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The frequency-dependent conductance of a two-dimensional quantum wire is computed using a current-
conserving formalism. The correction to the dc conductance due to a time-dependent potential is related to the
local partial density of states, which we compute numerically. The current conservation is explicitly confirmed
by computing the global density of states and comparing it with a quantity that is related to the electron dwell
time. Our calculation clearly reveals the physical meaning of the various partial densities of states.
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The physics associated with quantum conduction in vari-
ous low-dimensional systems has been a major focus in cur-
rent solid state research. Due to advances in controlled crys-
tal growth and lithographic techniques, it is now possible to
fabricate various two-dimensional submicrometer structures
where accurate experimental measurements can be made.1

On the theoretical side, the understanding of quantum trans-
port in these very small systems has been advanced by the
Landauer theory2 of one-dimensional transport. In cases
where multiprobes are attached to the conductor, Bu¨ttiker
has provided a useful formula for computing various
conductances.3 The Landauer-Bu¨ttiker formalism has been
applied to a large class of quantum transport problems in the
mesoscopic and ballistic regimes where the external potential
is static. On the other hand, when the external potential has a
time-dependent oscillating component, the Landauer-
Büttiker formalism cannot be directly applied. As shown by
Büttiker and his co-workers,4 a direct application of the
original approach of the Landauer-Bu¨ttiker formalism, where
the internal electric potential distribution is not needed, can-
not yield electric current and charge conservation. Hence the
coherent quantum transport theory for mesoscopic and bal-
listic conductors must be extended when time-varying exter-
nal potentials are to be included. Clearly the problem of
computing frequency-dependent conductance for mesoscopic
and ballistic conductors is a very important subject from both
theoretical and application points of view.

Recently in a series of articles, Bu¨ttiker and co-workers4–7

have developed a theoretical formalism for investigating
frequency-dependent coherent quantum transport for meso-
scopic and ballistic conductors when electric potential in the
leads far away from the scattering region of the conductor is
time varying. This is an important advance in the theory of
mesoscopic physics and warrants further development of the
theory and application. In simple one-dimensional systems
such as ad-function potential, a perfect quantum wire, or a
1D quantum well, the frequency-dependent admittance can
be explicitly calculated since the scattering matrix can be
obtained analytically.7 However, in truly 2D systems the ap-
plication of the formalism is less straightforward. This is due
partly to technical difficulties of computing certain quantities

such as the various partial density of states~PDOS, see be-
low!. These quantities, which appear naturally in the theo-
retical formulation of the problem,4 have a deep physical
meaning which is not obvious and needs to be revealed. To
the best of our knowledge, there are so far no studies and
direct calculations8 of the various partial density of states in
2D. But these quantities must be obtained if the frequency-
dependent admittance is to be computed from first principles.
The purpose of this paper is to report our investigations on
the dynamic transport properties of a 2D quantum wire sys-
tem.

In particular, we consider aT-shaped quantum wire struc-
ture as shown in Fig. 1. The two probes extend tox56`
while the scattering region is provided by the T-shaped junc-
tion as shown being bounded by the two dotted lines. This
2D quantum wire has been studied by many authors9,10 for
the case of static transport. While this is a simple 2D system,
we found that much physical intuition about various quanti-
ties can be obtained for the dynamic transport~see below!.
We have computed the frequency-dependent admittance for
this system using the current conserving formalism of Ref. 4.
The correction to the dc conductance due to a time-
dependent potential is related to the local partial density of
states, which we compute numerically. The current conser-
vation is explicitly confirmed by computing the global den-
sity of states and comparing it with a quantity which is re-
lated to the electron dwell time. Our direct calculation
clearly reveals the physical meaning of the partial density of
states, which plays an essential role in the dynamic transport
theory.

For the sake of presentation we briefly review the
current conserving dynamic transport formalism of Bu¨ttiker,
Thomas, Preˆtre, Gasparian, and Christen.4,7 Their theory pro-
ceeds in three steps. The first step is to determine

FIG. 1. Schematic plot of theT-shaped quantum wire. The wire width is
W, the side-stub width and height isaW and bW. The two dotted lines
separate the scattering region from the two probes.
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the current and charge density response of the system to
the time variation of the external potential. This leads to
an admittance matrix with elements given by, to first order
in v,

gab
e ~v!5gab

e ~0!2 ive2~dNab /dE!, ~1!

