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Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory

K. S. Cheng,1 C. C. Yao,1 and Z. G. Dai2
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2Department of Astronomy, Nanjing University, Nanjing 210093, China
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We study the properties of nuclei in the inner crusts of neutron stars based on the Boguta-Bodmer nonlinear
model in the relativistic mean-field theory. We carefully determine the surface diffuseness of the nuclei as the
density of matter increases. The imaginary time step method is used to solve the Euler-Lagrange equation
derived from the variational principle applied to the semiclassical energy density. It is shown that with
increasing density, the spherical nuclei become more neutron rich and eventually merge to form a uniform
liquid of neutrons, protons, and electrons. We find that the smaller the value of the incompressibilityK, the
lower the density at which the phase transition to uniform matter occurs. The relativistic extended Thomas-
Fermi method is generalized to investigate nonspherical nuclei. Our results show that the spherical nucleus
phase is the only equilibrium state in the inner crusts of neutron stars.@S0556-2813~97!00604-3#

PACS number~s!: 21.65.1f, 21.10.Ft, 26.60.1c, 97.60.Jd
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I. INTRODUCTION

It is expected that the properties of nuclei in the inn
crusts of neutron stars are very different from those of
restrial nuclei@1#. With increasing depth in a neutron sta
the density of matter increases and nuclei become incr
ingly neutron rich to maintain theb-stability condition. At a
density of about 4.031011 g cm23, the neutron drip region
occurs, which means that the most energetic neutrons ar
longer bound to nuclei and start to drip off from nucle
forming a low-density neutron gas. At higher densities,
matter inside nuclei becomes more neutron rich and the n
tron gas becomes denser. As the density of matter
proaches the nuclear densityr0'2.831014 g cm23, the
neutron-rich nuclei eventually merge to form a uniform li
uid of neutrons and protons, together with a uniform ba
ground of relativistic electrons~for a general review of the
crustal structure of neutron stars, see@2,3#!.

Dense matter in the inner crust is composed of nuc
neutrons, and electrons under the conditions of charge
trality andb stability. The temperature of the crustal matt
can be assumed to be absolute zero. In the region of inte
the thermal energykBT ~T<109 K! is much less than the
Fermi energies of neutrons and electrons. Therefore it is
tain that the assumption of zero temperature is a valid
proximation.

Since the discovery of pulsars, investigation of the ma
at subnuclear densities has become a growing interest.
earliest important works were done by Langeret al. @4# and
Bethe, Börner, and Sato@5#. Both of them treated the fre
neutron regime based on extrapolations from the semiem
ical mass formula. However, because of the fact that
mass formula’s parameters were determined by the very
stricted region of nuclear configurations which are very d
ferent from that in the free neutron regime, it is obvious th
extrapolations based on the semiempirical mass form
were unreliable. An improvement was made by Baym, B
the, and Pethick@6#, who considered the reduction of surfa
energy in nuclear matter caused by outside neutron gas
calculated the energy of nuclear matter in nuclei and tha
550556-2813/97/55~4!/2092~9!/$10.00
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neutron matter outside from the same expression as a f
tion of neutron and proton densities. Similar calculatio
were done by Arponen@7# and Buchler and Barkat@8#. They
both determined the ground-state density distributions va
tionally in a Thomas-Fermi theory, and by introducing a g
dient term in the expression for the energy, the surface
ergy was included in their calculations. The most detai
study was carried out by Negele and Vautherin@1#, who used
Hartree-Fock calculations to investigate the ground-s
configuration of neutron-star matter at subnuclear densit

It was first proposed by Ravenhallet al. @9# that unusual
nuclear shapes are favored at certain densities and
nuclear shapes change from sphere to cylinder, slab, cy
drical hole, and spherical hole successively with increas
density. They described the system in terms of the compr
ible liquid drop model and treated the dimensionality
nuclear shapes as a continuous variable. They pointed
that as the density increases, the volume fraction of nu
increases and the relative surface area can be reduce
changing nuclear shapes. Consequently, the surface en
and the Coulomb energy can be reduced. Derived from
purely geometrical argument, similar results were obtain
in @10,11#, where the compressible liquid drop model w
also used and a sharp nuclear surface was assumed
cently, Oyamastsu@12#, who used the Thomas-Fermi calcu
lations in the zero-temperature approximation, refined
previous calculations by considering both the surface
fuseness and several nuclear shapes and lattice types
parametrized neutron and proton distributions. His study a
confirmed the liquid drop results of existing nonspheric
nuclei in the inner crust of neutron stars. It was pointed
that the presence of nonspherical nuclei could affect sign
cantly pinning of vortices and neutrino emission inside ne
tron stars@13#. Recently, it was shown that a sizable increa
in the specific heat is expected if nonspherical nuclei e
@14#.

