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Quasiclassical approach to magnetotransport in magnetic inhomogeneous systems
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The conventional quasiclassical approach to magnetotransport in magnetic multilayers and magnetic granu-
lar solids is found to be suitable only for collinear magnetization configurations. A quantum treatment of
electron spin is proposed to improve the quasiclassical theory to be applicable to arbitrary magnetization
alignments, in which the electron distribution functions, as well as the electric fields and currents, need to be
regarded as spinor matrices which are off-diagonal in spin space of conduction electrons. An extended Boltz-
mann equation has been used to derive the two-point spinor conductivity in magnetic inhomogeneous systems.
The result obtained is found to be identical to that obtained from the real-space Kubo formula, indicating a
close link between the reformed quasiclassical approach and the quantum theory. Angular dependence of the
current-in-plane magnetoresistance in magnetic superlattices is discL88263-18207)03909-X

[. INTRODUCTION sideration of the CLMC, i.e., all the FM regioriayers or
granule$ are assumed to have only two possible magnetiza-
Giant magnetoresistan¢®R) in magnetic layered struc- tion directions, parallel or antiparallel to a fixed spin quanti-
tures and magnetic granular solids has continuously attractetftion axis. In the following we wish to show that the qua-
considerable interest for several years. Investigations on thigclassical approach suitable to CLMC fails in application to
novel phenomenon have led to the question of proper trea@ther arrangements of magnetic moments. If there is a
ment of electronic transport in inhomogeneous systemsghange in spin quantization axes in a magnetic inhomoge-
where the characteristic lengths of inhomogeneittaick- ~ NeouUs system, it is necessary to use a transformation to con-
ness Of |ayerS, granu'ar Si'zare Comparab|e to the average nect distribution functions of neighbor I’egions with different
mean-free path of the conduction electrons. In these systengilantization axes. Leg{" and g!? denote the distribution
transport properties vary from one region to another so thaunctions for electrons with spins parallel and antiparallel to
one must find a way of determining the measurable macrathe quantization axi# ;, respectively, ang{*) andg!{? the
scopic quantities from the local ones. For the magnetic inhodistribution functions with respect to the quantization axis
mogeneous systems the spin-dependent scattering, which As,. We have
believed responsible for the giant MR effect, gives rise to
extra complications in this problem. (9(12)
Theoretical approaches to magnetic inhomogeneous sys- (2)
tems, including quasiclassiéaf and quantuni;**have been 9
developed to account for the observed giant MR effect. Thavhere the transformation matrix is given’by
quasiclassical approach based on the Boltzmann equation
was initially applied by Fuchs and Sondheifdp calculate
the resistivity of thin films due to surface roughness. Re-
cently, this method has been extended by Camley and .
Barnas' to the magnetic layered structures by including thewith 1 the 2x<2 unit matrix, o, the Pauli spin matrix, and
spin-dependent  scattering at ferromagneti¢FM)- 0 the angle between the two spin quantization axes. In Eq.
nonmagnetidNM) interfaces as well as within FM layers. (2), as well as in all subsequent equations, the overhat stands
Due to its simplicity, the Camley-Baraamodel under an for a 2X2 matrix in spin space. Consider a system composed
assumption of collinear magnetization configurationof three FM films labeled a8, B, andC from left to right,
(CLMC) has been developed into an analytical description ofn which films A and C have the same magnetization axis
the magnetotransport for current in the plai@P) of the  A;, and filmB has the magnetization axfs, at an angle of
layers in magnetic multilayefs> For current perpendicular 6 to A;. If flm B is thin enough and both interfaces are
to the plane(CPP of the layers, it is found that, spin accu- perfect(neither reflection nor diffusive scatteringhere is
mulation and relaxation play an important role in the MR, no change in the distribution functions as the electrons move
and for each spin conduction channel the resistivities of thérom film A to C acrossB, or vice versa. On the other hand,
layers are additive and the total conductivity is the sum ovethe total transformation of the quantization axes from film
the two spin channefsVery recently, this model has also A to C can be regarded as a two-step process. The first step
been applied to magnetic granular systems and reproducésl to rotate the quantization axis by an angleéofand the
main features of the MR effeét. next is to rotate it back to its original direction. As a result,
Most quasiclassical approaches to MR in magnetic multithe total transformation matrix is given by (8)U(— 6),
layers and magnetic granular solids are confined to the corwhich should be equal to a unit matrix. However, it is found

