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Quasiclassical approach to magnetotransport in magnetic inhomogeneous systems
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The conventional quasiclassical approach to magnetotransport in magnetic multilayers and magnetic granu-
lar solids is found to be suitable only for collinear magnetization configurations. A quantum treatment of
electron spin is proposed to improve the quasiclassical theory to be applicable to arbitrary magnetization
alignments, in which the electron distribution functions, as well as the electric fields and currents, need to be
regarded as spinor matrices which are off-diagonal in spin space of conduction electrons. An extended Boltz-
mann equation has been used to derive the two-point spinor conductivity in magnetic inhomogeneous systems.
The result obtained is found to be identical to that obtained from the real-space Kubo formula, indicating a
close link between the reformed quasiclassical approach and the quantum theory. Angular dependence of the
current-in-plane magnetoresistance in magnetic superlattices is discussed.@S0163-1829~97!03909-X#
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I. INTRODUCTION

Giant magnetoresistance~MR! in magnetic layered struc
tures and magnetic granular solids has continuously attra
considerable interest for several years. Investigations on
novel phenomenon have led to the question of proper tr
ment of electronic transport in inhomogeneous syste
where the characteristic lengths of inhomogeneities~thick-
ness of layers, granular size! are comparable to the averag
mean-free path of the conduction electrons. In these syst
transport properties vary from one region to another so
one must find a way of determining the measurable ma
scopic quantities from the local ones. For the magnetic in
mogeneous systems the spin-dependent scattering, whi
believed responsible for the giant MR effect, gives rise
extra complications in this problem.

Theoretical approaches to magnetic inhomogeneous
tems, including quasiclassical1–8 and quantum,9–13have been
developed to account for the observed giant MR effect. T
quasiclassical approach based on the Boltzmann equa
was initially applied by Fuchs and Sondheimer14 to calculate
the resistivity of thin films due to surface roughness. R
cently, this method has been extended by Camley
Barnás1 to the magnetic layered structures by including t
spin-dependent scattering at ferromagnetic~FM!-
nonmagnetic~NM! interfaces as well as within FM layers
Due to its simplicity, the Camley-Barna´s model under an
assumption of collinear magnetization configurati
~CLMC! has been developed into an analytical description
the magnetotransport for current in the plane~CIP! of the
layers in magnetic multilayers.4,5 For current perpendicula
to the plane~CPP! of the layers, it is found that, spin accu
mulation and relaxation play an important role in the M
and for each spin conduction channel the resistivities of
layers are additive and the total conductivity is the sum o
the two spin channels.6 Very recently, this model has als
been applied to magnetic granular systems and reprod
main features of the MR effect.7

Most quasiclassical approaches to MR in magnetic mu
layers and magnetic granular solids are confined to the c
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sideration of the CLMC, i.e., all the FM regions~layers or
granules! are assumed to have only two possible magnet
tion directions, parallel or antiparallel to a fixed spin quan
zation axis. In the following we wish to show that the qu
siclassical approach suitable to CLMC fails in application
other arrangements of magnetic moments. If there is
change in spin quantization axes in a magnetic inhomo
neous system, it is necessary to use a transformation to
nect distribution functions of neighbor regions with differe
quantization axes. Letg↑

(1) and g↓
(1) denote the distribution

functions for electrons with spins parallel and antiparallel
the quantization axisA 1 , respectively, andg↑

(2) andg↓
(2) the

distribution functions with respect to the quantization a
A2. We have

S g↑~2!

g↓
~2!D 5U~u!S g↑~1!

g↓
~1!D , ~1!

where the transformation matrix is given by1

U~u!5 cos2S u

2D 1̂1 sin2S u

2D ŝx , ~2!

