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Correcting quantum errors in higher spin systems
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I consider the theory of the quantum error correcting code~QECC!, where each quantum particle has more
than two possible eigenstates. In this higher spin system, I report an explicit QECC that is related to the
symmetry groupZ2

^ (N21)
^SN . This QECC, which generalizes Shor’s simple majority vote code@Phys. Rev.

A 52, 2493~1995!#, is able to correct errors arising from exactly one quantum particle. I also provide a simple
encoding algorithm.@S1050-2947~97!50302-7#
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Quantum computers are powerful enough to efficien
factorize composite numbers@1#. Nevertheless, quantum
computers are extremely vulnerable to disturbance@2#. De-
coherence between the quantum computer and the env
ment, together with decoherence between different parts
quantum computer may seriously affect the output of a co
putation.

By encoding the quantum state into a larger Hilbert sp
H, it is possible to reduce the decoherence error with
environment. By first measuring the wave function in a su
able subspaceC of H and then by applying a unitary trans
formation to the orthogonal complement ofC according to
the measurement result, it is possible to correct quantum
rors due to decoherence with the environment@3#. This kind
of scheme is now called the quantum error correction c
~QECC!. The first QECC was discovered by Shor. Using t
idea of simple majority vote, he encodes each quantum
~qubit! by nine qubits. His code is able to correct one qu
of error @3#. Since then, many QECCs have been discove
~see, for example, Refs.@4–9#! and various theories on
QECC have also been developed~see, for example, Refs
@7–13#!. In particular, the necessary and sufficient condit
for a QECC is@11–13#

^ i encodeuA†Bu j encode&5lA,Bd i j , ~1!

where u i encode& denotes the encoded quantum stateu i & using
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the QECC,A,B are the possible errors that can be hand
by the QECC, andlA,B is a complex constant independent
u i encode& and u j encode&.

Early QECCs concentrate on the decoherence of a qu
tum computer with the environment. Individual quantu
registers in a quantum computer are assumed to be place
apart from each other so that decoherence among them
be ignored. Nonetheless, this assumption is not true in g
eral. To understand why, let me first summarize the simp
possible spin-12-particle-based quantum computer model:
single spin-12 particle ~A! is used as a messenger. It shuttl
around other spin-12 particles ~B! and interacts with them
from time to time. Although decoherence between partic
(B) may be neglected, decoherence between~A! and~B! can
be serious~compare with a similar ‘‘gearbox quantum com
puter’’ proposal by DiVincenzo@14#!.

Therefore, it is natural to construct a QECC that corre
this kind of ‘‘internal’’ decoherence error among differe
quantum registers. This can be achieved by constructin
QECC that may correct errors involving multiple spins~see,
for example, Refs.@5,6,8,10#!. Alternatively, we may map
this problem to that of correcting a single quantum error i
system with higher spin. Suppose the messenger~A! has to
interact with a specific spin-12 register~C! in ~B!. We may
regard the combination of~A! and ~C! as a single quantum
particle with spin 3

2. If we encode this spin-32 state by a
QECC and correct the quantum error immediately after
interaction process, decoherence between~A!,~C! and the en-
vironment can be greatly suppressed. The advantage
R839 © 1997 The American Physical Society
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this method is that, in general, fewer quantum registers
required. The reason is simple: resources are concentrate
correcting errors in~A! and ~C!, while extra resources ar
needed for a general multiple quantum error correcting c
in order to take care of the less frequent decoherence e
within ~B!.

Another reason to consider the QECC for a higher s
system is that the quantum registers used may consis
more than two possible states. For example, the two
quantum logic gate experimentally studied by Monroeet al.
uses extra states for preparation and measurement@15#. Error
correction may be required to prevent the quantum regi
from going to the unwanted states during the computatio

In this paper, I consider the QECC for particles with sp
higher than12. I study a special kind of QECC that is relate
to the symmetry groupZ2

^ (N21)
^SN , whereN is the number

of states of each spin. An explicit example of a QECC tha
able to correct one quantum register1 of error is given. My
code reduces to the simple majority vote code proposed
Shor @3# whenN52.