»
:U(e)(gﬁl))' (1)

o )

1+ sinz<g

u(e) = cosz(g
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from Eq. (2) that U(8)U(— 0)=(1—%sin26)1+(§sir120)&x. The drift terms on the Igﬁ hand sidg of the equation. abpve
arises from the spatial inhomogeneity and the electric field,

N TR . . in which e ande =muv?/2 are the charge and kinetic energy
except for§=0 or , indicating that the theory is applicable o the conduction electron, respectively. The effective elec-

only for the CLMC, i.e.,§=0 or #. Thus, it is highly de- PR . . . .
sired to improve the present quasiclassical approach to bt ic field E,(r), that includes spin accumulation effects, is

suitable to noncollinear magnetization configurations"’.l SO & matrix in spin space. The' rglaxatlon time approxima-
(NLMC). tion can be used to treat the collision term on the right hand

Quantum theory * based on the Kubo formula yields a side of Eq.(3). In the reference frame of the local quantiza-
Hon axes the relaxation time matrix is diagonal, which is

full quantum treatment of the electron spin, and has bee ven b
applied to inhomogeneous magnetic structures that are orf y

This result violates the basic requiremdn(6)U(— 6)=1

ented noncollinearly* For arbitrary arrangements of mag- N 0
netic moments, it is necessary to introduce the currents, elec- )= ( 71 ) )
tric fields, and conductivity tensors that are off diagonal in 0 T(r))’

spin space of the conduction electrons. Electron spin belongs. . . )

to pure quantum effect and has no classical analogue. WWith 7;(r) and 7| (r) the local relaxation times for spin-up
propose that, for arbitrary magnetization configurations, it is2hd down electrons, respectively. Taking into account that
inadequate to view the electron spin as a classical twog,_ and 71 are not commutative and that all the terms of the
component vector, as has been done in previous quasiclas§loltzmann equation must be Hermitian, we write the colli-
cal theories. Instead, the electron distribution function shoulgion term as

be regarded as a spinor matrigff diagonal in the spin

spacé. Only in the special case of the CLMC, both the cur- agl_ 1., -
rents and fields can be simultaneously diagonalized so that —i | “al7 (M.euvin], 5
the spinor distribution function is diagonal in the spin space. ¢

Then, it is sufficient to consider the two diagonal elemem%here[ 1. stands for an anticommutator. Only under the
. . . . + .
gy andg, associated with the two spin conduction channels,sq mntion of the CLMC, the spinor distribution function is

In this paper we present a quantum treatment of electron. | and s@ 41 p tati It th

spin in the Boltzmann equation approach and improve on ;Flﬁgona;ha?th S@L"?‘F‘ Tt ec_ome_coEmgmt aklve. di en

to be applicable to arbitrary magnetization configuration oflows that the coflision term given in 45) takes a diag-
&)nal form and the diagonal elements are given by

and arbitrary choices of the quantization axis. The reforme / h ds 1o th
guasiclassical theory yields a two-point spinor conductivit gaa(v,r) 7a(1), Whereg,,(v,r) corresponds to the conven-

which is the same as that derived from the real-space KubHOnal distribution functions for the spin-up and down elec-

formula, indicating a close link between the reformed quasi'ons- In this special case E(§) reduces to the conventional

classical approach and the quantum theory. In the next Seg_oltzmann equation. o . o :
tion, we introduce the reformed quasiclassical model. The For arbitrary .magnet|zat|on allgnr.nen'ts, it IS |n.conve_n'|ent
two-point spinor conductivity of magnetic inhomogeneousto use Eq.(3) since the chal quantization axis Is position
systems is derived in Sec. IIl. Finally, in Sec. IV we demon_dependent. The next step is to make a coordinate transforma-

strate the validity of our formalism by discussing the angulartlon from the referen_ce frame O.f thg Ioca_l quantization axes
dependence of the CIP MR in a magnetic superlattice. to a new one with a fixed quantization axis. This amounts to
a rotation in three-dimensional space, which can be charac-

terized by the spherical polar angleg(r),¢(r)] subtended
Il. REFORMED QUASICLASSICAL MODEL by the local quantizatiqn axis with respect to the new fjxed
one. The unitary matrix of such a transformation is given
The electron distribution function depends on both posi-by*!

