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Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory
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We study the properties of nuclei in the inner crusts of neutron stars based on the Boguta-Bodmer nonlinear
model in the relativistic mean-field theory. We carefully determine the surface diffuseness of the nuclei as the
density of matter increases. The imaginary time step method is used to solve the Euler-Lagrange equation
derived from the variational principle applied to the semiclassical energy density. It is shown that with
increasing density, the spherical nuclei become more neutron rich and eventually merge to form a uniform
liquid of neutrons, protons, and electrons. We find that the smaller the value of the incompredsibitiy
lower the density at which the phase transition to uniform matter occurs. The relativistic extended Thomas-
Fermi method is generalized to investigate nonspherical nuclei. Our results show that the spherical nucleus
phase is the only equilibrium state in the inner crusts of neutron $60556-281®7)00604-3

PACS numbg(s): 21.65+f, 21.10.Ft, 26.60tc, 97.60.Jd

I. INTRODUCTION neutron matter outside from the same expression as a func-
tion of neutron and proton densities. Similar calculations
It is expected that the properties of nuclei in the innerwere done by Arponef7] and Buchler and Bark§8]. They
crusts of neutron stars are very different from those of terboth determined the ground-state density distributions varia-
restrial nuclei[1]. With increasing depth in a neutron star, tionally in a Thomas-Fermi theory, and by introducing a gra-
the density of matter increases and nuclei become increasghent term in the expression for the energy, the surface en-
ingly neutron rich to maintain thg-stability condition. Ata ergy was included in their calculations. The most detailed
density of about 4810' g cm 3, the neutron drip region study was carried out by Negele and Vauthétih who used
occurs, which means that the most energetic neutrons are éartree-Fock calculations to investigate the ground-state
longer bound to nuclei and start to drip off from nuclei, configuration of neutron-star matter at subnuclear density.
forming a low-density neutron gas. At higher densities, the It was first proposed by Ravenhait al. [9] that unusual
matter inside nuclei becomes more neutron rich and the neuwuclear shapes are favored at certain densities and the
tron gas becomes denser. As the density of matter apiuclear shapes change from sphere to cylinder, slab, cylin-
proaches the nuclear densify~2.8x10"* gcm 3, the drical hole, and spherical hole successively with increasing
neutron-rich nuclei eventually merge to form a uniform lig- density. They described the system in terms of the compress-
uid of neutrons and protons, together with a uniform backdble liquid drop model and treated the dimensionality of
ground of relativistic electrondfor a general review of the nuclear shapes as a continuous variable. They pointed out
crustal structure of neutron stars, $2e3]). that as the density increases, the volume fraction of nuclei
Dense matter in the inner crust is composed of nucleijncreases and the relative surface area can be reduced by
neutrons, and electrons under the conditions of charge newhanging nuclear shapes. Consequently, the surface energy
trality and B stability. The temperature of the crustal matterand the Coulomb energy can be reduced. Derived from a
can be assumed to be absolute zero. In the region of interegurely geometrical argument, similar results were obtained
the thermal energkgT (T<10° K) is much less than the in [10,11], where the compressible liquid drop model was
Fermi energies of neutrons and electrons. Therefore it is ceglso used and a sharp nuclear surface was assumed. Re-
tain that the assumption of zero temperature is a valid apeently, Oyamastsiil2], who used the Thomas-Fermi calcu-
proximation. lations in the zero-temperature approximation, refined the
Since the discovery of pulsars, investigation of the matteprevious calculations by considering both the surface dif-
at subnuclear densities has become a growing interest. THaseness and several nuclear shapes and lattice types with
earliest important works were done by Lang¢rl. [4] and  parametrized neutron and proton distributions. His study also
Bethe, Boner, and Satd5]. Both of them treated the free confirmed the liquid drop results of existing nonspherical
neutron regime based on extrapolations from the semiempimnuclei in the inner crust of neutron stars. It was pointed out
ical mass formula. However, because of the fact that thehat the presence of nonspherical nuclei could affect signifi-
mass formula’s parameters were determined by the very reantly pinning of vortices and neutrino emission inside neu-
stricted region of nuclear configurations which are very dif-tron stard13]. Recently, it was shown that a sizable increase
ferent from that in the free neutron regime, it is obvious thatin the specific heat is expected if nonspherical nuclei exist
extrapolations based on the semiempirical mass formulfl4].
were unreliable. An improvement was made by Baym, Be- However, the existence of nonspherical nuclei in the inner
the, and Pethick6], who considered the reduction of surface crust of neutron stars is still uncertain and further detailed
energy in nuclear matter caused by outside neutron gas arnidvestigations are required. This is because one requires to
calculated the energy of nuclear matter in nuclei and that oéstimate the energy of an interface between nuclear matter
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and neutron matter with extremely good accuracy. Besideglosely followed that of Centellest al. [18,19. The effec-

