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Coupled optical interface modes in a Fibonacci dielectric superlattice
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The coupled optical interface modes in a Fibonacci dielectric superlattice are studied. In the dielectric
continuum approximation, the dispersion relation is found to have two bartlsbtriadic Cantor structures
each being nonuniform scaling. For most of the eigenfrequencies, the amplitude profiles of electrostatic po-
tential in this quasiperiodic structure are critical. Moreover, an invariant is analytically derived and is used to
describe the general features of the frequency spectra and potential pf&iili&63-182006)02742-1

In recent years, there has been considerable interest #kpikx) propagates along the direction withk as the in-
elementary excitations in artificial multilayers or plane wave vector. It is reasonable to wri@(r,t)
superlattices™* In particular, the optical phonon problem in = ¢(z)expli(kx— wt)}, and thus,
alkali halide or polar semiconductor superlattices is rather
attractive? Usually, the optical modes can be divided into 2 )
two types: one is a type of bulklike excitations, the other is a (F -k ) #$(2)=0. (1)
type of interface mode. Interestingly, the interface modes
will be COUpled to give the collective excitation of the whole Denotingn as a |ayer indeX, the electrostatic continuum con-
superlattice when the layer thickness of the system is reladitions at the interface takes the form
tively small. On the other hand, since the discovery of a
quasicrystalline phase in Al-Mn alloys, great experimental do(2) de(2)
and theoretical efforts have been devoted to physical proper- dn(2)=dni1(2), €, RS 2
ties in one-dimensional quasiperiodic structtesAs is z z
well known, the quasiperiodicity of Fibonacci structure hastpe  sojutions  of Eq.(1) can be written asd(2)

qek(datdnz Bek(dr1=dni2

sybstantial impaqt on the properties of elementary gxcita-: 9%+ h,e " in the A layers, ande(z)=p,e"?+qe ¥
tions. There_fore,_ it is worthwile to explore the_ properties 0fin the B layers, wherd denotes the block index. If we write
coupled optical interface modes in Fibonacci dielectric su-
perlattices. In this paper, we first derive the basic formulas
for transfer matrices, an invariant, and the dispersion rela- (g|+1) =T|+1|(gl) (3)
tion. Then the numerical results as well as relevant discus- T “\hy
sions are presented. o ) )

A Fibonacci superlattice is a simple one-dimensional quafor A layers, it is straightforward to obtain
siperiodic structure with two building blocks denoted by
and S. For the structures considered here, each of them is _
constructed by two layers with materiads and B. The B U — e kdiramdi2 e mk(di g td)i2) (4)
layers inL and S blocks have the same thicknedsbut the
A layers have thickness, in L blocks anddg in S blocks,  where
respectively. Using these two blocks, a Fibonacci dielectric

superlattice is formed according to the rule§, 1(eg el .

={S;,S;-1},$,=L,S,=LS. A andB are two kinds of di- a=costkd+ Sle T sinkkd,

electric materials with different dielectric functions, and A "B

eg, Which are the same as those in the corresponding infinite l/eg ep) .

media and may be frequency dependent. B= E(a s sintkd, ®)
In the electrostatic limit, the electrostatic potentalsat-

isfies the Laplace equatioWi?®d(r,t)=0. If the z axis is 1/en s

chosen to be perpendicular to the superlattice planes, without y=costkd— = ZB 4 22 sinrkd.

loss of generality, we assume that only a plane-wave 2\ep &g
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One can find that there are three types of transfer matrices ; ; : .
T, Tsi, T s, which are all unimodular. As usual, we set 50
M,;=T_, andM,=T_ sTs., and have recursion relations
M;:1=M;_;M;, from which all M{s can be obtained, ' L
wherej is the Fibonacci generation number. 45 BEREEEEEFFIO o i
Defining x;= %Ter , one can find that the quantity N
| =xFi 1+ X7+ xF-1—2X+1xjX-1— 1 is invariant. For our I:l—: T
N RSN
3

Fraaa,,

Fibonacci dielectric superlattice,

4

2
- (8—5— 8—A> sintPkdsiniPk(d, —dg). (6) 35

€an €

This analytic formula is different from those for electrons ~
and acoustic phonons in Fibonacci chdlr@omparing with 30— ' : :
that for magnetostatic modes in Fibonacci multilayebsth 0 1 2 3
invariants appear to have the same wave-vector dependence, kd
but different frequency dependence. The invariant can be
used to characterize the structure of energy spectra as well as FIG. 1. Dispersion relation of the coupled optical interface
the properties of the states of Fibonacci structdres. modes for 12th order Fibonacci superlattice. Heye=2ds=4d.