I denote theN mutually orthogonal eigenstates in ea
quantum register byu0&,u1&, . . . ,uN21&. Any quantum er-
ror involving exactly one quantum register can be descri
by an operatorE acting on that quantum register. Clearly w
can representE by a nonzeroN3N complex matrix. That is
to say,EPA[CN3N\$0%. Further properties of the quantu
error operator can be found elsewhere@16#. It is easy to
check that for anyEPA, we can find complex numbersa,
b i , gmn anddmn , not all zero, such that

E5aI N1 (
i51

N21

b iRi1 (
mÞn

~gmnPmn1dmnQmn!, ~2!

where the sum in the third term runs fromm,n50 to
N21, I N is theN3N identity matrix, andRi , Pmn , Qmn are
given by

~Ri !xy5H 1 if x5y and xÞ i

21 if x5y5 i

0 otherwise,

~3a!

~Pmn!xy5H 1 if x5y and xÞm,n

1 if x5m,y5n or x5n,y5m

0 otherwise,

~3b!

and

~Qmn!xy55
1 if x5y and xÞm,n

1 if x5m,y5n

21 if x5n,y5m

0 otherwise,

~3c!

respectively. Physically,Ri adds a phase shift ofp to the
part of the state ket whenever the quantum register is in

1Note that the state of each quantum register spans
N-dimensional Hilbert space. WhenN.2, it is not appropriate to
call it a qubit because the quantum register holds more informa
than one qubit.
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stateu i &. The action ofPmn interchangesum& with un& while
leaving the other quantum states unchanged. Similarly,Qmn
mapsum& to un& and un& to 2um& while leaving the other
quantum states unchanged. Therefore,Ri andPmnmodel the
effect of phase error and spin flip, respectively, andQmn
models the effect of combined phase and spin flip error. N
that I N , Ri , Pmn , andQmn are Hamiltonian operators, an
hence are physical observables. Besides, they form a line
independent set.

From Eq.~2!, it is easy to show that a QECC can hand
one quantum register of error if and only if it can hand
errors arising from the actions ofRi , Pmn , andQmn . Using
the group-theoretic method of the QECC developed
Calderbanket al. @8#, I consider the finite groupG generated
by the elementsRi , Pmn andQmn . SincePmn5P0m+P0n
+P0m , Qmn5P0m+Q0n+P0m , andQ0n5Rn+P0n , the group
G is given by

G5^R1 ,R2 , . . . ,RN21 ,P01,P02, . . . ,P0N21&. ~4!

Thus,G is isomorphic toZ2
^ (N21)

^SN . According to Knill
@12#, this choice of error bases is ‘‘nice’’ but not ‘‘very
nice’’ in general.

Equation ~4! implies that the ability to correct the
2(N21) kinds of quantum errors Rn and P1n
(n51,2, . . . ,N21) is a necessary condition for correctin
any quantum errors involving one quantum register. Her
show that this condition is also sufficient. As shown by G
tesman@9#, we may paste the QECC as follows: Suppo
C1 and C2 are two QECCs correcting errorsE1 and E2,
respectively. Let us consider the situation in which both
rors occur in the same set of quantum registers. One can
encode the quantum register using codeC1, and then further
encode the resultant quantum registers by the codeC2. The
resultant quantum code can correct errors in the fo
E2+E1. Thus, by pasting QECCs that correct the quant
errorsRn andP1n (n51,2, . . . ,N21) in a suitable way, one
obtains a QECC for quantum errors given by the groupG,
and hence this code corrects quantum errors involving
actly one quantum register.