However, the existence of nonspherical nuclei in the in
crust of neutron stars is still uncertain and further detai
investigations are required. This is because one require
estimate the energy of an interface between nuclear ma
2092 © 1997 The American Physical Society
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55 2093PROPERTIES OF NUCLEI IN THE INNER CRUSTS OF . . .
and neutron matter with extremely good accuracy. Besid
the obtained configurations of nucleons must be in
ground state and satisfy the equilibrium conditions. Gen
ally, in order to make the calculation as simple as possibl
is always using approximations to estimate the Coulomb
surface energy of the nuclear system. In addition, the ene
differences between various shapes of nuclei and unif
matter are extremely small compared with the bulk energy
the uniform matter. The binding energy differences amo
various nuclear shapes are of order of;1 keV, but the typi-
cal bulk energy of uniform matter is;1 MeV @12#.

The purpose of this paper is to study properties of
nuclei in the inner crust of neutron stars by using recen
developed nuclear theories and careful numerical calc
tions. In the present work we use the relativistic extend
Thomas-Fermi ~RETF! calculations for the nonlinea
~s,v, r! model in the relativistic mean-field theory~RMFT!.
During recent years, the relativistic many-body approach
nuclear systems has been of growing interest. It is kno
that the simplest way to describe nuclear matter which
consistent with relativity and the known bulk properties
nuclear matter is using the relativistic mean-field~RMF!
theory~see@15#!. In the standard model of Walecka@16# the
incompressibilityK of nuclear matter is overestimated. T
solve this problem, Boguta and Bodmer@17# ~BB! added
cubic and quartic terms to the scalar field. We will apply t
nonlinear BB~s,v,r! model to describe the nuclear syste
Besides, in order to avoid the difficulty of a wave functio
treatment, we will use the semiclassical relativistic extend
Thomas-Fermi approximation proposed by Centelleset al.
@18,19# instead of using the complicated Hartree approxim
tion.

The global properties of a neutron star such as mass
dius, and moment of inertia have been studied by the pre
authors elsewhere@20#. We will first consider spherical nu
clei and uniform matter. In uniform matter, the nuclear s
face and curvature as well as Coulomb effects are igno
The particle and energy densities of the system are der
from the semiclassical relativistic extended Thomas-Fe
calculations up to second order in\, based on the effective
Lagrangian density of the nonlinear BB model. Then we w
generalize the method to nonspherical nuclei and determ
the possibility of nonspherical nuclei.

This paper is organized as follows. In Sec. II, we pres
the effective Lagrangian density and derive the energy d
sities. The choice of parameter scheme is discussed in
III. In Sec. IV, we describe the numerical scheme. The
sults of the energies of spherical nuclei and uniform mat
as well as nucleon density distributions, are presented in
V, where the results for nonspherical nuclei are presente
brief discussion and conclusions are given in Sec. VI.

II. EFFECTIVE LAGRANGIAN DENSITY
AND ENERGY DENSITIES

We start from the effective Lagrangian density whi
treats nucleons as Dirac spinorsc interacting through the
exchange of several mesons between nucleons through
Yukawa coupling. We here use the model which includ
nucleons, scalar mesonss, with nonlinear couplings, vecto
mesonsv, isovector mesonsr, and photons. The notatio
s,
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closely followed that of Centelleset al. @18,19#. The effec-
tive Lagrangian density of the nuclear system is given
~\5c51!

L5c̄@gm~ i ]m2gvV
m!2m* #c1 1

2 ~]mf]mf2ms
2f2!

2 1
3bf0

32 1
4cf0

42 1
4FmnF

mn1 1
2mv

2VmV
m2 1

4HmnH
mn

2ec̄gm
1
2 ~11t3!A

mc2 1
4Gmn•G

mn1 1
2mr

2bm•b
m

2 1
2grc̄gmt•bmc, ~1!

where

Fmn5]mVn2]nVm , ~2!

