neutrality. Here we do not consider the contribution of
muons, since they affect the property of the matter and the
structure of neutron stars only slightly. Also, we do not
consider the contributions of hyperons or other exotic
states such as meson condensations or quark matter. Figure
2 shows the energy per nucleon of neutron star matter as a
function of baryon density. In Table 2 we list the EOSs
based on the ZM and BB models. It is easily observed that
our EOS from the ZM model is somewhat softer than that
from the BB model.

In Figure 3 we show the proton fraction Y,, which is
defined as the ratio of the proton density to the baryon
density of the neutron star matter, as a function of baryon

400 |

300

200

100

energy per baryon(MeV)

01 02 03 04 05 06 07 08 09 1.0
baryon density (fm’J)

F16. 2—The energy per nucleon vs. baryon density for neutron-star
matter based on the ZM model and the BB model.
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TABLE 2

EQUATIONS OF STATE FOR NEUTRON STAR MATTER BASED
ON THE NONLINEAR 6w MODELS

Baryon Density P Pgy
(10** dyncm™2)  (103° dyn cm™2)

(fm ™)
014 ............. 0.0208 0.0475
020 .......c.eeee 0.0661 0.1381
030 .......eeins 0.2206 0.4404
040 ............. 0.4881 0.9662
050 ............. 0.8726 1.7347
060 ............. 1.3692 2.4789
070 ............. 1.9692 4.0028
080 ............. 2.6640 5.4869
090 ............. 3.4483 7.1918
100 ....coeein 4.3204 9.1115
110 ....ooenen 5.2849 11.244
120 ....cenil 6.3491 13.593
130 ... 7.5237 16.164
140 ............. 8.8184 18.965

Note.—The subscript “ZM ” refers to the ZM model, and
the subscript “ BB ” refers to the BB model.

density. For the BB model, the proton fraction turns out to
be large. The fraction increases rapidly as the density
increases above the nuclear matter density and reaches a
value of 0.22 at n, ~ 1.0 fm 3. But for the BB model, the
proton fraction is 0.07 at this density. In § 4 we will discuss
the astrophysical implications of these results.

3.2. Structure of Neutron Stars

Having the EOS, we can calculate the hydrostatic struc-
ture of a neutron star by solving the Tolman-Oppenheimer-
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F1G. 5—Radius vs. central density for neutron stars based on the ZM
and BB models.

Volkoff equations:
dP _  [p(r) + PMIIM() + 4nr’P(r)] (18
dr = 2rM(r) ’ )
and
dM
= = 4me() 19)

where P(r) and p(r) are the pressure and mass density,
respectively, and M(r) is the gravitational mass inside a
radius r. In our calculation, we use the EOS obtained by
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F1G. 3.—Proton fraction vs. baryon density for neutron-star matter
based on the ZM and BB models.
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F1G. 4—Total mass vs. central density for neutron stars based on the
ZM and BB models.

radius (km)

F1G. 6.—Total mass vs. radius for neutron stars based on the ZM and
BB models.
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F1G. 7.—Moment of inertia vs. total mass for neutron stars based on
the ZM and BB models.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJ...464..348C&amp;db_key=AST

J. - D647 Z348TH

]

rT99BA

352 CHENG, DAI & YAO

0.6

0.5

0.4}

03}

0.2

0.1t

surface gravitational redshift

0.0 s "
01 03 05 0.7 09 11 13 15 1.7 19 21 23
mass (Mg)

Fic. 8.—Surface gravitational redshift vs. total mass for neutron stars
based on the ZM and BB models.

Haensel, Zdunik, & Dobaczewski (1989) for the outer crust
of the star, and the EOS derived by Baym, Bethe, & Pethick
(1971) for the inner crust from the neutron-drip density to
0.14 fm 3. These EOSs have been expressed rather accu-
rately in the form of polynomials by Bao et al. (1994).

The structure of neutron stars is displayed in Figures
4-10. Figures 4 and 5 show the mass and the radius as a
function of the central density, respectively. For the ZM
model, the maximum mass of a neutron star is 1.7 M at a
central density of n, ~ 1.3 fm ™3 with a radius R ~ 10.0 km;
for the BB model, the maximum mass is 2.25 My at a
central density n, ~ 0.9 fm ™2 with R ~ 11.85 km. Figure 6
shows the mass-radius relation for neutron stars. Figures

0.4 —_— —

0.3

0.2}

crust mass (M)

0.1 |

0.0 ) X ) X X ) N 1
01 03 05 07 09 11 13 1.5 1.7 19 21 23
mass (M)

F1G. 9.—Crust (outer plus inner) mass vs. total mass for neutron stars
based on the ZM and BB models.
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mament of inertia of the crust (1 0459 c m2)

F1G. 10.—Crust (outer plus inner) moment of inertia vs. total mass for
neutron stars based on the ZM and BB models.
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7-10 show the moment of inertia, surface gravitational red-
shift, crust mass, and crust moment of inertia as a function
of total mass for a neutron star, respectively.

4. DISCUSSION

By using the ZM and BB models in the relativistic mean
field theory, we have calculated the EOS for dense matter
and the properties of neutron stars. Now we discuss the
astrophysical implications of our results.