Since the coding scheme

u i &°u i i i & ~5!

can correct quantum errorsPmn , and the coding scheme

u1&°
1

A8
~ u1&1u i &)^ ~ u1&1u i &)^ ~ u1&1u i &),

u i &°
1

A8
~ u1&2u i &)^ ~ u1&2u i &)^ ~ u1&2u i &),

u j &°u j j j & ~6!

can correct the quantum errorRi . One may paste these code
together to obtain the required QECC that can correct er
involving one quantum register. Nevertheless, this constr
tion is not practical since it involves too many quantum re
isters.

Here, I report a more economical code. SupposevN is a
primitive Nth root of unity, then

n

n
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(
m50

N21

vN
mk5H 0 for k51,2, . . . ,N21

N if k5N.
~7!

Consequently, state kets u0&1vN
k u1&1vN

2ku2&
1 . . .1vN

(N21)kuN21& are mutually orthogonal to eac
other fork50,1, . . . ,N21. Besides, one can verify that th
encoding

um&°
1

N3/2F (
k50

N21

vN
kmuk&G ^ F (

k50

N21

vN
kmuk&G ^ F (

k50

N21

vN
kmuk&G

5
1

N3/2 (
k,p,q50

N21

vN
~k1p1q!mukpq& ~8!

can correct phase quantum errorsRi ( i51,2, . . . ,N21).
SinceRi commutes withPmn , by pasting the two codes in

Eqs. ~5! and ~8! together, we obtain a QECC that handl
errors inG ~see Ref.@9#!. I explicitly write down this code
below:

um&°
1

N3/2F (
k50

N21

vN
kmukkk&G ^ F (

k50

N21

vN
kmukkk&G

^ F (
k50

N21

vN
kmukkk&G

5
1

N3/2 (
k,p,q50

N21

vN
~k1p1q!mukkkpppqqq& ~9!

for all m50,1,2,. . . ,N21. Note that this code encode
each quantum register by nine of them, and it is able
correct any quantum errors arising from exactly one quan
register. WhenN52, it reduces to the simple majority cod
by Shor@3#.

The above QECC is closely related to the~multiplicative!
group characterx of the finite additive groupZN . Note that
x:ZN→C is a map satisfying@17#

x~a1b!5x~a!x~b! ~10!

for all a,bPZN . If we identify each eigenstateum& with
mPZN , then Eq.~7! is a direct consequence of the sum ru
@17#
on
r

ys
o
m

(
mPZN

x~m!5HN if x is the trivial character

0 otherwise.
~11!

The above sum rule ensures that the encoded st
um encode& given by Eq.~8! are mutually orthogonal.

Now, I provide a simple encoding algorithm for this cod
Using a series of quantum binary conditional-NOT gates,
may ‘‘copy’’ the quantum state um00000000& to
um00m00m00& efficiently. Then, we may apply a quantum
discrete Fourier transform similar to that used in Shor’s f
torization algorithm@1,18# separately to the first, fourth, an
seventh quantum registers in order to produce the requ
encoding scheme. That is to say, for eachum& in the first,
fourth, and the seventh quantum registers, we apply a uni
transformation, mapping it to the state

um&°
1

AN(
k50

N21

vN
kmuk&. ~12!

Using the same idea as in Shor’s algorithm, the above tra
formation can be achieved efficiently. To obtain the requir
encoding, we finally ‘‘copy’’ the first quantum register int
the second and third, the fourth into the fifth and sixth, a
the seventh into the eighth and ninth. The entire process
be summarized below:

um00000000&°um00m00m00&

°
1

N3/2 (
k,p,q50

N21

vN
~k1p1q!muk00p00q00&

°
1

N3/2 (
k,p,q50

N21

vN
~k1p1q!mukkkpppqqq&. ~13!

In order to have enough room in the encoded Hilbert sp
for the QECC, the condition

@11~N221!n#N<Nn ~14!

must be satisfied, in whichn is the number of quantum reg
ister. Moreover, the code is said to be perfect if the equa
in Eq. ~14! holds @4#. Nonetheless, Eq.~9! is not a perfect
code, and more efficient QECCs may exist. It will be inte
esting to find them out.
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