with 1̂ the 232 unit matrix, ŝx the Pauli spin matrix, and
u the angle between the two spin quantization axes. In
~2!, as well as in all subsequent equations, the overhat sta
for a 232 matrix in spin space. Consider a system compo
of three FM films labeled asA, B, andC from left to right,
in which films A andC have the same magnetization ax
A1 , and filmB has the magnetization axisA2 at an angle of
u to A1 . If film B is thin enough and both interfaces a
perfect ~neither reflection nor diffusive scattering!, there is
no change in the distribution functions as the electrons m
from film A to C acrossB, or vice versa. On the other hand
the total transformation of the quantization axes from fi
A to C can be regarded as a two-step process. The first
is to rotate the quantization axis by an angle ofu, and the
next is to rotate it back to its original direction. As a resu
the total transformation matrix is given byU(u)U(2u),
which should be equal to a unit matrix. However, it is fou
5908 © 1997 The American Physical Society
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55 5909QUASICLASSICAL APPROACH TO MAGNETOTRANSPORT . . .
from Eq. ~2! that U(u)U(2u)5(12 1
2sin

2u)1̂1(12sin
2u)ŝx .

This result violates the basic requirementU(u)U(2u)51̂
except foru50 orp, indicating that the theory is applicabl
only for the CLMC, i.e.,u50 or p. Thus, it is highly de-
sired to improve the present quasiclassical approach to
suitable to noncollinear magnetization configuratio
~NLMC!.

Quantum theory9–13 based on the Kubo formula yields
full quantum treatment of the electron spin, and has b
applied to inhomogeneous magnetic structures that are
ented noncollinearly.11 For arbitrary arrangements of mag
netic moments, it is necessary to introduce the currents, e
tric fields, and conductivity tensors that are off diagonal
spin space of the conduction electrons. Electron spin belo
to pure quantum effect and has no classical analogue.
propose that, for arbitrary magnetization configurations, i
inadequate to view the electron spin as a classical t
component vector, as has been done in previous quasicl
cal theories. Instead, the electron distribution function sho
be regarded as a spinor matrix~off diagonal in the spin
space!. Only in the special case of the CLMC, both the cu
rents and fields can be simultaneously diagonalized so
the spinor distribution function is diagonal in the spin spa
Then, it is sufficient to consider the two diagonal eleme
g↑ andg↓ associated with the two spin conduction channe

In this paper we present a quantum treatment of elec
spin in the Boltzmann equation approach and improve o
to be applicable to arbitrary magnetization configuratio
and arbitrary choices of the quantization axis. The reform
quasiclassical theory yields a two-point spinor conductiv
which is the same as that derived from the real-space K
formula, indicating a close link between the reformed qua
classical approach and the quantum theory. In the next
tion, we introduce the reformed quasiclassical model. T
two-point spinor conductivity of magnetic inhomogeneo
systems is derived in Sec. III. Finally, in Sec. IV we demo
strate the validity of our formalism by discussing the angu
dependence of the CIP MR in a magnetic superlattice.

II. REFORMED QUASICLASSICAL MODEL

The electron distribution function depends on both po
tion and velocity. Besides, when the spin degree of freed
is included, it should be considered as a 232 matrix in the
spin space, whose diagonal and off-diagonal elements
determined by the choice of the quantization axis. We fi
choose a reference frame of position dependent quantiza
axes, in which the local quantization axis is always tak
along the direction of the local magnetic moment. The spi
distribution function can be written in the form
f̂ L(v,r)5 f 0(v)1̂1ĝL(v,r), where f 0 is the equilibrium dis-
tribution andĝL is the deviation from that equilibrium in th
presence of the electric field. The electron transport thro
an inhomogeneous system is governed by the Boltzm
equation

v•¹ĝL~v,r !2ev•ÊL~r !
] f 0
]«

52S ]ĝL
]t

D
c

. ~3!
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The drift terms on the left hand side of the equation abo
arises from the spatial inhomogeneity and the electric fie
in which e and«5mv2/2 are the charge and kinetic energ
of the conduction electron, respectively. The effective el
tric field ÊL(r ), that includes spin accumulation effects,
also a matrix in spin space. The relaxation time approxim
tion can be used to treat the collision term on the right ha
side of Eq.~3!. In the reference frame of the local quantiz
tion axes the relaxation time matrix is diagonal, which
given by

t̂~r !5S t↑~r ! 0

0 t↓~r !
D , ~4!