the obtained configurations of nucleons must be in thdive Lagrangian density of the nuclear system is given by

ground state and satisfy the equilibrium conditions. Gener¢i=c=1)

ally, in order to make the calculation as simple as possible, it

is always using approximations to estimate the Coulomb and _

surface energy of the nuclear system. In addition, the energy £=¢{ y,(i9*—g,V*)— m* |+ %(aﬂ@wqﬁ— m§¢>2)

differences between various shapes of nuclei and uniform 13 1.4 1 L 12 N ,

matter are extremely small compared with the bulk energy of —3bdo—icho—3F FH MV, VE—3H, HY

the uniform matter. The binding energy differences among — )

various nuclear shapes are of order-af keV, but the typi- _e‘/’7u%(1+ T3) ARy — %Guv' G+ %mibu' b

cal bulk energy of unlform matter is'1 MeV [12]. _ _lg.py.rbhy, 1)
The purpose of this paper is to study properties of the prIp

nuclei in the inner crust of neutron stars by using recently

developed nuclear theories and careful numerical calculagnere

tions. In the present work we use the relativistic extended

Thomas-Fermi (RETF calculations for the nonlinear

(0,0, p) model in the relativistic mean-field theo(RMFT). Fu=0,V,—d,V,, 2)

During recent years, the relativistic many-body approach to

nuclear systems has been of growing interest. It is known

that the simplest way to describe nuclear matter which is H =d,A—dA,, (3)

consistent with relativity and the known bulk properties of preooEm s

nuclear matter is using the relativistic mean-figRMF)

theory (see[15]). In the standard model of Waleck&6] the G =0b—db.. (4

incompressibilityK of nuclear matter is overestimated. To gy R

solve this problem, Boguta and Bodmkk7] (BB) added

cubic and quartic terms to the scalar field. We will apply theHere ¢, ¢, V#, andb* denote the fields of the nucleon, the
nonlinear BB(o,w,p) model to describe the nuclear system. attractive isoscalar-scaléasr) meson, the repulsive isoscalar-
Besides, in order to avoid the dlﬁlCUlty of a wave function vector (w) meson, and the isovector-vect@) meson with
treatment, we will use the semiclassical relativistic extendegnasses ofn,, m,,, and m,, respectivelyA* is the electro-
Thomas-Fermi approximation proposed by Cente#ésl.  magnetic field. The constants,, g,,, andg, are coupling
[18,19 instead of using the complicated Hartree approximaconstants for interactions between mesons and nucleons. The

tion. _ m* is the effective nucleon mass. In the BB model,
The global properties of a neutron star such as mass, ra-

dius, and moment of inertia have been studied by the present
authors elsewherg20]. We will first consider spherical nu- m* =m-—gso. 5
clei and uniform matter. In uniform matter, the nuclear sur-
face and curvature as well as Coulomb effects are ignored.
The particle and energy densities of the system are derived Within the semiclassical relativistic extended Thomas-
from the semiclassical relativistic extended Thomas-FermFermiz? method[18,19, the semiclassical energy density of
calculations up to second order #n) based on the effective the Lagrangian density for the neutron-star matter including
Lagrangian density of the nonlinear BB model. Then we willthe relativistic electrons is written as
generalize the method to nonspherical nuclei and determine
the possibility of nonspherical nuclei.
This paper is organized as follows. In Sec. I, we present® =€t €+ e+, Vop+eAy(pp— pe)
the effective Lagrangian density and derive the energy den- 1 5,00 1 o o0 1
sities. The choice of parameter scheme is discussed in Sec. +30(Vbo)*+ meb] = 2[(VVo)*+ M Vo] = 2(VAo)®

lll. In Sec. IV, we describe the numerical scheme. The re- —%[(Vb0)2+m2bﬁ]+%g bo(p —pn)+%b¢8+%C¢S
sults of the energies of spherical nuclei and uniform matter, g P P
as well as nucleon density distributions, are presented in Sec. (6)