tion and velocity. Besides, when the spin degree of freedom _

is included, it should be considered as & 2 matrix in the . cog 0/2) sin(6/2)e™'¢

spin space, whose diagonal and off-diagonal elements are U(r)= _sin(0/)e¢  cog0i2) | (6)

determined by the choice of the quantization axis. We first

choose a reference frame of position dependent quantizatiq the new reference frame, the spinor distribution function

axes, in which the local quantization axis is always take P A —0t (A |
along the direction of the local magnetic moment. The spinorr%ind ElgcTtrlc Af|eld Abecomg(v,r). YUNau(v.nu(r), and
distribution function can be written in the form E(N)=U(NEL(NU(r), respectively. From Eqg4) and(6),

FL(v)=To(v)1+Gu(vr), wherefo is the equilibrium dis- e SPinor inverse relaxation tim(r) =0'(r) 7 (1 U(1)
tribution andg, is the deviation from that equilibrium in the 1S found fo be

presence of the electric field. The electron transport through
an inhomogeneous system is governed by the Boltzmann A(r)= =

ESESNERES
e TG ) M P R AU

equation 2
(7
A A ot 9. where o is the Pauli spin vector operator, ami{r) is the
v-Vg (v,r)—ev-E (1) —= —(—) (3)  unit vector along the direction of the local magnetization.
Je /. Substituting Eq(4) into Eq. (3), and multiplying both sides
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of Eq. (3) by U(r) from right and byU(r) from left, we
finally obtain the Boltzmann equation in the new reference
frame

. 1 Loy
V'Vg(var)+E[A(r)!g(var)]#—_ev'E(r)%- (8)

In order to compare our result with that derived from the

quantum theor)'},1 we restrict ourselves to the case where the i 1. The integral patfi (r,r’) in Egs.(10)~(12) and (14).
charge and spin accumulation effects can be completely in-

cluded in the effective electric field. It is equivalent to an
assumption made by Camblong, Levy, and ZHanlkat the
vertex corrections of the Green’s functions can be repre
sented by a local field. AIthough its.applicability to more o potential-step effect needs to be considered.

general cases. has yet tq be investigated, we can at least To solve Eq.(8), we first draw a straight line parallel to
saf_ely app_ly this assumption to the CIP c_onductlon in magsy, (designated ag), as shown in Fig. 1. Equatiof) can be
netic multilayers since no spin accumulation effect needs t egarded as a linear differential equation on liiewhose

be taken mto.acci)unt there. Under the assumption of localy) tion at pointr is found to be related to that at any other
vertex correctionsi(r) may be determined from the conser- pointr’ on line / through

vation law of the currenV~f(r)=0 and the boundary con-

dition [ cE(r)-dr=V1, whereV is the voltage applied tothe  §(v,r)=&(r,r")g(v,r)8'(r,r")

outer boundaries of the sample and the line integral is evalu-

ated along the current pat6 from one boundary to the e e e B St (9_fo
other!! In the Boltzmann equation approach the spinor cur- + v F(”,)d/ S(rrf)v-B(r)Si(r.r’) de '’
rent density is given by (10

are small enough compared with the Fermi energy so that the
reflection at the interfaces can be neglected. It is expected
that the present approach can be extended to the case where

jA(r)=em'3f d3vv§(v,r), (9) where the spinor propagation factor is given by

whose trace Ti(r)]==,.ja(r) corresponds to the mea- & _ } P
sured value. S(ryr')= Pr_,exg — 5 I‘(r,r')d/ &y, (1D
The form of Eq.(8) is very general. It is invariant in

arbitrary choice of the quantization axis and suitable to the,_|ere E(r)=&(r)/vF is the inverse mean-free path operator

;\”‘MC' In the foIIowidng ?ptpk)]roac? we star; from E(E)hand% (r,r") stands for the oriented straight path that starts at
or convenience, adopt the reference frame with a fixeq J. + © 204 ends up at point, and P,,_, is the path-

guantization axis that lies along the external magnetic fiel ordering operator along'(r.r'), which reorders the non-

commutating X 2 scattering matrices in the exponential se-
Ill. MAGNETIC INHOMOGENEOUS SYSTEMS ries fromr’ tor and from right to leftt! It is easy to see that