with t↑(r ) and t↓(r ) the local relaxation times for spin-u
and down electrons, respectively. Taking into account t
ĝL andt̂21 are not commutative and that all the terms of t
Boltzmann equation must be Hermitian, we write the co
sion term as

S ]ĝL
]t

D
c

5
1

2
@ t̂21~r !,ĝL~v,r !#1 ~5!

where @ # 1 stands for an anticommutator. Only under t
assumption of the CLMC, the spinor distribution function
diagonal and soĝL and t̂21 become commutative. It then
follows that the collision term given in Eq.~5! takes a diag-
onal form and the diagonal elements are given
gaa(v,r )/ta(r ), wheregaa(v,r ) corresponds to the conven
tional distribution functions for the spin-up and down ele
trons. In this special case Eq.~3! reduces to the conventiona
Boltzmann equation.1

For arbitrary magnetization alignments, it is inconvenie
to use Eq.~3! since the local quantization axis is positio
dependent. The next step is to make a coordinate transfo
tion from the reference frame of the local quantization ax
to a new one with a fixed quantization axis. This amounts
a rotation in three-dimensional space, which can be cha
terized by the spherical polar angles@u(r ),w(r )# subtended
by the local quantization axis with respect to the new fix
one. The unitary matrix of such a transformation is giv
by11

Û~r !5S cos~u/2! sin~u/2!e2 iw

2sin~u/2!eiw cos~u/2!
D . ~6!

In the new reference frame, the spinor distribution functi
and electric field becomeĝ(v,r )5Û†(r )ĝL(v,r )Û(r ), and
Ê(r )5Û†(r )ÊL(r )Û(r ), respectively. From Eqs.~4! and~6!,
the spinor inverse relaxation timeD̂(r )5Û†(r ) t̂21(r )Û(r )
is found to be

D̂~r !5
1

2 F S 1

t↑~r !
1

1

t↓~r !
D1S 1

t↑~r !
2

1

t↓~r !
D ŝ•m~r !G ,

~7!

where ŝ is the Pauli spin vector operator, andm(r ) is the
unit vector along the direction of the local magnetizatio
Substituting Eq.~4! into Eq. ~3!, and multiplying both sides
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of Eq. ~3! by Û(r ) from right and byÛ†(r ) from left, we
finally obtain the Boltzmann equation in the new referen
frame

v•¹ĝ~v,r !1
1

2
@D̂~r !,ĝ~v,r !#15ev•Ê~r !

] f 0
]«

. ~8!

In order to compare our result with that derived from t
quantum theory,11 we restrict ourselves to the case where
charge and spin accumulation effects can be completely
cluded in the effective electric field. It is equivalent to a
assumption made by Camblong, Levy, and Zhang11 that the
vertex corrections of the Green’s functions can be rep
sented by a local field. Although its applicability to mo
general cases has yet to be investigated, we can at
safely apply this assumption to the CIP conduction in m
netic multilayers since no spin accumulation effect need
be taken into account there. Under the assumption of lo
vertex corrections,Ê(r ) may be determined from the conse
vation law of the current¹• ĵ (r )50 and the boundary con
dition *CÊ(r )•dr5V1̂, whereV is the voltage applied to the
outer boundaries of the sample and the line integral is ev
ated along the current pathC from one boundary to the
other.11 In the Boltzmann equation approach the spinor c
rent density is given by

ĵ ~r !5em3E d3vvĝ~v,r !, ~9!

whose trace Tr@ ĵ (r )#5(ajaa„r ) corresponds to the mea
sured value.