V, where the results for nonspherical nuclei are presented. A

brief discussion and conclusions are given in Sec. VI. where

Il. EFFECTIVE LAGRANGIAN DENSITY

1 k|:+ €p
AND ENERGY DENSITIES eO:% o k,:E,%-i— k|3:€F_ m*4n —

(@

q

We start from the effective Lagrangian density which
treats nucleons as Dirac spinogsinteracting through the
exchange of several mesons between nucleons through the
Yukawa coupling. We here use the model which includes _ 2 * *12

i . . e,= Xqq(V +Xoq(Vpg- VM* ) +X3,(Vm ,
nucleons, scalar mesoms with nonlinear couplings, vector 2 zq: [X14(Vpa)™+ Xog(V g ) Xag(VIT)7]
mesonsw, isovector mesong, and photons. The notation (8)
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m? FTEF
qu:M e,:+2k,:|n o q, (9)
Xpgm e € 10
2q_ 6k|:6|: n m* q’ ( )
k|2: € ( 6'2:) k|:+ €
=———|— |2+ —=|In——|| , (@11
397 247%€2 | ke k2 m* ]
and
mg
ee=g 7 {Xe(2xg+ 1) (xg+ 1) M= In[xe+ (xg+ 1) M2},
(12)
(3772pe)1/3
R (13

Hereq denotes the charge state of each nucleerp,+p,
is the nucleon number density; =(37p,)**is the Fermi

momentum, andr,:q= qu+ m*2. Heree,,, m,, andp, are
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aeSC

~am @0

Ps

is the semiclassical scalar density apg and w, are the
chemical potentialgincluding the rest magof protons and
neutrons, respectively.

In our calculations, we assume that in the inner crusts of
neutron stars, the protons are confined in nuclei and a
nucleus is referred to as the space in which protons and neu-
trons coexist. As was done ifil2], we assume that the
spherical nuclei form a body-centered-cubic lattice. The
whole space is divided into hexagonal cells of voluate
where a is the lattice constant and each cell contains one
nucleus. Although the whole space is divided into unit cells,
it is still very difficult to calculate the energy of unit cells
numerically. In order to simplify our calculations, the
Wigner-Seitz approximation is applied. The actual hexagonal
cell is replaced by the Wigner-Setiz cell which is defined as
a sphere with voluma?®. Each cell is assumed to be electri-
cally neutral and interactions among cells are neglected.

At a given nucleon number densipy we use Eq(6) to
calculate the total energy per unit cell. Then we minimize the
average energy per nucleon with respect to variation of the

the kinetic energy density, mass, and density of electrongyroton fractionY, (8 stability) and the lattice constard.

respectively. Since the electron Fermi energy is much higheFhe nucleon density distributions inside the unit cell are de-

than the Coulomb energy, we can assume that electrons arermined by Eqgs(14)—(19). These equations constitute a set

ultrarelativistic, uniformly distributed. We can approximate of nonlinear differential equations and are solved numeri-

e to be the energy density of the uniform relativistic Fermi cally by the imaginary time step meth$#i9,21], which will

gas. Theg, term is the usual Thomas-Fermi approach, whilebe discussed in detail in Sec. IV. It should be noted that the

the e, term is the relativistic correction of the energy density solutions must satisfy the conditions of beta equilibrium and

of the order offi2. charge neutrality simultaneously. Thgstability condition
The semiclassical ground state dengifyand the meson requires

and photon fields are obtained by applying the variational

principle to the semiclassical energy densty, (E/N)(y,)=minimum, (21)

Mp=€r T g,Vo+t eA0—2X1pV2pp—X2pV2m* vv_h_ereE/N is the_ average energy per nucleon, and this con-
dition can be written in the familiar for22]