where the first term on the right hand side is the admittance
~conductance! when frequencyv50 and this term is given
by the usual Bu¨ttiker multiprobe conductance formula.3 The
second term gives a correction due to the time dependence of
the external potential, and is determined by the global partial
density of states7 ~global PDOS!, dNab /dE. Here the indices
ab denote scattering from a probe labeled byb to that la-
beled bya. This admittance matrixgab

e (v) does not con-
serve current, since(agab

e (v)Þ0. To correct this problem,
one must consider the internal potential distribution induced
by the external perturbation. This is computed in the second
step of the theory,4 and the result is rather simple if only
Thomas-Fermi linear screening is included. In the final step,
one computes the currents in the probes induced by this in-
ternal potential distribution, which leads to an additional
term in the admittance matrix. Thus the total admittance is
given bygI5ge1gi , with

gab
i 5 ive2Dab ~2!

and

Dab[E dr Fdn~a,r !

dE GFdn~r !

dE G21Fdn~r ,b!

dE G . ~3!

In Eq. ~3! the quantitydn(r ,a)/dE is the injectivity, which
measures the additional local charge density brought into the
sample by the oscillating chemical potential at probea.
Without a magnetic field, theemissivity dn(b,r )/dE equals
to the injectivity. It was shown7 that these quantities could be
computed from the electron dwell time or the scattering
Green function. Finally, the total local density of states is
dn(r )/dE5(adn(a,r )/dE. With these expressions, we ob-
tain the final formula for the frequency-dependent admit-
tance to linear order inv,

gab
I ~v!5gab

e ~v50!2 ive2S dNab

dE
2DabD . ~4!

It is now straightforward to prove that current is conserved
since the admittance matrixgI satisfies(agab

I (v)50. This

can be seen by realizing that(adNab /dE[dN̄b /dE is the
injectance which is identical to(aDab .

Let us apply this formalism to theT-shaped 2D conduc-
tor. The incident electron comes from probe 1, it scatters at
the T junction, and then reflects back to probe 1 or transmits
to probe 2. To be concrete we have fixed the wire width to be
W; the width and height of the side stub are fixed ataW and
bW with a5b51. The units are fixed by\2/2m51 with
m the effective mass of the electron, and lengths measured in
terms ofW. For simplicity we have focused on the first
transportsubband only, thus the incoming electron energy is
restricted: (p/W)2,E,(2p/W)2. In this case elements of
the scattering matrixsab are simple complex numbers. With
more than one subband they become matrices in the subband
space. However, the computation proceeds in a similar fash-
ion with one or more than one subband. We have solved the
quantum scattering problem using a mode matching
method,10 where the wave function in the scattering region
was expanded using a suitable basis set and in particular 50
modes were included. We have checked the convergence that
including more modes in the scattering region essentially
does not change the results. The scattering probabilities were
obtained by matching the wave functions and their deriva-
tives at the boundaries between the scattering region and the
probes.

To compute the admittance we need to know various par-
tial density of states. These quantities turn out to have very
interesting and physically clear properties once they are plot-
ted. The global PDOS is related to the scattering matrix, and
is approximately given by4,7

dNab

dE
5

1

4p i S sab
† dsab

dE
2
dsab

†

dE
sabD . ~5!

For a finite scattering volume there are corrections to this
expression of the orderO(l/L) where l is the electron
wavelength andL the system size.7 For large system sizes or
large energies, Eq.~5! is adequate. Later when we check the
current conservation, the correction term will be added.
Since in 2D the expression for the scattering matrix cannot
be written down analytically, we have decided to perform the
energy derivatives of~5! numerically. In particular we com-
putedsab(E) at various values of energyE and used a five-
point numerical derivative to finddsab /dE. The behavior of

FIG. 2. Global partial density of states and the transmis-
sion coefficient as functions of electron energyE. Solid line:
transmission coefficientT21 ; dotted line:dN11 /dE; dashed
line: dN21 /dE. Unit of energy is\

2/(2mW2).

54 R11 091FREQUENCY-DEPENDENT ADMITTANCE OF A TWO- . . .



the global PDOS is plotted in Fig. 2 together with the trans-
mission coefficientT21(E). As our quantum wire system is
very transmissive,T21 has large values in general except at
the two resonance levels whereT50. In a previous work we
have shown that the energies whereT50 correspond to the
quasibound states located in the T junction.10 The behavior
of the global partial density of states coincides well with that
of the transmission coefficients. In particular,dN11/dE,
which is the global PDOS for reflection, peaks at the ener-
gies where the transmission coefficient is minimum or reflec-
tion maximum. On the other hand,dN21/dE, which is the
global PDOS for transmission, takes minimum value when
T is minimum. Indeed, a general discussion for a one-
dimensional system with a symmetric scatterer7 reveals that
dN11/dE;RdN/dE while dN21/dE;TdN/dE with R and
T the reflection and transmission coefficients, anddN/dE
the global DOS. Hence these quantities have vivid physical
meaning.