Let us consider a general inhomogeneous magnetic sySr ") decreases exponentially with the distafcer’|. If
tem with infinite size and with arbitrary magnetization align- taking|r —r’[ to be large enough in Eq10), one finds
ments. Equationi8) can be solved in a manner similar to that

of solving the conventional Boltzmann equatibm earlier . ) e - .

works? the interface scattering is included phenomenologi- g(v,r)=lim (;j ,d7"S(r,r"v-E(r")

cally through the boundary conditions at the interfaces by Ir"—r|—e e

using constant transmission, reflection and incoherent scat- R ot

tering coefficients. This oversimplified treatment leads to an XST(r,r”)—>. (12
underestimation of the resistivity due to interface Je

scattering® Later investigatior’s*® show that the problem , o _ _
can be removed by treating the interface scattering more reL.'€ Spinor current at pointis related to the spinor electric

alistically in terms of thin mixing regions. We will employ fi€ld at pointr” by

such a treatment of using the “bulk” scattering within the

mixing regions instead of the interfacial scattering at sharp : _ 3.1 / ,

interfaces. For magnetic multilayers, it was pointed out by J“B(r)_f dr" o apya(rr7)-Byalr), (13
Hood and Falico¥that the Fermi velocities in different lay- .

ers are different and there are potential steps at the interfaceshere o .4 ,5(r,r") is a two-point fourth-rank spinor con-
which can cause electron reflection. For ease of comparinductivity. In Eq.(13), as well as in all the equations of Sec.
below with the quantum theory in the plane-wave approxi-lV, summation over repeated Greek indices is implied. To
mation, the effect of the potential steps is not taken intocompare Eq.9), together with Eq.(12), and Eq.(13), it
account in the present approach. This approximation is corneeds to rewrite the line integral in E@.2) as an equivalent
sidered to be reasonable if the potential steps at the interfacaslume integral by using
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2
lim j d/”—>—f d3r”5( (r
r(r,r’) ™

[r"—r|—o

= (1l_1 2
2 W(t)—(f—t—s)Q\QW 13682, (20
with g ande, the unit vectors in the plane of the layers and
, in the z direction, respectively.
X6 (r=r")- v (14) In what follows we discuss the angular dependence of the
CIP MR in magnetic multilayers so as to compare the

where 6(x) is the unit step function and(x) is the & func- present quasiclassical theory with the previous one. The de-

tion. Substituting Eq(12) together with Eq(14) into Eq.(9), ~ Pendence of the CIP resistivity on the angldetween the
and comparing it with Eq(13), we arrive at magnetizations in successive FM layers has been experimen-

tally investigated in several magnetic layered structiite¥,
and it is found that the magnitude of the CIP MR always

v
r'")yx—
v

}Haﬁ Sr.r)= e’m UFJ S varies approximately as ct{#/2). On the theoretical side,
" Tr=r7] Vedyayevet al?° have applied the real space Kubo formal-
><5(|n><v|2)0(n-v) ism to obtain a linear variation of the CIP MR with
of sir’(6/2) [which is equivalent to a variation proportional to
X Sy (1,1")SEr,1 ) 0, (15 co(6/2)] when there are no potential steps at the interface.

Here we wish to show that the present approach can repro-
with n=(r—r")/|r—r’| as the unit vector in the direction of duce a linear c3¢6/2) dependence of the resistivity 6) at
(r—r'). By performing the integral over the velocity, we least for two important limiting cases, which is in good

finally obtain agreement with experimental data.
We consider a FM/NM superlattice composed of FM lay-
. . _3Cp ers of thicknessa with spin-dependent mean-free path
O apys(N 1= 7 Wsay(r r')Sgs(r,r'), As(F) (s=1,]) and NM layers of thicknes® with spin-

(16) independent mean-free path(N). The scattering at the
FM/NM interfaces is modeled as impurity scattering in thin

where Cp=n€?/(2mug) is a constant with dimensions of mixing interlayers of thicknessd(<a-+b) with spin-
conductivity/length. Taking Eq11) into account, one finds dependent mean-free path(l). The spin quantization axis
that the present expressi@to) for the two-point spinor con- is chosen to lie along the external magnetic field direction, so
ductivity is identical to Eq(3.2]) together with Eq(3.13 of  the magnetization direction in theh FM layer can be char-
Ref. 11, indicating that the present result obtained from theacterized by the polar angles/@,¢,,) with ¢,=0 andw for
reformed quasiclassical approach is equivalent to that dea being even and odd numbers, respectiélyn the CIP

rived from the Kubo formula in real space. geometry, the electric fielé(z) is a constant and thus the
average conductivity of the system is