IX1p X,

17
2 P
", (VPR T 20 (Vpp VM) (o) = pp) = pre), (22)
Xap  IXgp 1 where (un), (up), and (u.) are the expectation values of
—( P a—)(Vm*)2+ > 9,bo, (14)  chemical potentials of neutrons, protons, and electrons, re-
Pp spectively. Note that after neutrons drip off from nuclei, the
JX neutron chemical potential inside nuclei is the same as that
o= EFn+9UVo—2X1nVZPn—inV2m* -~ in (Vpn)? outside nuclei, and |t.should be_ mc_iependent of the position.
Pn But the proton chemical potential is independent of the po-
IX IX IX sition only within the nuclei. We assume that the chemical
_2_1*” (Vpn-Vm*)—( 2*”_ 3“)(Vm*)2 potential is the same as the Fermi energy and this is true at
om om 9pn zero temperature. Moreover, the Fermi momentum of elec-
1 trons isk,=(372p,)® and the electron chemical potential
3 9,00, (15  ue can be written as
pe=(k2+mi)Y2—ep,, (23
(VZ=m?)Vo=—0,p, (16) S
and u, and u, are obtained from Eqg14) and(15), respec-
(V2— mﬁ)boz - %gp(pp—pn), (17)  tively. The charge neutrality condition requires
(V2= m2) o= — gepst bp3+Ch3, (18) _Jcarppdr 24
Pe= P (24)
VZAo=—e(pp—pe), (19

It implies that the number of protons and the number of

where electrons inside a unit cell are the same.
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TABLE I. Parameter set BBI, BBII, and BBIII for the nonlinear 16

BB model. E/E
14} O

Parameters BBI BBII BBIlI \E/ 12 + g

Os 8.2855 8.0732 7.8702 Ea 10 1

g, 9.2475 9.2475 9.2475 5 sl

g, 8.8152 8.8152 8.8152 ig 6l

b (fm™Y 23.9076 15.5068 8.0380 B

c —47.5412 —12.9438 16.2137 g ¢ ]

m (MeV) 939 939 939 Yoet 1

ms (MeV) 500 500 500 0 N ‘ ‘ ‘ ‘ ‘ ) ‘

m, (MeV) 783 783 783 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

m, (MeV) 763 763 763 nucleon number density (fm™3)

K (MeV) 200 250 300

FIG. 1. Energy per nucleon of neutron matter measured from the
nucleon mass as a function of nucleon number density. Results
ll. CHOICE OF PARAMETERS from microscopic calculations are repres_ented with data points:
The diamonds are the values obtained using\thé potential plus
The BB Lagrangian contains eight parameters which are three-nucleon interaction frofi27] and the+ signs using the
the meson-nucleon coupling constagts, g,, andgs, the  Reid potential fron{28]. The triangles are nonrelativistic calcula-
meson masses, , m,, andmg, and the two constants of the tions using BonmA potential from[30]. The squares and crosses are
meson-meson self-coupling,andc. We choose the param- relativistic calculations using the Borf-potential from[29] and
eter sets taken fromi23] listed in our Table | for several [30]. The dashed line is taken from the Skyrme model3if|. The
reasons. solid, dotted, and dot-dash lines are our results corresponding to the
First of all, these parameter sets can give reasonable satgB!. BBII, and BBIII models.
ration properties of nuclear matter. Among the saturation
properties of nuclear matter, the incompressibiktyseems very consistent with that from the Skyrme modelpat0.1
to be a main uncertainty. The experimental value of the infm~ and is rather consistent with the microscopic “data,”
compressibilityK is obtained by the analysis of giant mono- even though our BBI and BBII results depart significantly
pole resonance of nuclei; however, BlaiZ@4] obtained from these “data.”
K=210+30 MeV and Sharmat al. [25] obtainedK =300 Finally, we have obtained rather reasonable structures of
+25 MeV. The corresponding nuclear matter properties sucheutron stars based on the BB models in the relativistic
as binding energy per nucled®N, saturation densityy,,  mean-field theory20].
symmetry energyg,,,, and effective mase*/m at satura-
tion are fixed at—15.75 MeV, 0.16 fm3, 36.8 MeV, and
0.75, respectively, and the range of incompressibityis
from 200 to 300 MeV. We also list the incompressibilKy In this section, we present the numerical method for find-
for the three parameter sets labeled BBI, BBII, and BBIll ining the energies and density distributions of nucleons at a
Table I. These values are close to those obtained from thgiven density. In order to find the solutions, we have to first
nuclear experiments. Among the parameter sets, only thsolve a set of coupled differential equations which consist of
BBIII set has a positive coupling constant the field equations and the nucleon equations, then vary the
Second, we have used these parameter sets to calculgisoton fractionY, to achieve theg-stability condition, and
the binding energy, neutron rms radius, and proton rms rafinally minimize the energy with respect to variation of the
dius of*°Ca in Table li(for detailed calculations see the next lattice constana. We divide the numerical procedures into
section. The results are well consistent with those] b8]. three parts as followsa more detailed description of the
Third, following Pethick, Ravenhall, and Lorefi26], we  numerical scheme, cf32]).
have compared our energy per nucleon of neutron matter as a (1) At a given densityp, a lattice constard, and a proton
function of density with that from the microscopic calcula- fraction Y, the coupled equationd4)—(19) are solved nu-
tions[27-30 and from the Skyrme model ¢81]. It can be  merically by the imaginary time step methf#9,21], until
seen from Fig. 1 that our result based on the BBIIl model isself-consistency is achieved. The imaginary time step