The next quantity of interest isDab given by Eq.~3!. To
compute this quantity, we first find the injectivity which is
given by the scattering wave function4 in the T junction. At
zero temperature this is given by

dn~r ,a!

dE
5

1

hJ
uc~r !u2, ~6!

whereJ is the incoming particle flux. Clearly a spatial inte-
gration of this quantity gives the electron dwell time11,10

ta . In generalDab is obtained with two calculations of the
wave function for particles coming from the left and from
the right. Figure 3 shows this quantity as a function of the
electron energy. BothD11(E) andD21(E) peak at the ener-
gies where the transmission takes the minimum values. This
is understandable since these special energies correspond to
the scattering states10 where the electron dwell time takes
maximum value, and the injectivity represents essentially the
electron dwelling in an areadr at positionr irrespective of
where it is finally scattered.

With the global partial density states and the quantity
Dab calculated, we have thus obtained the admittance
gab
I (v) from Eqs. ~1!, ~2!, and ~4!. Figure 4 shows the

v-dependent part ofgI , ĝab[dNab /dE2Dab, as a function
of energyE. Apart from the prefactorve2, this quantityĝ is
the imaginary part of the admittance, and is calledemittance.
At the quasibound state levels where transmission coefficient
T21(E) takes minimum values,ĝab(E) also takes extremal
values. It is interesting to observe that the transmissive part
ĝ21 takes minimum value whereT(E)50, while the reflec-
tive partĝ11 takes maximum value at the same energy. Thus
in this sense, the dynamic part of the admittanceĝab has the
same behavior as the static admittancegab(v50) as a func-
tion of energy. Furthermore,ĝab changes sign as energy is
varied: the system responds either capacitively when
ĝ1152ĝ2152ĝ12.0, or inductively otherwise. Hence at
the resonance~whereT'0 for our system! ĝ21 and ĝ11 are

FIG. 3. The current response to the internal potential,
Dab , as a function of energyE. Solid line:D11 ; dotted line:
D21 .

FIG. 4. The imaginary part~dynamic part! of the admit-
tance,ĝab[dNab /dE2Dab, as a function of energy.
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capacitive. Figure 4 shows the clear crossover between the
capacitive and inductive responses for this 2D quantum wire
as energy is changed.

We can now explicitly confirm the current conservation
by summing up the admittance matrix elements and check
whether or not(agab

I 50. Since the global PDOS obtained
using Eq.~5! is not exact, a correction should be added. For
a 1D system Gasparianet. al.12 have shown that

dNb

dE
[(

a

dNab

dE
1ImS sbb

4pED , ~7!

whereE is the electron energy. Unfortunately for a 2D sys-
tem such as ours, the Green’s function cannot be written
down analytically, hence how to derive a similar correction
term to that in~7! is unclear. However, since we have nu-
merical results of all the quantities, a reasonable correction
term can easily be obtained. We found that the same form as
~7! led to almost perfect current conservation, provided we
use thetransportenergyk2 as the energyE in ~7!. Our data
in Fig. 5 clearly and unambiguously show that the following
is established:

(
a

dNab

dE
1ImS sbb

4pk2D5(
a

Dab. ~8!

With this result, we have thus explicitly shown13 the current
conservation(agab

I 50. Since the correction term is in-
versely proportional tok2, it plays a role only at smallk.
This can already be seen in Fig. 4 where the two curves add
up to zero except at low energies.

In summary we have implemented the current conserving

dynamic conductance formalism for 2D metallic conductors.
In the simple case of applying Thomas-Fermi linear screen-
ing for the interacting electrons~hence the analysis is more
suitable for metallic samples!, the current response to the
internal potential can be computed from the electron dwell
time using the scattering wave functions. The frequency-
dependent admittance of aT-shaped 2D quantum wire is
calculated to linear order in frequency. We have explicitly
confirmed the electric current conservation and found that a
correction to the total density of states is needed at low en-
ergies, in the same fashion as that of 1D case. It is very
interesting to clarify the physical meaning of the partial
DOS. These quantities provide information on the density of
carriersand the transmission of carriers from one contact to
another. At quantum resonances these quantities take ex-
tremal values. There are many further applications of this
important theoretical formalism, to situations involving mul-
timode, magnetic fields, and nonlinear screening. Another
very challenging extension is to push the theory to higher
order in frequency7 and formulate the theory in a way that
permits a computational implementation. We hope to be able
to report these results in the future.
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