Hmn5]mAn2]nAm , ~3!

Gmn5]mbn2]nbm . ~4!

Herec, f, Vm, andbm denote the fields of the nucleon, th
attractive isoscalar-scalar~s! meson, the repulsive isoscala
vector ~v! meson, and the isovector-vector~r! meson with
masses ofms , mv , andmr , respectively.A

m is the electro-
magnetic field. The constantsgs , gv , andgr are coupling
constants for interactions between mesons and nucleons.
m* is the effective nucleon mass. In the BB model,

m*5m2gsf. ~5!

Within the semiclassical relativistic extended Thoma
Fermi\2 method@18,19#, the semiclassical energy density
the Lagrangian density for the neutron-star matter includ
the relativistic electrons is written as

esc5eke1e01e21gvV0r1eA0~rp2re!

1 1
2 @~¹f0!

21ms
2f0

2#2 1
2 @~¹V0!

21mv
2V0

2#2 1
2 ~¹A0!

2

2 1
2 @~¹b0!

21mr
2b0

2#1 1
2grb0~rp2rn!1 1

3bf0
31 1

4cf0
4,

~6!

where

e05(
q

1

8p2 S kFeF
31kF

3eF2m* 4ln
kF1eF
m* DU

q

, ~7!

e25(
q

@X1q~¹rq!
21X2q~¹rq•¹m* !1X3q~¹m* !2#,

~8!
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X1q5
p2

24kF
3eF

2 S eF12kFln
kF1eF
m* DU

q

, ~9!

X2q5
m*

6kFeF
2 ln

kF1eF
m* U

q

, ~10!

X3q5
kF
2

24p2eF
2 F eF

kF
2S 21

eF
2

kF
2 D ln kF1eF

m* GU
q

, ~11!

and

eke5
me
4

8p2 $xe~2xe
211!~xe

211!1/22 ln@xe1~xe
211!1/2#%,

~12!

xe5
~3p2re!

1/3

me
. ~13!

Hereq denotes the charge state of each nucleon,r5rp1rn
is the nucleon number density,kFq5(3p2rq)

1/3 is the Fermi

momentum, andeFq5AkFq
2 1m* 2. Hereeke, me , andre are

the kinetic energy density, mass, and density of electro
respectively. Since the electron Fermi energy is much hig
than the Coulomb energy, we can assume that electrons
ultrarelativistic, uniformly distributed. We can approxima
eke to be the energy density of the uniform relativistic Fer
gas. Thee0 term is the usual Thomas-Fermi approach, wh
thee2 term is the relativistic correction of the energy dens
of the order of\2.

The semiclassical ground state densityrq and the meson
and photon fields are obtained by applying the variatio
principle to the semiclassical energy densityesc,

mp5eFp1gvV01eA022X1p¹
2rp2X2p¹

2m*

2
]X1p

]rp
~¹rp!

222
]X1p

]m*
~¹rp•¹m* !

2S ]X2p

]m*
2

]X3p

]rp
D ~¹m* !21

1

2
grb0 , ~14!

mn5eFn1gvV022X1n¹
2rn2X2n¹

2m*2
]X1n

]rn
~¹rn!

2

22
]X1n

]m*
~¹rn•¹m* !2S ]X2n

]m*
2

]X3n

]rn
D ~¹m* !2

2
1

2
grb0 , ~15!

~¹22mv
2!V052gvr, ~16!

~¹22mr
2!b052 1

2gr~rp2rn!, ~17!

~¹22ms
2!f052gsrs1bf0

21cf0
3, ~18!

¹2A052e~rp2re!, ~19!

where
s,
er
are

i

l

rs5
]esc

]m*
~20!

is the semiclassical scalar density andmp and mn are the
chemical potentials~including the rest mass! of protons and
neutrons, respectively.

In our calculations, we assume that in the inner crusts
neutron stars, the protons are confined in nuclei and
nucleus is referred to as the space in which protons and
trons coexist. As was done in@12#, we assume that the
spherical nuclei form a body-centered-cubic lattice. T
whole space is divided into hexagonal cells of volumea3,
wherea is the lattice constant and each cell contains o
nucleus. Although the whole space is divided into unit ce
it is still very difficult to calculate the energy of unit cell
numerically. In order to simplify our calculations, th
Wigner-Seitz approximation is applied. The actual hexago
cell is replaced by the Wigner-Setiz cell which is defined
a sphere with volumea3. Each cell is assumed to be electr
cally neutral and interactions among cells are neglected.