IV. NUMERICAL SCHEME

TABLE II. Comparison of our calculated results with those obtained by Centetles [18] for finite
nucleus*°Ca with the parameter sets BBI, BBII, BBIIl, and SRK3M7. The total binding energy is given in
MeV, and the neutron rms radius and the proton rms radius are in fm.

Parameter set BBI BBII BBIlIl  SRK3MTour resulty SRK3M7 (Centelleset al. 1992
E (MeV) —-366.5 —-3349 -331.0 —348.13 —348.1
rn (fm)

3.14 3.14 3.14 3.169 3.17

rp (fm) 3.11 3.11 3.11 3.205 3.21
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method has been used in nonrelativistic Hartree-Fock and
extended Thomas-Fermi calculations. Consider a general

time-dependent equation

_d ~
which is formally solved as
@(At)=exp —iAth)(0). (26)

Assuming the time stefit is replaced by an imaginary quan-
tity —iAr, the repeated action of the exponential

go(”+1)=eX[X—ATF])<p<n), (27

followed by a normalization of, causes the wave function
to converge to the lowest eigenstatehof

In our case, the corresponding Euler-Lagrange equations

(14) and(15),

&eSC

5eSC aeSC

dpq B dpq

(28)

are written in a form similar to the Hartree-Fock equations

(_MqV2+Vq)¢'q:Mq’pqa (29

where ¢,=p />, which has no apparent physical signifi-
cance. We define, fog=protons,

M p=4X 1,15, (30)

V2,
¥p
= €r,+9,Votehy—4X;,(V p) %= XppV2m*

Vo=ppt My

(9X1p 2 2 &le
7oy VoV 4G (o oy V)

~4

IXzp X3z .2 1
(am* e (Vm*)*+ 5 g,bo (3D
and, forq=neutrons,
M= 4X 1007, (32)
VZ
Vh=unt M, Tl//n
n

= e +9,Vo— 4X1n(Vihn)? = XpnV2m*

X1n .
am* (an‘/’n' Vm )

X1 ) ’
_4c?_pn P(Vipy)=—4

|

dXon
om*

dXap
Ipn

1
)<Vm*>2—5 9,bo. (39
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_ é h(n+1/2)
RETF

)m, (34)

A
1+ 5 h%nEJrng)) lp((qnﬂ):(l

in order to avoid instabilities, and{{**'? is estimated be-

tween stepn and n+1 for satisfactory accuracy. We write
these two equations, together with the field equations, in dis-
cretized form. The differential operators, densities, and fields
are represented on a discrete mesh in coordinate space with a
spacing Ar~0.1 fm. Between stepm and n+1, we use
Gaussian elimination to solve the discrete Poisson and
Helmoholtz equations to obtain the Coulomb potenfal

and the Yukawa potential¥, and by, respectively. How-
ever, the scalar meson potentig is particularly found by
Gaussian elimination of the discrete equation

(VZ=m2) " V= —gepy(p ,¢5) +b(SF )2

+e(p)3, (35)

wheren’ is another index. At thath-iteration stage of Eq.
(34), Eqg. (35 has to be iterated until consistency in

" is achieved. In our calculationdr is set to 0.004.
Starting from a reasonable guess fgrandp, convergence
is generally achieved to within 16 MeV for the energy per
nucleon after about 100 iterations of E84). Note that the
densities converge slower than the energy.

(2) After obtaining the solution of the second-order semi-
classical variational equations, we check whether the calcu-
lated solution satisfies thg-stability condition. If not, the
proton fractionY/ is altered according to E¢22),

([(372Y )2+ mE] 2= e Ag) = (un) — (up),  (36)

until the B-stability condition is satisfied. Whenever we
change the proton fractiovi, , the solution of the variational
equations must be calculated again. It normally requires
about 20 iterations of Eq.36) to achieve the desired accu-
racy, 8Y,<10"°.