The form of Eq. ~8! is very general. It is invariant in
arbitrary choice of the quantization axis and suitable to
NLMC. In the following approach we start from Eq.~8! and,
for convenience, adopt the reference frame with a fix
quantization axis that lies along the external magnetic fie

III. MAGNETIC INHOMOGENEOUS SYSTEMS

Let us consider a general inhomogeneous magnetic
tem with infinite size and with arbitrary magnetization alig
ments. Equation~8! can be solved in a manner similar to th
of solving the conventional Boltzmann equation.5 In earlier
works,1 the interface scattering is included phenomenolo
cally through the boundary conditions at the interfaces
using constant transmission, reflection and incoherent s
tering coefficients. This oversimplified treatment leads to
underestimation of the resistivity due to interfa
scattering.10 Later investigations2,10 show that the problem
can be removed by treating the interface scattering more
alistically in terms of thin mixing regions. We will emplo
such a treatment of using the ‘‘bulk’’ scattering within th
mixing regions instead of the interfacial scattering at sh
interfaces. For magnetic multilayers, it was pointed out
Hood and Falicov3 that the Fermi velocities in different lay
ers are different and there are potential steps at the interfa
which can cause electron reflection. For ease of compa
below with the quantum theory in the plane-wave appro
mation, the effect of the potential steps is not taken i
account in the present approach. This approximation is c
sidered to be reasonable if the potential steps at the interf
e
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are small enough compared with the Fermi energy so that
reflection at the interfaces can be neglected. It is expec
that the present approach can be extended to the case w
the potential-step effect needs to be considered.

To solve Eq.~8!, we first draw a straight line parallel to
v ~designated asl ), as shown in Fig. 1. Equation~8! can be
regarded as a linear differential equation on linel , whose
solution at pointr is found to be related to that at any oth
point r 8 on line l through

ĝ~v,r !5Ŝ~r ,r 8!ĝ~v,r 8!Ŝ†~r ,r 8!

1
e

vEG~r ,r8!
dl 9Ŝ~r ,r 9!v•Ê~r 9!Ŝ†~r ,r 9!

] f 0
]«

,

~10!

where the spinor propagation factor is given by

Ŝ~r ,r 8!5 Pr8→r expS 2
1

2EG~r ,r8!
dl 9ĵ~r 9! D . ~11!

Here,ĵ(r )5D̂(r )/vF is the inverse mean-free path operato
G(r ,r 8) stands for the oriented straight path that starts
point r 8 and ends up at pointr , and Pr8→r is the path-
ordering operator alongG(r ,r 8), which reorders the non
commutating 232 scattering matrices in the exponential s
ries fromr 8 to r and from right to left.11 It is easy to see tha
Ŝ(r ,r 8) decreases exponentially with the distanceur2r 8u. If
taking ur2r 8u to be large enough in Eq.~10!, one finds

ĝ~v,r !5 lim
ur82r u→`

S evEG~r ,r8!
dl 9Ŝ~r ,r 9!v•Ê~r 9!

3Ŝ†~r ,r 9!
] f 0
]« D . ~12!

The spinor current at pointr is related to the spinor electri
field at pointr 8 by

jab~r !5E d3r 8 s
→→

ab,gd ~r ,r 8!•Egd~r 8!, ~13!

where s
→→

ab,gd (r ,r 8) is a two-point fourth-rank spinor con
ductivity. In Eq. ~13!, as well as in all the equations of Se
IV, summation over repeated Greek indices is implied.
compare Eq.~9!, together with Eq.~12!, and Eq.~13!, it
needs to rewrite the line integral in Eq.~12! as an equivalent
volume integral by using

FIG. 1. The integral pathG(r,r 8… in Eqs.~10!–~12! and ~14!.
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lim
ur82r u→`

E
G~r ,r8!

dl 9→
2

pE d3r 9dS U~r2r 9!3
v

v U2D
3uS ~r2r 9!•

v

v D , ~14!

whereu(x) is the unit step function andd(x) is thed func-
tion. Substituting Eq.~12! together with Eq.~14! into Eq.~9!,
and comparing it with Eq.~13!, we arrive at

s
→→

ab,gd~r ,r 8!5
e2m3vF
4p4 E d3v vv

ur2r 8u2

3d~ un3vu2!u~n•v!