At a given nucleon number densityr, we use Eq.~6! to
calculate the total energy per unit cell. Then we minimize
average energy per nucleon with respect to variation of
proton fractionYp ~b stability! and the lattice constanta.
The nucleon density distributions inside the unit cell are
termined by Eqs.~14!–~19!. These equations constitute a s
of nonlinear differential equations and are solved nume
cally by the imaginary time step method@19,21#, which will
be discussed in detail in Sec. IV. It should be noted that
solutions must satisfy the conditions of beta equilibrium a
charge neutrality simultaneously. Theb-stability condition
requires

~E/N!~YP!5minimum, ~21!

whereE/N is the average energy per nucleon, and this c
dition can be written in the familiar form@22#

^mn&2^mp&5^me&, ~22!

where ^mn&, ^mp&, and ^me& are the expectation values o
chemical potentials of neutrons, protons, and electrons,
spectively. Note that after neutrons drip off from nuclei, t
neutron chemical potential inside nuclei is the same as
outside nuclei, and it should be independent of the posit
But the proton chemical potential is independent of the
sition only within the nuclei. We assume that the chemi
potential is the same as the Fermi energy and this is tru
zero temperature. Moreover, the Fermi momentum of e
trons iske5(3p2re)

1/3 and the electron chemical potenti
me can be written as

me5~ke
21me

2!1/22eA0 , ~23!

andmp andmn are obtained from Eqs.~14! and~15!, respec-
tively. The charge neutrality condition requires

re5
*cellrpdr

a3
. ~24!

It implies that the number of protons and the number
electrons inside a unit cell are the same.
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III. CHOICE OF PARAMETERS

The BB Lagrangian contains eight parameters which
the meson-nucleon coupling constantsgv , gr , andgs , the
meson massesmv , mr , andms , and the two constants of th
meson-meson self-coupling,b andc. We choose the param
eter sets taken from@23# listed in our Table I for severa
reasons.

First of all, these parameter sets can give reasonable s
ration properties of nuclear matter. Among the saturat
properties of nuclear matter, the incompressibilityK seems
to be a main uncertainty. The experimental value of the
compressibilityK is obtained by the analysis of giant mon
pole resonance of nuclei; however, Blaizot@24# obtained
K5210630 MeV and Sharmaet al. @25# obtainedK5300
625 MeV. The corresponding nuclear matter properties s
as binding energy per nucleonE/N, saturation densityr0,
symmetry energyasym, and effective massm* /m at satura-
tion are fixed at215.75 MeV, 0.16 fm23, 36.8 MeV, and
0.75, respectively, and the range of incompressibilityK is
from 200 to 300 MeV. We also list the incompressibilityK
for the three parameter sets labeled BBI, BBII, and BBIII
Table I. These values are close to those obtained from
nuclear experiments. Among the parameter sets, only
BBIII set has a positive coupling constantc.

Second, we have used these parameter sets to calc
the binding energy, neutron rms radius, and proton rms
dius of40Ca in Table II~for detailed calculations see the ne
section!. The results are well consistent with those of@18#.

Third, following Pethick, Ravenhall, and Lorenz@26#, we
have compared our energy per nucleon of neutron matter
function of density with that from the microscopic calcul
tions @27–30# and from the Skyrme model of@31#. It can be
seen from Fig. 1 that our result based on the BBIII mode

TABLE I. Parameter set BBI, BBII, and BBIII for the nonlinea
BB model.

Parameters BBI BBII BBIII

gs 8.2855 8.0732 7.8702
gv 9.2475 9.2475 9.2475
gr 8.8152 8.8152 8.8152
b ~fm21! 23.9076 15.5068 8.0380
c 247.5412 212.9438 16.2137
m ~MeV! 939 939 939
ms ~MeV! 500 500 500
mv ~MeV! 783 783 783
mp ~MeV! 763 763 763
K ~MeV! 200 250 300
re

tu-
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h

he
e

late
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s

very consistent with that from the Skyrme model atr,0.1
fm23 and is rather consistent with the microscopic ‘‘data
even though our BBI and BBII results depart significan
from these ‘‘data.’’