(3) Finally, we vary the lattice constar# in order to
obtain the optimum energy at a given densitySince the
nucleon distributions change whenever the lattice constant
is altered, the above-mentioned numerical procedures must
be repeated for every value of lattice constant

For calculating the energy and nucleon density distribu-
tions of finite nuclei, only partl) is required. To test our
computer code, we compare our results for finite nuclei to
those obtained if18] with the same approach and parameter
set, namely, SRK3M?7. In Table Il, we see that our calculated
results of energies and proton and neutron rms radif46a
are the same as those calculatedllii]. Figure 2 shows our
results of proton density distributions &fCa calculated in
the RETF#2 approximation with the parameter set SRK3M?7.

In the second part of our numerical procedures, we can
use Eq.(21) instead of using Eq(22) to find the optimum
proton fractionY . Within the density range of interest, both

For actual numerical computation, the propagation equatiomethods yield the proton fraction that agrees to a value with

(27) is approximated as

discrepancies less than 0.02%.
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0.12 T T r r 1 T T T T T T T T T T T T T
T o0 “hE E
£ 10Ca R |
2 2 7L K=200MeV ‘
= 0.08F 20 g E
g E 5t ]
o E ;
5 0.06 1 R 3 K=250 MeV E
=3 =1 !
£ 5 )
5004+ R - 3 / E
a B>y /
o - g” . i
g 0.02f 4 o -11f. / ... BBI E
£ g ) / -~ BBII
-13F ! —— BBIII | |
0.00 L L 1 ] /
0 1 2 3 4 5 6
__‘5 i1 1 1 il 1 il il ] ] L L 1
radius (fm) 0.050 0.054 0.058 0.062 0.0686 0.070 0.074

nucleon number density (fm=?)
FIG. 2. Charge densities 8fCa obtained with the parameter set

. 2 . .
SRK3M7 in the RETFA” approximation. FIG. 3. Energy per nucleon of spherical nuclei relative to that of

uniform matter as a function of nucleon number density.
V. RESULTS

We can now calculate the energies of spherical nuclei aném 2 for parameter sets BBIlI and BBIII, respectively. We
of uniform matter. By comparing the energy differences be-can observe that the smaller the valuekafthe lower the
tween the two phases, we can estimate the densities of thdensity at which the phase transition occurs. Although the
crust-core transition region and deduce the effect of incomtransition densities are different for three parameter sets, the
pressibility K. In addition, the density distributions of neu- differences ofY,, among various parameter sets are small. It
trons and protons at various densities are obtained during thimplies that the incompressibiliti( has little effect on the
calculations. proton fraction. In Fig. 4 we show the proton fracti¥p as

a function of nucleon number density with parameter set

A. Energies of spherical nuclei and uniform matter BBIII.

In Table Ill we list the energy per nucledmcluding the
nucleon rest energyf cold uniform neutron-star matter as a ) )
function of nucleon number density calculated in the BB _AS the density of matter increases, all three parameter sets
nonlinear model with parameter sets BBI, BBII, and BBIIl. yield similar nucleoln distributions. For |IIustrat_|on, we only
One sees that the energy per nucleon of cold uniformshow the results with parameter set BBIII which yields the
neutron-star matter depends insensitively on the incompress-
ibility K at subnuclear densities. TABLE V. Densities for transition from spherical nuclei to

We show the energy per nucleon of spherical nuclei relauniform matter.
tive to that of uniform matter in Fig. 3. For all the three
parameter sets, as the density of matter increases, the differ-  Parameter set Transition densifyn )
ences between two phases become small, and the spherical

B. Nucleon density distributions

. . . . . BBI 0.058
nuclei eventually dissolve into uniform matter. The densities BBII 0.066
for transition from spherical nuclei to uniform matter are BBIll 0'073
listed in Table IV. The phase transition takes place at '
p~0.058 fm 2 for parameter set BBI, and 0.066 and 0.073
0.027 — — .
TABLE lll. Energy per nucleon of uniform cold neutron-star 0.026 L 1
matter with parameter sets BBI, BBII, and BBIII. 0.025 ]
Nucleon number density BBI BBII BBII f 0.024 1 ]
(fm~9 (MeV) (MeV) (MeV) g 00z 1
© 0.022} §
0.01 941.58407 941.99574 942.39303 & 5 goq | ]
0.02 941.96163 942.60384 943.23922 § 0.020 |- ]
0.03 942.31321 943.06656 943.82504 = [ , _ ]
s 0.019 spherical nuclei
0.04 942.77903 943.56324 944.36215 0.018 L 1
0.05 943.38934 944.15047 944.93159 0017 L {iniform matter]
0.06 944.14577 944.84844 945.57224 0.016 L— ) ‘ ‘ , ‘
0.07 945.04096 945.66321 946.30462 0.02 0.03 0.04 0.05 0.06 0.07
0.08 946.06479 946.59468 947.13983 nucleon number density (fm™)
0.09 947.20676 947.63995 948.08368
0.10 948.45684 958.79488 949.13881 FIG. 4. Proton fractionY, as a function of nucleon number