In the calculation of the frequency spectra of Fibonacci
dielectric superlattice, we here use the free-boundary condi- 2 2 _ .
tion: the electrostatic potentials at the left and the ~ @B Lo)/ (@°— wg 10), as for alkali halide or polar semicon-

right boundaries, which contact with the enviroment oflductprd.m?terla:js, wherewg, 1o alnc:c wg,ro are the ‘
dielectric function ec, are ®, and ®g with ® g longitudinal- and transverse-optical frequencies. We take

= ¢, rexpli(kx—ot)}. In detail, the constraint equations are €A~ 2:1, 8s the value of Si§) £g,..=2.34£50=5.9,08,10
written as =32.01 THz andwg | o=50.74 THz, which correspond to
the values of NaClgc=1 (the value of vacuum
(ea—ec)e KU2g, —(ep+ec)edd?h;=0, Figure 1 shows the dispersion relation of coupled optical
interface modes for 12th order Fibonacci dielectric superlat-
(ea—ec)e gy 1 —(eatec)e * WPy, 1=0.  (7) tice, whered, =4d,ds=2d, andd is fixed. The spectra are
gevided into two branches, namely, and w _ ,ﬁwhich are
; separated by a gap as in the periodic superlatti¢es.lower
structure can be written as kd, the spectra form two bands, while for highled, the
ONa1 O my My [g; _modes are highly degeneratg. Betweenl these two limits, be-
(h ) = M,-( h ( )(h ) (8) ing also different from periodic superlattices, there are many
N+1 1 1 gaps to appear. It can be seen more clearly from Fig. 2 that
wheremy;, my,, My, andm,y, are all complicated func- the allowed frequencies form two branches of Cantor sets,

tions of the wave-vector, thicknesses, and frequency. Thhich are singular continuous. For thth order Fibonacci
linear equations ofj;, h;, gns+; andhy., in Egs.(7) and  dielectric structure, the subbgnds o, or w_ have
(8) have nontrivial solutions only if the coefficient determi- Fj-2.Fj-1,Fj-> eigenfrequencies, respectively. One can
nant vanishes. Thus the dispersion equation becomes

On the other hand, the global equation for the quasiperiodi

My My

2 2
(ea—e2)e®Umy+ (ep—ec) 2 Umyy— (ep+ec) %€ imy,

T

50

—(si—s%)mn:O. (9) 385

Equation(9) is the central result of this paper, from which all __ 45|
relevant information regarding the optical interface modes in N s
the present quasiperiodic structure can be extracted. We will N
see later on, in a specified case, this equation isFgft@ ~ 40
order inw, which gives F; eigenfrequencies for each value S guoo
of k, whereF; is a Fibonacci number satisfying the relation — T 4085
Fi=F;_1+F;_, with Fy=F,=1. 35 — PR
Each of the eigenfrequencies can create a special distribu- S
tion of potential. First, we consider the amplitudesAinay- . . . .
ers. By using Egs(3) and (4), the potential amplitudes 30 6 160 200 300 400 500

0i+1,h+1 of I+1 block can be recursively obtained gf

T
3
&

andh; are knowr® After g, andh, are determined, the po- N
tential distributions in thé8 layers, characterized by, and
g, can also be obtained. FIG. 2. Eigenfrequency versus number of modes for a 12th or-

To get the concrete dispersion relation from E®), we  der Fibonacci superlattice witkd, =2.0, kds=1.0, andkd=0.5.
choosee 5 as frequency independent, b&:]é(w):&‘B’x(wz Two enlarged local regions are shown in the insets.
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FIG. 3. The variation of eigenfrequency distribution with the

thickness ratiad, /ds for kds=1.0 andkd=0.5. FIG. 5. The amplitude profiles of electrostatic potential for two

critical states(a) =35.218 148 127 7(b) w=49.040 631 708 8.