Finally, we have obtained rather reasonable structure
neutron stars based on the BB models in the relativi
mean-field theory@20#.

IV. NUMERICAL SCHEME

In this section, we present the numerical method for fin
ing the energies and density distributions of nucleons a
given density. In order to find the solutions, we have to fi
solve a set of coupled differential equations which consis
the field equations and the nucleon equations, then vary
proton fractionYp to achieve theb-stability condition, and
finally minimize the energy with respect to variation of th
lattice constanta. We divide the numerical procedures in
three parts as follows~a more detailed description of th
numerical scheme, cf.@32#!.

~1! At a given densityr, a lattice constanta, and a proton
fractionYP , the coupled equations~14!–~19! are solved nu-
merically by the imaginary time step method@19,21#, until
self-consistency is achieved. The imaginary time s

FIG. 1. Energy per nucleon of neutron matter measured from
nucleon mass as a function of nucleon number density. Res
from microscopic calculations are represented with data poi
The diamonds are the values obtained using theV14 potential plus
a three-nucleon interaction from@27# and the1 signs using the
Reid potential from@28#. The triangles are nonrelativistic calcula
tions using Bonn-A potential from@30#. The squares and crosses a
relativistic calculations using the Bonn-A potential from@29# and
@30#. The dashed line is taken from the Skyrme model of@31#. The
solid, dotted, and dot-dash lines are our results corresponding to
BBI, BBII, and BBIII models.
n in

TABLE II. Comparison of our calculated results with those obtained by Centelleset al. @18# for finite

nucleus40Ca with the parameter sets BBI, BBII, BBIII, and SRK3M7. The total binding energy is give
MeV, and the neutron rms radius and the proton rms radius are in fm.

Parameter set BBI BBII BBIII SRK3M7~our results! SRK3M7 ~Centelleset al. 1992!

E ~MeV! 2366.5 2334.9 2331.0 2348.13 2348.1
r n ~fm!

3.14 3.14 3.14 3.169 3.17
r p ~fm! 3.11 3.11 3.11 3.205 3.21
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method has been used in nonrelativistic Hartree-Fock
extended Thomas-Fermi calculations. Consider a gen
time-dependent equation

i
]

]t
w5ĥw, ~25!

which is formally solved as

w~Dt !5exp~2 iDtĥ!w~0!. ~26!

Assuming the time stepDt is replaced by an imaginary quan
tity 2iDt, the repeated action of the exponential

w~n11!5exp~2Dtĥ!w~n!, ~27!

followed by a normalization ofw, causes the wave functio
to converge to the lowest eigenstate ofĥ.

In our case, the corresponding Euler-Lagrange equat
~14! and ~15!,

desc

drq
5

]esc

]rq
2¹

]esc

]~¹rq!
5mq , ~28!

are written in a form similar to the Hartree-Fock equation

~2Mq¹
21Vq!cq5mqcq , ~29!

where cq5r q
1/2, which has no apparent physical signi

cance. We define, forq5protons,

Mp54X1pcp
2, ~30!

Vp5mp1Mp

¹2cp

cp

5eFp1gvV01eA024X1p~¹cp!
22X2p¹

2m*

24
]X1p

]rp
cp
2~¹cp!

224
]X1p

]m*
~cp¹cp•¹m* !

2S ]X2p

]m*
2

]X3p

]rp
D ~¹m* !21

1

2
grb0 ~31!

and, forq5neutrons,

Mn54X1ncn
2, ~32!

Vn5mn1Mn

¹2cn

cn

5eFn1gvV024X1n~¹cn!
22X2n¹

2m*

24
]X1n

]rn
cn
2~¹cn!

224
]X1n

]m*
~cn¹cn•¹m* !

2S ]X2n

]m*
2

]X3n

]rn
D ~¹m* !22

1

2
grb0 . ~33!