density with parameter set BBI{(K=300 MeV).
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0.10
0.09

o.08 |
0.07
0.06 |-
0.05 |-
0.04 |-

0.03 |- N
0.02 |- N
0.01 b ]
0.00 - v - y

(o] 10 20 30 40 50

average o = 0.040 fimm™
a = 28.2 fm

pltm?)

0.10
0.09 F :
o.o8 | .
o.07 L g
o.06 [ d
o.05 | .

average o = 0.060 fm™?

0.04 - a = 22.7 fm ]

0.03 | N

0.02 | N
0.01 | m
0.00 L L L

o] 10 20 30 40 50
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FIG. 5. Neutron(uppe) and proton(lower) density distributions along an axis joining the centers of adjacent unit cells with parameter
set BBIII (K=300 MeV).

largest phase transition density. The density distributions of VI. DISCUSSION AND CONCLUSIONS

neutrons and protons at different nucleon number densities . -
are presented in Fig. 5, which shows the densities along an ' the past there have been many studies of the nuclei in
axis joining the centers of adjacent unit cells. It can be obleutron-star crusts and the transition to the uniform phase

served that the lattice constaatreduces and the nuclear (for a brief review se¢26]). The earliest work$4,5] were
density distributions become more and more uniform as th&ased on the use of a semiempirical formula to estimate the
matter density increases. The obtained results are consistamaisses of the nuclei, together with an expression for the
with those obtained ifil]. It can be seen from Fig. 5 that the energy of the neutron gas outside nuclei calculated from
assumption of a sharp nuclear surface used in the compresgrany-body theory and the nucleon-nucleon interaction.
ible liquid drop calculations is unrealistic. These led to rather low densities for the transition between
the nuclear phase and the uniform one. In the ca$d]pthe
C. Energy of nonspherical nuclei density was about 0g3~5x10" g cm ™3, while the work of
We now consider the nonspherical nuclei in this subsecl5] gave a slightly small density. In both of these works the
tion. As was done if12], the stable nonspherical nuclear transition was found to be relatively sharp. The important
shapes we consider are cylinder and slab. We assume thadint of the works in[6—8] is that the energy of nuclear
cylinder nuclei form a two-dimensional hexagonal lattice. matter in nuclei and the energy of the neutron matter outside
Similar_ to the case of sph_erical nuclei, we divide the wholeyere evaluated from one and the same expression for the
space into appropriate unit cells of volura& The unit cel energy density as a function of neutron and proton densities.
for cylinder nuclei is a prism with base aradand heighg. The transition density given if6] was close to the saturation

For slab nuclei, the unit cell is a cube whose edge is equal t8ensit of symmetric nuclear matter, while in the latter two
the lattice constana. To simplify the calculation, we also y y ’

use the Wigner-Seitz unit cell of a cylinder with base axéa 'eferences it was about 280 g cm®, or just over half
and heighta to replace the actual unit cell of a prism for the saturation densﬁy. The most recent development is the
cylindrical nuclei. The energy differences between variousdiscovery[12,13 that in a large fraction of the crustal mat-
shapes of nuclei and uniform matter are shown in Fig. 6. Wéer, nuclei may be rodlike or platelike rather than of roughly
find that the energetically most favorable nuclear shapé&pherical shape. Oyamatkle] used the Thomas-Fermi cal-
changes directly from spherical to uniform matter for all culations with four energy density functionals and found that
three parameter sets. That means the phases with nonsphétie transition densities were between 0.086 and 0.094.fm
cal nuclei are never in the equilibrium state at any density inLorenz et al. [13] adopted two microscopic interactions
our models. named the Skyrme interaction and the interactiof2@} and
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FIG. 6. Energy differences between various shapes of nuclei and uniform matter.

