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I consider the theory of the quantum error correcting c@@ECO, where each quantum particle has more
than two possible eigenstates. In this higher spin system, | report an explicit QECC that is related to the
symmetry groupi(N‘l)éaSN. This QECC, which generalizes Shor’s simple majority vote détteys. Rev.

A 52,2493(1995)], is able to correct errors arising from exactly one quantum particle. | also provide a simple
encoding algorithm[S1050-294{@7)50302-1

PACS numbsgs): 03.65.Bz, 02.20.Df, 89.7@.c, 89.80+h

Quantum computers are powerful enough to efficientlythe QECC,A,B are the possible errors that can be handled
factorize composite numberl]. Nevertheless, quantum by the QECC, and 5 g is @ complex constant independent of
computers are extremely vulnerable to disturbaf®ie De- i coqd and|jencods-
coherence between the quantum computer and the environ- Early QECCs concentrate on the decoherence of a quan-
ment, together with decoherence between different parts of gym computer with the environment. Individual quantum
quantum computer may seriously affect the output of a comyegisters in a quantum computer are assumed to be placed far
putation. _ _ apart from each other so that decoherence among them can

By encoding the quantum state into a larger Hilbert Spacgyg jgnared. Nonetheless, this assumption is not true in gen-
H, it is possible to reduce the decoherence error with they, "o ynderstand why, let me first summarize the simplest

eg;nrong"nent. @By ?ﬁt m(zatshurln% the wlaye funct|$n mta SUIt'possible sping-particle-based quantum computer model: A
able subspace of 1 and then Dy applying a unrtary trans- single spins particle (A) is used as a messenger. It shuttles

formation to the orthogonal complement Gf according to . . . .

L . around other spig- particles (B) and interacts with them
the measurement result, it is possible to correct quantum e;—o time to time. Althouah decoherence betwee el
rors due to decoherence with the environni@t This kind er |mei) 0 Iml red du9 X co rbnc er Q particles
of scheme is now called the quantum error correction cod ) may be neglected, heco_ e_rlenc‘;‘e et\t/)v(e?eran (B) can
(QECOQ. The first QECC was discovered by Shor. Using the°® se”rlous(comlpglres/y& a S|m|112r gearbox quantum com-
idea of simple majority vote, he encodes each quantum bi?'“'t_ﬁr] prfopos_a_ y b mlcenz@ ). ECC th
(qubit) by nine qubits. His code is able to correct one qubit erefore, it is natural to construct a Q that corrects

of error[3]. Since then, many QECCs have been dis;covere(TJhis Kind of ‘finternal” .decoherence error among diﬁergnt
(see, for example, Refd4—9) and various theories on quantum registers. This can be achieved by constructing a

ECC that may correct errors involving multiple spiisge,
QECC have also been developé&ske, for example, Refs. Q .
[7—13). In particular, the necessary and sufficient condition©! €xample, Refs[5,6,8,10). Alternatively, we may map

; this problem to that of correcting a single quantum error in a
for a QECC is[11-1
Q [ 3 system with higher spin. Suppose the messef@ghas to
(i encodbAB|j encodd = Aa 83, 1) interact with a specific spig-register(C) in (B). We may

regard the combination gfA) and(C) as a single quantum

where|igneoqe denotes the encoded quantum stajeusing  particle with spin3. If we encode this spig- state by a
QECC and correct the quantum error immediately after the

interaction process, decoherence betw@erC) and the en-
*Electronic address: hfchau@hkusua.hku.hk vironment can be greatly suppressed. The advantage of
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this method is that, in general, fewer quantum registers arstate|i). The action ofP,, interchange$m) with |n) while
required. The reason is simple: resources are concentrated {@aving the other quantum states unchanged. Simil&ly,
correcting errors inA) and (C), while extra resources are maps|m) to |n) and|n) to —|m) while leaving the other
needed for a general multiple quantum error correcting codgquantum states unchanged. Theref&eandP,,,, model the
in order to take care of the less frequent decoherence err@ffect of phase error and spin flip, respectively, &g,

within (B).

models the effect of combined phase and spin flip error. Note

Another reason to consider the QECC for a higher spirthatly, R;, Pp,, andQ,,, are Hamiltonian operators, and
system is that the quantum registers used may consist ¢fence are physical observables. Besides, they form a linearly
more than two possible states. For example, the two-bilndependent set.

guantum logic gate experimentally studied by Monetel.
uses extra states for preparation and measurefBhtError

From Eq.(2), it is easy to show that a QECC can handle
one quantum register of error if and only if it can handle

correction may be required to prevent the quantum registegrrors arising from the actions &, P,,, andQ,,,. Using

from going to the unwanted states during the computation. the group-theoretic method of the QECC developed by
In this paper, | consider the QECC for particles with spinCalderbanlet al.[8], | consider the finite grou generated

higher thans. | study a special kind of QECC that is related by the elementR;, P, and Q. Since Prn=PomePon

to the symmetry groufiy N~ Ve Sy, whereN is the number

°Poms Qmn=Pom®Qon®Pom, and Qgn=Ry°Pg,, the group

of states of each spin. An explicit example of a QECC that isG is given by

able to correct one quantum registef error is given. My

code reduces to the simple majority vote code proposed by

Shor[3] whenN=2.