IV. ANGULAR DEPENDENCE OF CIP MR
IN MAGNETIC SUPERLATTICE o(6)= f dzf Az 0% (2.2, (21)

We now consider a magnetic superlattice, whose layers
are assumed to lie in the-y plane and to stack along the wherelL is the thickness of the superlattice system. The MR
z axis. The constitutive relation between field and currentyatio can be defined as
given by Egs.(13) and (16), simplifies due to the transla-
tional invariance in the-y plané* Ap(6)  p(6)—p(m)

Ap max_ p(0)—p(m)’

jaB(Z):J dz' o .p,5(2,2")-E,5(Z"). (17) with p(8)=1/a(6).
We first discuss the cases where the thickness of the FM
The reduced one-dimensional conductivity tensor can be odfilms is much larger than the mean-free path, i.e.,
tained as ax>N,(F). It can be seen from Eqgs(18) and (19),
azﬁﬁﬁ(z,z’) decreases exponentially with increasing
|z—Z'|, and should vanish if andz’ are separated by one
j dt w (t)Say(Z 2)Sh5(2,2'), FM film or more than one FM films. It then follows from Eq.
(18) (21) that the main contribution to the variation of the con-
ductivity Ag(6)=c(6)— o(7) comes from the integration
where with z andz’ in two adjacent FM layers. Taking this point
into account, we findAg(6#) to be proportional to

cos(0/2)
AN 1 1
Ao(6)=A coé(z)f dt(t—3—t—5)
1
with t=vg/|v,] andz= (z7) as the smalleflarge) one of

zandz’, and XE[ M (F)T =X\ (F)T, 1%, 23

(22

—— , 3C
o a,B,yS(ZaZ ): D

é(z,z’) = Pzgzexp< — %f:di’é(z”)) , (19
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where A=3Cp/2(a+b), Ep= exg—bt/A(N)], and 1.0 :
T.= exd —dt/\(l)] are the momentum-dependent transmis- L 1
sion coefficients at the interfaces. Sinke(6) given by Eq. - b
(23) contains the factor af;(F)/(a+b), in the present limit 3 Ni/Ni=6 .
of A¢(F)<a we obtain s 0s '
= L 2
Ap(6)/Ap max=COL(612). (24) g=* Ny=
We next discuss the homogeneous limit where the super- I "111’=10
lattice period &+b) is much shorter than the average elec- 00 Koot " ‘
tron mean-free path. In this limit the approximate expression 0.0 05 1.0
for the conductivity can be derived from Eqg€l8)—(21), 20/2
yielding cos912)

FIG. 2. Angular dependence of the CIP MR ratio for a magnetic
superlattice. The solid line represents the linear dependence on
co(6/2) obtained from the present theory, and the dashed lines are
results calculated from the previous quasiclassical approach for
N;=5 and 10 with fixed spin asymmetric facty /N, =X /\;.

#(6)=Cp Tr(EY), (25

whereg is the average of%(z). By the use of
&(2)=A(2)/ve and Eq.(7), we obtain

—+—|+|=—=|o,c09 5
NN NN 2

2d )
As(1)

angular dependence predicted by the previous quasiclassical
model is evidently inconsistent with the experimental data of
the CIP MR proportional to c69/2). In our opinion, this is

a glaring example of indicating that the previous quasiclas-
sical approach is inapplicable to NLMC in general cases.