obtained transition densities of about 0.0725 and 0.095@ver, it is very interesting that our results are very similar to
fm ™3, respectively. the recent results obtained i3] based on the SKM inter-

In this paper, the properties of nuclei, i.e., energiesaction. In these liquid drop calculations, two different
shapes, and nucleon density distributions, in the inner crustSkyrme-type interactions named FPS and SKM are used.
of neutron stars are studied in the framework of a relativisticThe two interactions yield two different results, and the re-
mean field(RMF). We perform the semiclassical relativistic sults for the FPS interaction are similar to that [df2].
extended Thomas-FerriRETF) calculations for the relativ- Therefore the calculated results are sensitively dependent on
istic nonlinear(o, w, p) model with three sets of parameters, the still incompletely understood nucleon-nucleon interac-
which cover the commonly accepted range for the incomdiion.
pressibilityK (see Table)l The parameters of the effective ~ We next analyze why the phase containing spherical nu-
Lagrangian are fitted to the bulk properties of nuclear matteclei is favored in the present case over the phase containing
except that the incompressibility is treated as an unknown. nonspherical nuclei in the inner crust of a neutron star. Fol-
We find that the density of the crust-core transition regionlowing Ref.[3], the density range in which the latter phase
increases with an increase of the incompressibiitgnd the  may appear can be delimited by some general considerations.
largest phase transition density to uniform matter found isAt the lower end, the appearance of nonspherical nuclei may
p~0.073 fm 3, a density well below the nuclear densiy. be due to the instability of spherical nuclei to fission. At the
If a neutron star has a lower phase transition density, its masgoper end, there is a limiting density at which the phase
and moment of inertia of the crust will be reduced. Sincetransition from nuclei to uniform nuclear matter occurs. The
these two quantities play important roles in models ofBohr-Wheeler condition for the fission of isolated spherical
glitches(e.g., sed33]) and of thermal evolutiorie.g.,[34—  nuclei is that the nuclear Coulomb ener@¢,,=2E,¢
36)), it is expected that with astronomical observations suchiwhereEg, is the surface energyFurthermore, the condi-
as surface radiation and glitch events of neutron stars, ouion for equilibrium under strong interactions in the crust of
calculated results can be indirectly tested. a neutron star requireBg,=2Ecqu(1—1.5\/rcen), Where

We also find that spherical nuclei are the only equilibriumry andr, are the nuclear radius and the Wigner-Seitz cell
state in the inner crust of neutron stars. It can be seen that ouadius, respectively. These two conditions show that if
results are not in good agreement with the Thomas-Fermiy/r .o =1/2, the equilibrium nuclei are unstable to fission.
calculations of Oyamats|i12]. His study gives that the This corresponds to nuclei filling 1/8 of space. In the deep
nuclear shape changes from sphere to cylinder, slab, cylifayers of the inner crust of a neutron star, the dripped-
drical hole, and spherical hole successively as the densitgeutron density is usually-50% of the nuclear density,
increases and obtains higher phase transition density. HoW3]. So as the matter density increases~tbn;/9, spherical
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nuclei are unstable to fission. In the present case0.15 in future studies. For example, shell effects of different
fm~2 and thus the lower limiting density for the appearancenuclear shapes may be included. By using the so-called ex-
of nonspherical nuclein,,,~0.083 fm 3. Because the den- pectation value method, Centelles al. [18] incorporated

sity for the phase transition from nuclei to uniform nuclearshell effects into the semiclassical calculation for spherical
matter(see Table 1V is less thamy,, , we conclude that the finite nuclei. Besides, we may calculate the Coulomb energy
spherical nuclei may be only the equilibrium state in ouraccurately rather than use the Wigner-Seitz approximation to
case. From Table 3 if3], we can see that for the Skyrme simpiify our calculations. It has been shown that the differ-
interaction or the interaction 4R7] the density for the ap-  ence petween the exact value and the results of the Wigner-

pearance of nonspherical nuclei is less than that for the tranggii, approximation is dependent on the nuclear shigdds
sition from the phase containing nuclei to uniform nuclear

matter. Thus, for these interactions nonspherical nuclei can K.S.C. and C.C.Y. thank the UPGC of Hong Kong for
reasonably exist in the inner crust of a neutron star. support; Z.G.D. thanks the National Natural Science Foun-
It is possible that improvements of our work can be madedation of China for support.
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