G:<R1,R2, ...,RN_]_,PO]_,Poz, "'1PON—1>' (4)

| denote theN mutually orthogonal eigenstates in each Thus,G is isomorphic tozg ™Sy According to Knill

quantum register by0),|1), ... |N—1). Any quantum er-

[12], this choice of error bases is “nice” but not “very

ror involving exactly one quantum register can be describedhice” in general.

by an operatoE acting on that quantum register. Clearly we
can represerie by a nonzerdN X N complex matrix. That is

Equation (4) implies that the ability to correct the
2(N—1) kinds of quantum errorsR, and Py,

to say,E e A=CN*N\{0}. Further properties of the quantum (n=1,2,... ,N—1) is a necessary condition for correcting

error operator can be found elsewhédd]. It is easy to
check that for anE € A, we can find complex numbets,
Bi, Ymn @ndé,,,, not all zero, such that
N—1
E=alyt 21 IBiRi"—n;n (YmnPmnt 0mnQmn)» i)

where the sum in the third term runs from,n=0 to
N—1, |y is theNXN identity matrix, andR;, Py, Qmn are
given by

1 if x=y and x#i

(Ri)xy= -1 if x=y=i (39
0 otherwise,
1 if x=y and x#m,n

(Pmyxy=1 1 if x=myy=n or x=ny=m (3b)
0 otherwise,
and
1 if x=y and x#m,n
1 if X=m,y=n
(an)xy: —1 if x=n,y=m (39
0 otherwise,

respectively. PhysicallyR; adds a phase shift of to the

any quantum errors involving one quantum register. Here, |
show that this condition is also sufficient. As shown by Got-
tesman[9], we may paste the QECC as follows: Suppose
C, and C, are two QECCs correcting errois; and E,,
respectively. Let us consider the situation in which both er-
rors occur in the same set of quantum registers. One can first
encode the quantum register using c@e and then further
encode the resultant quantum registers by the €gderhe
resultant quantum code can correct errors in the form
E-°E;. Thus, by pasting QECCs that correct the quantum
errorsR, andP,, (n=1,2,... ,N—1) in a suitable way, one
obtains a QECC for quantum errors given by the gr@ip
and hence this code corrects quantum errors involving ex-
actly one quantum register.

Since the coding scheme

liy—>liii) (5
can correct quantum errof,,,, and the coding scheme

|1>»%<|1>+|i>>®<|1>+|i>>®<|1>+|i>>,

|i>»%<|1>—|i>>®<|1>—|i>)®<|1>—|i>),

|i)=>1iii) (6)

part of the state ket whenever the quantum register is in thean correct the quantum errBr. One may paste these codes

together to obtain the required QECC that can correct errors
involving one quantum register. Nevertheless, this construc-

INote that the state of each quantum register spans ation is not practical since it involves too many quantum reg-

N-dimensional Hilbert space. Whe¥i>2, it is not appropriate to

isters.

call it a qubit because the quantum register holds more information Here, | report a more economical code. Suppeges a

than one qubit.

primitive Nth root of unity, then
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N1 . 0 fork=12,... N—-1 2 N if y isthe trivial character
= = : 11
20NN i ken @ 2, XMW= otherwise. (
Consequently, state kets |o>+w‘,§||1>+ wﬁ,k|2> The above sum rule ensures that the encoded states
+ .. +ol"PYN-1) are mutually orthogonal to each |Mencos¢ given by Eq.(8) are mutually orthogonal.
other fork=0,1, ... ,N—1. Besides, one can verify that the Now, | provide a simple encoding algorithm for this code.
encoding Using a series of quantum binary conditional-NOT gates, we
L N—1 N—1 may “copy” the quantum state |[m0000000Q to
km km km mOOmOOmO0) efficiently. Then, we may apply a quantum
m)y— K)|® K)|® k |
Im WLZO on'1k) k§=:0 on'k) k§=:O on'1k) discrete Fourier transform similar to that used in Shor’s fac-
N-1 torization algorithn1,18] separately to the first, fourth, and
_ 1 w(k+p+q)m|kpq> ®) seventh quantum registers in order to produce the required
N S0 N encoding scheme. That is to say, for edat) in the first,
fourth, and the seventh quantum registers, we apply a unitary
can correct phase quantum err&s(i=1,2,... ,N—1). transformation, mapping it to the state
SinceR; commutes wittP,,,,, by pasting the two codes in g Nt
Egs. (5) and (8) together, we obtain a QECC that handles |m>e—2 KM k). (12
errors inG (see Ref[9]). | explicitly write down this code JNK=0
below:
N—1 N—1 Using the same idea as in Shor’s algorithm, the above trans-
km km formation can be achieved efficiently. To obtain the required
Im)— (e go on'Tkkk) | @ go on'Tkkk) encoding, we finally “copy” the first quantum register into

No1 the second and third, the fourth into the fifth and sixth, and
the seventh into the eighth and ninth. The entire process can

>, wo"lkkk) i

“ ON be summarized below:

|m0000000Y— | MOOMOOMO0)

N—-1
1
_ (k+p+g)m N—1
=—p > o |kkkpppaqd (9) 1
N p.a=0 =N E:o w{PTIM KOOPOO00)

&

for all m=0,1,2,... ,N—1. Note that this code encodes

each quantum register by nine of them, and it is able to 1 o
correct any quantum errors arising from exactly one quantum e N2, qu:=o oy PrIMkkkpppaqd. (13)
register. WherN=2, it reduces to the simple majority code o
by Shor[3]. In order to have enough room in the encoded Hilbert space

The above QECC is closely related to ftmeultiplicative) for the QECC, the condition
group charactey of the finite additive grouf, . Note that [1+(N2=—1)n]N=<N" (14)
x:Zny—C is a map satisfying17]

x(a+b)=yx(a)x(b) (10) must be satisfied, in which is the number of quantum reg-

ister. Moreover, the code is said to be perfect if the equality
for all a,beZy. If we identify each eigenstatgm) with in Eq. (14) holds[4]. Nonetheless, Eq9) is not a perfect
me Zy, then Eq.(7) is a direct consequence of the sum rulecode, and more efficient QECCs may exist. It will be inter-
[17] esting to find them out.
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