also see that for the. band, the low-frequency subband is there are only six limiting frequencies= 35.388 308 194 9,
wider than high-frequency subband, but for the band, the 36 862 657 159 6, 38.0231542009, 47.175283229 3,
situation is reversed. This feature reflects the strength of qua;7 985 416 306 7, 48.936 159 968 8. These six limiting fre-
siperiodicity, as can be illustrated by E@): the lower re-  guencies are the isolated modes when the thickdgsap-

gion of thew_ band and the higher region of the, band  yroaches infinity; they are actually the solutions of the fol-
have larger values df, while the higher region oo band  |owing three equations:

and the lower region of the , band have smaller values of
l. g5+ 2epsgcottkd+£3=0,

The relative thicknesses df d,_, anddg have important
effects on the frequency spectra. One example is shown in = (1—e *9s)g2+2¢ pegcottkd+ (1+e )5 =0,
Fig. 3. Whenk, dgandd are fixed kds=1.0kd=0.5), the (10
frequency spectra are all threefold branchesdasds# 1.
Notice that, ford, /ds— 1, two continuous bands are promi-
nant, which stems from the fact that the structure becomeE.
periodic (at this timel —0 as expected However, the qua- lgure 4 shows another example, whige d, and_ds are
siperiodicity is more prominant for small or large values Ofﬁxed (!(dL=2.0 andkds=1.0). Ford/ds<.1 . the eigentre-
d, /ds. Particularly for very larged, /ds, the spectra be- 9dUENces approaciwg, .o and wg,ro, while for d/ds>1,
come six highly degenerate branches, which seem to be dif'ere also exist six limiting frequencies=
ferent from the existing results in the literatures. For ex-
ample, wherd, /dg>10.0, numerical calculations show that T

(1+e K9%)g2+ 2¢ segcothkd+ (1— e %)e2=0.

2
T T T T T S
i 0
50 i g
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FIG. 6. The amplitude profiles of electrostatic potential for two
FIG. 4. The variation of eigenfrequency distribution with the quasilocalized states corresponding to the band-edge frequencies:
thickness ratiosl/dg for kd, =2.0 andkds=1.0. (a8) ®=38.085539 634 3(b) »=238.119 253 211 6.
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39.427 1537129, 41.7162741081, 43.026 124 350 3guencies and find that almost all states are critical. This fact
43.430 4127320, 44.165714 517 2, 46.114 221 825 4 corean be illustrated by the values of the invariant which range
responding to another kind of isolated modes, which satisfjrom 0.465 068 026 2 to 4.355 134 986 3. Figurés) Sand

another set of equations 5(b) show two critical states corresponding fb=13, 454
modes in Fig. 2. The potential profiles in these two figures
eg= —egtantkdg, eg=—egpcothkdg, obey power laws , which is quite similar to the cases of

tight-binding electrons, acoustic phonons or magnetostatic
eg=—eatantkd,, eg=—eacottkd,, (11)  gpin waves; but it is interesting to note thét 454 mode is
the 13th mode counted from the upper part of éhe band.
eatantkd, +ec . eatantkd, —ec The similarity of these two states denotes thality of the
Reptectantkd ' 7P Rep—ectantkd, ’ w_ andw, bands, which is specific to the present system, in
o contrast to the well-studied syster$.Actually, almost all
The quasiperiodicity of the frequency spectra must be regg giates for these two bands are one to one correspondent in
flected in the distribution of potential which is related to the o arql characteristics, although there may be some differ-
long-wavelength optical oscillations. If the averaged potenyces in detail.
tial over each layer is considered, then Among the 466 states, still a few states are quasilocaliz-
A_ ; ied. These states usually appear at the edges of the subbands
"= (i +hy)sinitkd,)/ (kd/2) 12 Fig. 2. Figures @) and b) are two examples. Their
for the A layers, and frequencies are corresponding to tNe=178, 179 modes,
and both modes are at the two sides of a gap. These two
states are localized at the surfaces of the superlattices: one at
the left and the other at the right, and both are symmetric.
Here the duality of thes, band andw_ band also exists.

geg=—¢

ekdizg,

¢B

1 A Ep
= —+¢|sinkkd+ —(costkkd—1)
kd €B

+

. €A _
sintkd— —(costkd—1) e kd'/2h|}. (13 This work was supported by the National Natural Science
B Foundation of China, the Provincial Natural Science Foun-
for the B layers. For the parameters chosen in Fig. 2, wedation of Jiangsu, and the RGC of Hong Kong under Grant

have examined all potential profiles of2,=466 eigenfre- No. HKU262/95P.
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