For actual numerical computation, the propagation equa
~27! is approximated as
d
ral

ns

n

S 11
D

2
hRETF

~n11/2!Dcq
~n11!5S 12

D

2
hRETF

~n11/2!Dcq
~n! , ~34!

in order to avoid instabilities, andhRETF
(n11/2) is estimated be-

tween stepn and n11 for satisfactory accuracy. We writ
these two equations, together with the field equations, in
cretized form. The differential operators, densities, and fie
are represented on a discrete mesh in coordinate space w
spacingDr;0.1 fm. Between stepn and n11, we use
Gaussian elimination to solve the discrete Poisson
Helmoholtz equations to obtain the Coulomb potentialA0
and the Yukawa potentialsV0 and b0, respectively. How-
ever, the scalar meson potentialf0 is particularly found by
Gaussian elimination of the discrete equation

~¹22ms
2!f0

~n811!52gsrs~rq
~n! ,f0

~n8!!1b~f0
~n8!!2

1c~f0
~n8!!3, ~35!

wheren8 is another index. At thenth-iteration stage of Eq.
~34!, Eq. ~35! has to be iterated until consistency

f0
(n811) is achieved. In our calculations,Dt is set to 0.004.

Starting from a reasonable guess forrq andrs , convergence
is generally achieved to within 1026 MeV for the energy per
nucleon after about 100 iterations of Eq.~34!. Note that the
densities converge slower than the energy.

~2! After obtaining the solution of the second-order sem
classical variational equations, we check whether the ca
lated solution satisfies theb-stability condition. If not, the
proton fractionYp8 is altered according to Eq.~22!,

^@~3p2Yp8r!2/31me
2#1/22eA0&5^mn&2^mp&, ~36!

until the b-stability condition is satisfied. Whenever w
change the proton fractionYP , the solution of the variationa
equations must be calculated again. It normally requi
about 20 iterations of Eq.~36! to achieve the desired accu
racy,dYp<1026.

~3! Finally, we vary the lattice constanta in order to
obtain the optimum energy at a given densityr. Since the
nucleon distributions change whenever the lattice constaa
is altered, the above-mentioned numerical procedures m
be repeated for every value of lattice constanta.

For calculating the energy and nucleon density distrib
tions of finite nuclei, only part~1! is required. To test our
computer code, we compare our results for finite nuclei
those obtained in@18# with the same approach and parame
set, namely, SRK3M7. In Table II, we see that our calcula
results of energies and proton and neutron rms radii for40Ca
are the same as those calculated in@18#. Figure 2 shows our
results of proton density distributions of40Ca calculated in
the RETF\2 approximation with the parameter set SRK3M

In the second part of our numerical procedures, we
use Eq.~21! instead of using Eq.~22! to find the optimum
proton fractionYP . Within the density range of interest, bot
methods yield the proton fraction that agrees to a value w
discrepancies less than 0.02%.
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V. RESULTS

We can now calculate the energies of spherical nuclei
of uniform matter. By comparing the energy differences b
tween the two phases, we can estimate the densities o
crust-core transition region and deduce the effect of inco
pressibilityK. In addition, the density distributions of neu
trons and protons at various densities are obtained during
calculations.

A. Energies of spherical nuclei and uniform matter

In Table III we list the energy per nucleon~including the
nucleon rest energy! of cold uniform neutron-star matter as
function of nucleon number density calculated in the B
nonlinear model with parameter sets BBI, BBII, and BBI
One sees that the energy per nucleon of cold unifo
neutron-star matter depends insensitively on the incompr
ibility K at subnuclear densities.

We show the energy per nucleon of spherical nuclei re
tive to that of uniform matter in Fig. 3. For all the thre
parameter sets, as the density of matter increases, the d
ences between two phases become small, and the sph
nuclei eventually dissolve into uniform matter. The densit
for transition from spherical nuclei to uniform matter a
listed in Table IV. The phase transition takes place
r'0.058 fm23 for parameter set BBI, and 0.066 and 0.0

FIG. 2. Charge densities of40Ca obtained with the parameter s
SRK3M7 in the RETF\2 approximation.

TABLE III. Energy per nucleon of uniform cold neutron-sta
matter with parameter sets BBI, BBII, and BBIII.

Nucleon number density
~fm23!

BBI
~MeV!

BBII
~MeV!

BBII
~MeV!