3Sag~r ,r 8!Sbd* ~r ,r 8!
] f 0
]« , ~15!

with n5(r2r 8)/ur2r 8u as the unit vector in the direction o
(r2r 8). By performing the integral over the velocity, w
finally obtain

s
→→

ab,gd~r ,r 8!5
3CD
4p

nn
ur2r 8u2

Sag~r ,r 8!Sbd* ~r ,r 8!,
~16!

whereCD5ne2/(2mvF) is a constant with dimensions o
conductivity/length. Taking Eq.~11! into account, one finds
that the present expression~16! for the two-point spinor con-
ductivity is identical to Eq.~3.21! together with Eq.~3.13! of
Ref. 11, indicating that the present result obtained from
reformed quasiclassical approach is equivalent to that
rived from the Kubo formula in real space.

IV. ANGULAR DEPENDENCE OF CIP MR
IN MAGNETIC SUPERLATTICE

We now consider a magnetic superlattice, whose lay
are assumed to lie in thex-y plane and to stack along th
z axis. The constitutive relation between field and curre
given by Eqs.~13! and ~16!, simplifies due to the transla
tional invariance in thex-y plane11

jab~z!5E dz8 s
→→

ab,gd~z,z8!•Egd~z8!. ~17!

The reduced one-dimensional conductivity tensor can be
tained as

s
→→

ab,gd~z,z8!5
3CD
4 E

1

`

dt w
→→

~ t !Ŝag~z,z8!Ŝbd* ~z,z8!,

~18!

where

Ŝ~z,z8!5Pz8→zexpS 2
t

2Ez,

z.

dz9ĵ~z9! D , ~19!

with t5vF /uvzu andz, (z.) as the smaller~larger! one of
z andz8, and
e
e-

rs

t,

b-

w
→→

~ t !5~ 1t 2 1
t3!eiei1

2
t3
ezez , ~20!

with ei andez the unit vectors in the plane of the layers a
in the z direction, respectively.

In what follows we discuss the angular dependence of
CIP MR in magnetic multilayers so as to compare t
present quasiclassical theory with the previous one. The
pendence of the CIP resistivity on the angleu between the
magnetizations in successive FM layers has been experim
tally investigated in several magnetic layered structures,15–19

and it is found that the magnitude of the CIP MR alwa
varies approximately as cos2(u/2). On the theoretical side
Vedyayevet al.20 have applied the real space Kubo forma
ism to obtain a linear variation of the CIP MR wit
sin2(u/2) @which is equivalent to a variation proportional t
cos2(u/2)# when there are no potential steps at the interfa
Here we wish to show that the present approach can re
duce a linear cos2(u/2) dependence of the resistivityr(u) at
least for two important limiting cases, which is in goo
agreement with experimental data.

We consider a FM/NM superlattice composed of FM la
ers of thicknessa with spin-dependent mean-free pa
ls(F) (s5↑,↓) and NM layers of thicknessb with spin-
independent mean-free pathl(N). The scattering at the
FM/NM interfaces is modeled as impurity scattering in th
mixing interlayers of thicknessd(!a1b) with spin-
dependent mean-free pathls(I ). The spin quantization axis
is chosen to lie along the external magnetic field direction
the magnetization direction in thenth FM layer can be char-
acterized by the polar angles (u/2,wn) with wn50 andp for
n being even and odd numbers, respectively.21 In the CIP
geometry, the electric fieldÊ(z) is a constant and thus th
average conductivity of the system is

s~u!5
1

LE0
L

dzE dz8saa,bb
xx ~z,z8!, ~21!

whereL is the thickness of the superlattice system. The M
ratio can be defined as

Dr~u!