First of all, the early observations of binary radio pulsars
gave neutron star masses of 1.4 Mgy < M, < 1.85 Mg
(Joss & Rappaport 1984 ; Taylor & Weisberg 1989) and the
recent observations by Wolszczan (1991) and Thorsett et
al. (1993) found 1.1 My < M, < 1.6 M. These obser-
vational results, which seem to eliminate some soft EOSs
(Phinney & Kulkarni 1994), are satisfied by our EOSs.
Second, "the detections of very fast (in particular,
submillisecond) pulsars have stimulated the study of the
maximum rotation frequency of uniformly rotating neutron
star models. The absolute upper limit on the rotation fre-
quency of a neutron star is the Kepler frequency, at which
the gravitational force acting on a mass element at the
equator of the star is equal to the centrifugal force. Non-
axisymmetric instabilities driven by gravitational radiation
lead to the maximum rotation frequency somewhat lower
than the Kepler limit (Friedman & Ipser 1992, and refer-
ences therein). Here we do not consider the instabilities,
since they are expected to be damped by viscosity of dense
matter under typical conditions prevailing in the pulsar
interior (Lindblom & Mendell 1992). Thus, the maximum
frequency of uniformly rotating neutron star models is

written as
Ms 1/2 Rs —-3/2
Qmax - C<M®> (10 km) ’ (20)

where M, and R, are the mass and radius of the maximum
allowable mass configuration of nonrotating models. The
numerical value of Cis 0.77 x 10*s~?!, which is obtained by
fitting this formula to numerical values of Q_,, resulting
from realistic calculations for various EOSs (Haensel,
Salgado, & Bonazzola 1995). Hence, for the ZM model
Q.. = 1.0 x 10* s71, and for the BB model Q,_,, = 0.90
x 10* s~ (see Figs. 4 and 5). Our calculation leads to the
minimum rotation period of 0.63 ms for the ZM model and
0.70 ms for the BB model, which are required by the current
observations of millisecond pulsars. Third, prior to the
BATSE experiment, many y-ray bursts have been observed,
10% of which have the emission feature (Harding 1991).
Katz (1994) suggested that such bursts originate from
neutron stars. If the emission line originated from the
e*e” — 2y annihilation process at the surface of a neutron
star, the observed emission line seems to be redshifted by
~0.2-0.5 (Liang 1986) or ~0.1-0.3 (Hartmann 1995). Thus,
if we assume that the sources of y-ray bursts are standard
neutron stars with 1.4 M, the redshift is about 0.2 for the
BB model and about 0.27 for the ZM model. Therefore, the
early observations of y-ray bursts with emission lines
cannot differentiate between these two models. Hopefully,
future observations with better accuracy can.

Fourth, pulsar rotation rates have been found that
occasionally show sudden increases (“glitches”) followed
by gradual recoveries that may last days or years. These
events are thought to be consequences of angular momen-
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tum transfer between a solid crust, which rotates at the
measured pulsar periodicity, and a more rapidly “loose”
component, which is believed to be the neutron superfluid
in the inner crust (Pines & Alpar 1985). Sudden braking of
the differential rotation between the two components will
cause a glitch, and subsequent reestablishment of rotational
equilibrium between the two components represents the
recovery. Recently Link, Epstein, & Van Riper (1992) used a
model-independent method to analyze the postglitch
recovery in four pulsars (Crab, Vela, PSR 0355+ 54, and
PSR 0525+21) and deduced that the loose component
carries at least 0.8% of the total moment of inertia. This
result seems to rule out EOSs that are soft at high densities.
A detailed analysis of postglitch recovery based on the
vortex creep model (Alpar, Cheng, & Pines 1989; Alpar et
al. 1993) arrived at similar conclusions. For the standard
neutron star with 1.4 M, the ratio of the inner crust to the
total moments of inertia is about 8% for the ZM model and
about 30% for the BB model (see Figs. 7 and 10). So our
EOSs are consistent with the requirement of the observa-
tions of glitches. _

Finally, we have found that the BB model with SRK3M?7
results in a large proton fraction of neutron star matter (see
Fig. 3). Similar conclusions have also been drawn by many
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authors (Boguta 1981; Glendenning 1985; Sumiyoshi &
Toki 1994; Sumiyoshi et al. 1995a, b), who calculated the
properties of neutron star matter in the BB model. Thus, the
direct Urca process may occur as a main neutrino reaction
in a neutron star and would lead to rapid cooling of the star
(Lattimer et al. 1991; Page & Applegate 1992). The direct
Urca process is suppressed due to the kinematics when the
proton fraction is smaller than 0.11. So we find that there
exists only the modified Urca process in the interior of a
neutron star based on the ZM model. One may make a
discriminant between the BB model and the ZM model
through observation of the surface temperature of the stars.
Of course, neutron star matter may be in another exotic
state such as a pion condensate or a kaon condensate or
quark matter (for a recent review, see Pethick 1992). These
states’ could yield copious neutrino emission and rapid
cooling of neutron stars. One might also distinguish
between these states and the state based on the ZM model
by observing the surface radiation of neutron stars.

This work is partly supported by a research grant of the
University of Hong Kong. We thank T. Boyce for a critical
reading of the manuscript and Siu M. K. for part of the
numerical calculation.
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