0.01 941.58407 941.99574 942.3930
0.02 941.96163 942.60384 943.2392
0.03 942.31321 943.06656 943.8250
0.04 942.77903 943.56324 944.3621
0.05 943.38934 944.15047 944.9315
0.06 944.14577 944.84844 945.5722
0.07 945.04096 945.66321 946.3046
0.08 946.06479 946.59468 947.1398
0.09 947.20676 947.63995 948.0836
0.10 948.45684 958.79488 949.1388
d
-
he
-

he

s-

-

er-
ical
s

t

fm23 for parameter sets BBII and BBIII, respectively. We
can observe that the smaller the value ofK, the lower the
density at which the phase transition occurs. Although the
transition densities are different for three parameter sets, th
differences ofYp among various parameter sets are small. I
implies that the incompressibilityK has little effect on the
proton fraction. In Fig. 4 we show the proton fractionYp as
a function of nucleon number density with parameter se
BBIII.

B. Nucleon density distributions

As the density of matter increases, all three parameter se
yield similar nucleon distributions. For illustration, we only
show the results with parameter set BBIII which yields the

FIG. 3. Energy per nucleon of spherical nuclei relative to that of
uniform matter as a function of nucleon number density.

FIG. 4. Proton fractionYp as a function of nucleon number
density with parameter set BBIII~K5300 MeV!.

TABLE IV. Densities for transition from spherical nuclei to
uniform matter.

Parameter set Transition density~fm23!

BBI 0.058
BBII 0.066
BBIII 0.073
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FIG. 5. Neutron~upper! and proton~lower! density distributions along an axis joining the centers of adjacent unit cells with param
set BBIII ~K5300 MeV!.
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largest phase transition density. The density distributions
neutrons and protons at different nucleon number dens
are presented in Fig. 5, which shows the densities along
axis joining the centers of adjacent unit cells. It can be
served that the lattice constanta reduces and the nuclea
density distributions become more and more uniform as
matter density increases. The obtained results are consi
with those obtained in@1#. It can be seen from Fig. 5 that th
assumption of a sharp nuclear surface used in the comp
ible liquid drop calculations is unrealistic.

C. Energy of nonspherical nuclei

We now consider the nonspherical nuclei in this subs
tion. As was done in@12#, the stable nonspherical nucle
shapes we consider are cylinder and slab. We assume
cylinder nuclei form a two-dimensional hexagonal lattic
Similar to the case of spherical nuclei, we divide the wh
space into appropriate unit cells of volumea3. The unit cell
for cylinder nuclei is a prism with base areaa2 and heighta.
For slab nuclei, the unit cell is a cube whose edge is equa
the lattice constanta. To simplify the calculation, we also
use the Wigner-Seitz unit cell of a cylinder with base areaa2

and heighta to replace the actual unit cell of a prism fo
cylindrical nuclei. The energy differences between vario
shapes of nuclei and uniform matter are shown in Fig. 6.
find that the energetically most favorable nuclear sh
changes directly from spherical to uniform matter for
three parameter sets. That means the phases with nonsp
cal nuclei are never in the equilibrium state at any density
our models.
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VI. DISCUSSION AND CONCLUSIONS

In the past there have been many studies of the nucle
neutron-star crusts and the transition to the uniform ph
~for a brief review see@26#!. The earliest works@4,5# were
based on the use of a semiempirical formula to estimate
masses of the nuclei, together with an expression for
energy of the neutron gas outside nuclei calculated fr
many-body theory and the nucleon-nucleon interacti
These led to rather low densities for the transition betwe
the nuclear phase and the uniform one. In the case of@4#, the
density was about 0.3r0;531013 g cm23, while the work of
@5# gave a slightly small density. In both of these works t
transition was found to be relatively sharp. The importa
point of the works in@6–8# is that the energy of nuclea
matter in nuclei and the energy of the neutron matter outs
were evaluated from one and the same expression for
energy density as a function of neutron and proton densit
The transition density given in@6# was close to the saturatio
density of symmetric nuclear matter, while in the latter tw
references it was about 1.531014 g cm23, or just over half
the saturation density. The most recent development is
discovery@12,13# that in a large fraction of the crustal ma
ter, nuclei may be rodlike or platelike rather than of rough
spherical shape. Oyamatsu@12# used the Thomas-Fermi ca
culations with four energy density functionals and found th
the transition densities were between 0.086 and 0.094 fm23.
Lorenz et al. @13# adopted two microscopic interaction
named the Skyrme interaction and the interaction of@27# and
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FIG. 6. Energy differences between various shapes of nuclei and uniform matter.
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obtained transition densities of about 0.0725 and 0.0
fm23, respectively.