Dr max
5

r~u!2r~p!

r~0!2r~p!
, ~22!

with r(u)51/s(u).
We first discuss the cases where the thickness of the

films is much larger than the mean-free path, i.
a@ls(F). It can be seen from Eqs.~18! and ~19!,
saa,bb
xx (z,z8) decreases exponentially with increasin

uz2z8u, and should vanish ifz andz8 are separated by on
FM film or more than one FM films. It then follows from Eq
~21! that the main contribution to the variation of the co
ductivity Ds(u)5s(u)2s(p) comes from the integration
with z andz8 in two adjacent FM layers. Taking this poin
into account, we findDs(u) to be proportional to
cos2(u/2)

Ds~u!5A cos2S u

2D E1`dtS 1t3 2
1

t5D
3Eb@l↑~F !T↑2l↓~F !T↓#

2, ~23!
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where A53CD/2(a1b), Eb5 exp@2bt/l(N)#, and
Ts5 exp@2dt/ls(I)# are the momentum-dependent transm
sion coefficients at the interfaces. SinceDs(u) given by Eq.
~23! contains the factor ofls(F)/(a1b), in the present limit
of ls(F)!a we obtain

Dr~u!/Dr max5cos2~u/2!. ~24!

We next discuss the homogeneous limit where the su
lattice period (a1b) is much shorter than the average ele
tron mean-free path. In this limit the approximate express
for the conductivity can be derived from Eqs.~18!–~21!,
yielding

s~u!5CD Tr~ ĵ21!, ~25!

where ĵ is the average of ĵ(z). By the use of
ĵ(z)5D̂(z)/vF and Eq.~7!, we obtain

ĵ5
1

2 F S 1
l̄↑

1
1

l̄↓
D 1S 1

l̄↑
2

1

l̄↓
D szcosS u

2D G , ~26!

where

1

l̄s
5

1

a1b S a

ls~F !
1

b

l~N!
1

2d

ls~ I !
D ~27!

is the self-averaging mean-free path. By using Eqs.~25! and
~26!, we arrive at Eq.~24! again.

The present theory has been shown to reproduce the
rect linear dependence on cos2(u/2) of the CIP MR in the
two limiting cases. On the other hand, it is straightforward
show that in the thick FM-film limit the previous quasicla
sical approach yields a linear dependence on cos2(u/2) of
CIP MR ratio as well. However, we find that there is a r
markable deviation from the linear dependence in the ho
geneous limit. In Fig. 2 a comparison is made between t
result of the present theory~solid line! in the homogeneous
limit and that calculated from the previous quasiclassical
proach ~dashed lines!, the latter depending on two dimen
sionless parametersNs5l̄s /(a1b) with s5↑ and ↓. The
.

B
,

-

r-
-
n

or-

-
o-

-

angular dependence predicted by the previous quasiclas
model is evidently inconsistent with the experimental data
the CIP MR proportional to cos2(u/2). In our opinion, this is
a glaring example of indicating that the previous quasicl
sical approach is inapplicable to NLMC in general cases

In summary, we have shown that the quasiclassical
proach can be reformed to be applicable to arbitrary mag
tization arrangements by introducing the spinor distribut
function and effective spinor field~off diagonal in spin
space! in the Boltzmann equation to describe the electr
transport. For a general three-dimensional inhomogene
system, we have derived the expression for the two-po
spinor conductivity and found it to be in agreement with th
obtained from the real-space Kubo formula. The present
proach is applied to the CIP MR in magnetic superlattic
The calculated result is well consistent with experimen
data.

This work was supported by the National Natural Scien
Foundation and the Doctoral Foundation of National Edu
tion Committee in China, and in part by a RGC grant
Hong Kong and a CRCG research grant at the University
Hong Kong.

FIG. 2. Angular dependence of the CIP MR ratio for a magne
superlattice. The solid line represents the linear dependence
cos2(u/2) obtained from the present theory, and the dashed lines
results calculated from the previous quasiclassical approach
N↑55 and 10 with fixed spin asymmetric factorN↓ /N↑5l̄↓ /l̄↑ .
R.
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