In summary, we have shown that the quasiclassical ap-
proach can be reformed to be applicable to arbitrary magne-
tization arrangements by introducing the spinor distribution
. . . function and effective spinor fieldoff diagonal in spin
is the self-averaging mean-free path. By using EgS) and spacg in the Boltzmann equation to describe the electron

(26), we arrive at Eq(24) again. transport. For a general three-dimensional inhomogeneous
The present theory has been shown to reproduce the cor- bort. 9 9

. . system, we have derived the expression for the two-point
tr\(/av(c::I:xﬁ%rgdczzeegd((a)nr::(tahgr:)ti(gzr?ar?; tgeisiltlraaiglrifcl)rr]vx;{gﬁj tc)spinor conductivity and found it to be in agreement with that
show that in the thick FM-film limit the previous quasiclas- obtained from the real-space Kubo formula. The present ap-

. ) . proach is applied to the CIP MR in magnetic superlattices.
sical approgch yields a linear depen_dence or?(ﬁ@ of The calculated result is well consistent with experimental
CIP MR ratio as well. However, we find that there is a re-

markable deviation from the linear dependence in the homoqata'

geneous limit. In Fig2 a comparison is made between the  This work was supported by the National Natural Science
result of the present theorgolid line) in the homogeneous Foundation and the Doctoral Foundation of National Educa-
limit and that calculated from the previous quasiclassical aption Committee in China, and in part by a RGC grant of
proach(dashed lines the latter depending on two dimen- Hong Kong and a CRCG research grant at the University of

. (26

where

a b

1 1
~ o(F) | N(N

)\Sza+b

(27)

)-l-

sionless parametem =\ /(a+b) with s=7 and |. The

Hong Kong.

IR. E. Camley and J. BareaPhys. Rev. Leti63, 664 (1989; J.
Barnas, A. Fuss, R. E. Camley, P. Groerg, and W. Zinn, Phys.
Rev. B42, 8110(1990.

2B. L. Johnson and R. E. Camley, Phys. Rev48 9997(1991).

SR. Q. Hood and L. M. Falicov, Phys. Rev.4, 8287(1992; R.
Q. Hood, L. M. Falicov, and D. R. Penihid. 49, 368 (1994).

4M. Liu and D.Y. Xing, Phys. Rev. Bl7, 12 272(1993.

5L. Sheng and D. Y. Xing, Phys. Rev. 8, 1001(1994.

6T. valet and A. Fert, Phys. Rev. 88, 7099(1993.

L. Sheng, Z. D. Wang, D. Y. Xing, and J. X. Zhu, Phys. Rev. B

53, 8203(1996; R. Y. Gu, L. Sheng, D. Y. Xing, Z. D. Wang,
and J. M. Dongjbid. 53, 11685(1996.

8B. Z. Li, J. H. Wu, and F. C. Pu, Acta Phys. SifDversea Edi-
tion) 5, 264 (1996 ibid. 281 (1996.

°P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. L&§ 1643

(1990; S. Zhang, P. M. Levy, and A. Fert, Phys. Rev.4B,
8689(1992.

14, E. Camblong and P. M. Levy, Phys. Rev. Le9, 2835
(1992.

114, E. Camblong, P. M. Levy, and S. Zhang, Phys. Re\5B
16 052(1995.

12p B, Zhao and F. C. Pu, Phys. Rev5B, 11 603(1995.

13X. G. Zzhang and W. H. Butler, Phys. Rev.®, 10 085(1995.

14K. Fuchs, Proc. Cambridge Philos. S84, 100(1938; H. Sond-
heimer, Adv. Phys1, 1 (1952.

15A. Chaiken, G. A. Prinz, and J. J. Krebs, J. Appl. Pt§g.4892
(1990.

16B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R.
Wilhoit, and D. Mauri, Phys. Rev. B3, 1297(1991)).

17T, Shinjo, in Magnetism and Structure in Systems of Reduced



55 QUASICLASSICAL APPROACH TO MAGNETOTRANSPOR. . . 5913

Dimension, Vol. 309 of NATO Advanced Study Institute, Series Petroff, P. Holody, R. Loloee, and P. A. Schroeder, Phys. Rev.

B: Physicsedited by R. F. C. Farrowt al. (Plenum, New York, B 51, 292 (1995.

1993, p. 323. 20, Vedyayev, B. Dieny, N. Ryzhanova, J. B. Genin, and C. Cow-
8M. Patel, T. Fujimoto, E. Gu, C. Daboo, and J. A. C. Bland, J.  ache, Europhys. Let25, 465 (1994).

Appl. Phys.75, 6528(1994. 21K. Wang, S. Zhang, and P. M. Levy, Phys. Rev5B 11 965

190, B. Steren, A. Barthelemy, J. L. Duvail, A. Fert, R. Morel, F. (1996.