In this paper, the properties of nuclei, i.e., energi
shapes, and nucleon density distributions, in the inner cr
of neutron stars are studied in the framework of a relativis
mean field~RMF!. We perform the semiclassical relativist
extended Thomas-Fermi~RETF! calculations for the relativ-
istic nonlinear~s, v, r! model with three sets of parameter
which cover the commonly accepted range for the inco
pressibilityK ~see Table I!. The parameters of the effectiv
Lagrangian are fitted to the bulk properties of nuclear ma
except that the incompressibilityK is treated as an unknown
We find that the density of the crust-core transition reg
increases with an increase of the incompressibilityK and the
largest phase transition density to uniform matter found
r'0.073 fm23, a density well below the nuclear densityr0.
If a neutron star has a lower phase transition density, its m
and moment of inertia of the crust will be reduced. Sin
these two quantities play important roles in models
glitches~e.g., see@33#! and of thermal evolution~e.g.,@34–
36#!, it is expected that with astronomical observations su
as surface radiation and glitch events of neutron stars,
calculated results can be indirectly tested.

We also find that spherical nuclei are the only equilibriu
state in the inner crust of neutron stars. It can be seen tha
results are not in good agreement with the Thomas-Fe
calculations of Oyamatsu@12#. His study gives that the
nuclear shape changes from sphere to cylinder, slab, c
drical hole, and spherical hole successively as the den
increases and obtains higher phase transition density. H
7
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ever, it is very interesting that our results are very similar
the recent results obtained in@13# based on the SKM inter-
action. In these liquid drop calculations, two differe
Skyrme-type interactions named FPS and SKM are us
The two interactions yield two different results, and the
sults for the FPS interaction are similar to that of@12#.
Therefore the calculated results are sensitively dependen
the still incompletely understood nucleon-nucleon inter
tion.

We next analyze why the phase containing spherical
clei is favored in the present case over the phase contai
nonspherical nuclei in the inner crust of a neutron star. F
lowing Ref. @3#, the density range in which the latter pha
may appear can be delimited by some general considerat
At the lower end, the appearance of nonspherical nuclei m
be due to the instability of spherical nuclei to fission. At t
upper end, there is a limiting density at which the pha
transition from nuclei to uniform nuclear matter occurs. T
Bohr-Wheeler condition for the fission of isolated spheric
nuclei is that the nuclear Coulomb energyECoul>2Esurf
~whereEsurf is the surface energy!. Furthermore, the condi
tion for equilibrium under strong interactions in the crust
a neutron star requiresEsurf52ECoul~121.5r N/r cell!, where
r N and r cell are the nuclear radius and the Wigner-Seitz c
radius, respectively. These two conditions show that
r N/r cell>1/2, the equilibrium nuclei are unstable to fissio
This corresponds to nuclei filling 1/8 of space. In the de
layers of the inner crust of a neutron star, the drippe
neutron density is usually;50% of the nuclear densityni
@3#. So as the matter density increases to;5ni /9, spherical
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nuclei are unstable to fission. In the present case,ni'0.15
fm23 and thus the lower limiting density for the appearan
of nonspherical nuclei,nlow;0.083 fm23. Because the den
sity for the phase transition from nuclei to uniform nucle
matter~see Table IV! is less thannlow , we conclude that the
spherical nuclei may be only the equilibrium state in o
case. From Table 3 in@3#, we can see that for the Skyrm
interaction or the interaction of@27# the density for the ap-
pearance of nonspherical nuclei is less than that for the t
sition from the phase containing nuclei to uniform nucle
matter. Thus, for these interactions nonspherical nuclei
reasonably exist in the inner crust of a neutron star.

It is possible that improvements of our work can be ma
c

m

ev

ys

or

e

J.

n.
e

r

r

n-
r
n

e

in future studies. For example, shell effects of differe
nuclear shapes may be included. By using the so-called
pectation value method, Centelleset al. @18# incorporated
shell effects into the semiclassical calculation for spheri
finite nuclei. Besides, we may calculate the Coulomb ene
accurately rather than use the Wigner-Seitz approximatio
simplify our calculations. It has been shown that the diffe
ence between the exact value and the results of the Wig
Seitz approximation is dependent on the nuclear shapes@11#.
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