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The thermoelectric power of charge carriers heated under a strong applied electric field in semi-
conductors is obtained by use of the nonequilibrium-statistical-operator (NSO) method. The balance
equations are derived in terms of the NSO density matrix and the force-force correlation functions
which can easily be calculated for a system with electron-impurity and electron-phonon interactions.
A numerical study has been performed for hole-doped Ge. It is shown that the hot-electron ther-
moelectric power is sensitively affected by the applied electric field and that its sign is reversed at

higher electric fields.

I. INTRODUCTION

Recently there has been a revival of research activi-
ties!'2 on the thermoelectric properties of materials, par-
ticularly due to their relevance to the thermoelectric cool-
ing technology.? For a material to be a good thermoelec-
tric refrigerator, it must have a high Seebeck coefficient
or thermoelectric power S.173 Therefore, it would be in-
teresting to derive an effective formula to calculate the
thermoelectric power and examine the hot-electron effect
that often exists in thermoelectric measurements.

The purpose of this paper is to study S of hot carriers
in semiconductors under a uniform electric field E and
calculate the variation of S with E. The physical process
under consideration is the thermoelectric Seebeck effect
in the presence of a crossed electric field E and a lattice
temperature gradient VI'. With strong electron-electron
interaction, electrons heated by the strong electric field
equilibrate among themselves at an electron temperature
T, which is usually higher than the lattice temperature
T. On the other hand, the applied VT causes an elec-
tronic temperature gradient V7, via electron-phonon in-
teractions so as to give rise to a nonuniform electronic dis-
tribution or a chemical potential gradient Vy under the
open circuit conditions. Since VT is the driving force re-
sponsible for the Seebeck effect, we define a hot-electron
thermoelectric power as S = —e~}(Vu/VT) with e the
electron charge. It is assumed that the phonon-drag con-
tribution to S may be neglected in the range of electron
temperatures of interest. The present definition for S
differs from that in Ref. 4, where the crystal lattice is as-
sumed to remain at uniform temperature (VT = 0), and
so the only driving force for the Seebeck effect is VT,
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caused by a nonuniform microwave heating.

Although there exist some investigations of the ther-
moelectric power for charge carriers heated by a strong
microwave field in some literatures,*® to our knowledge,
the topic proposed here has not yet been studied. Fur-
thermore, the previous interpretation of the experimen-
tal results® was based upon the Boltzmann equation
in the relaxation-time approximation.® It is significant
to develop a fundamental theory for S in terms of the
nonequilibrium-statistical-operator (NSO) method® and
the balance equation approach.”® In the next section,
we will extend the NSO method of hot-electron trans-
port® to weakly nonuniform systems in the presence of
both a strong F and a small VT, yielding its statistical
density matrix. Starting from this, in Sec. ITI, we derive
an analytic formula for S as a function of T, the latter
being determined by force and energy balance equations.
In Sec. IV, a similar formula for S is obtained by solving
the Boltzmann equation in the relaxation-time approx-
imation. Finally, numerical results for hole-doped Ge
are presented in Sec. V. It is shown that the hot-electron
thermoelectric power is sensitively affected by E and that
its sign changes at higher electric fields.

II. NSO DENSITY MATRIX

Let us consider a system involving N interacting elec-
trons under the influence of a uniform electric field E
along the z axis and a small lattice temperature gra-
dient VT along the y axis, subject to impurity and
phonon scattering. The total Hamiltonian of the sys-
tem is H = [ dr[H.(r) + He(r) + Hpn(r) + Hei(r)]. Here
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we have separated the electron Hamiltonian into the
center-of-mass part H, and the relative part H..” Hyy is
the phonon Hamiltonian, and H,, includes the electron-
impurity and electron-phonon interactions. Thermal per-
turbations due to the applied temperature gradient are
not included in the Hamiltonian, but described by adding
an extra term to the following entropy production oper-
ator in the NSO density matrix. The statistical density
matrix in the NSO approach has the form?®?°

0

p(t) = exp dt'et' St +¢,t)|. (1)

_5(t,0) + /

—0o0

Here S(t,0) = ¥(t) + 3, [drFp,(r,t) P, (r), is the en-
tropy operator of the system where P,, are the ba-
sis dynamic operators, and F;, are the thermodynamic
parameters conjugate to the average values of P,,.
U(t) = InTr{exp[—Y_,, [ drF,,(r,t) Py (r)]}, is the nor-
malization coefficient such that Trp, = 1 with p, =
exp[—S(t,0)] corresponding to the quasiequilibrium sta-
tistical operator in the absence of dissipative processes.®
The entropy production operator is the time derivative
of S(t,0). For the steady-state transport under consid-
eration, F,(t) = 0, then we have

Smm=2/ammmmm—mwML )

where (---)p = Tr(-- - p¢), and
S(t,t') = exp(iHt')S(t,0) exp(—iHt'),

whose second argument denotes the Heisenberg time de-
pendence. The success of the application of the NSO
method often depends on the appropriate choice of P,
and F,,. In order to describe correctly hot-electron trans-
port behavior under a strong electric field and a weak
temperature gradient, we choose®

{Pm(r)} = {He(r), Hon(r), N(r)}, 3)

and
{Fm(r’ t)} = {ﬂe(r’ t)’ ,3(1‘, t)’ —ﬁE(r’ t)/-’“(ra t)}, (4)

where 3. and p are the reciprocal effective temperature
and the chemical potential of the electrons and 3 is the
reciprocal temperature of the lattice. It should be noted
here that S(¢,0) only contains the relative part of the
electron Hamiltonian because a quasiequilibrium statisti-
cal operator is always independent of the center-of-mass
motion.®® The time derivatives of the operators P,,(r)
appearing in § (t,0) can be shown to satisfy the following
equations:®

P (r) + divd,n(r) + i[Pra(r), H] = 0, (5)

where J;(r) and J,(r) are the energy flux densities of
electrons and phonons, respectively, and Js(r) is the
electron-number flux density. Substituting Eq. (5) into
Eq. (2) and integrating by parts, we obtain
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S(t,t') = / dr{Be(r, t)He(e) (r, ') + B(r, t) Hon(e (r, t')
£ (e t) = A, el - VEm(r, 1)), (6)

where H() = —i[He, Hel] and Hpp(ey = —i[Hpn, Hel]. It
can be seen from Eq. (6) that the entropy production
comes from two types of dissipative processes: the en-
ergy or particle flux, and the energy transfer from hot
electrons to the lattice. One can see from Eq. (6) that
all the terms in $(t,t') contain small parameters. In the
first two terms both He(e) and Hyp(e) are proportional
to the electron-impurity and the electron-phonon inter-
actions,” which have been regarded as being small in the
hot-electron transport theory.”® Those terms that ap-
pear in VF,, are also small for weak spatial inhomogene-
ity. We can thus expand p(t) to the first order in S(¢,t’)
(Ref. 8)

0 1
p(t) = pg (1 + / dt'est' / dwe™wS(.0)
—oo 0

xS+t t')e“’s(t’o)) . (7)

Since the present approach is confined to the linear
approximation in VF,,, we can replace all the parameters
in Eq. (7) by their corresponding spatial average values.
Under this approximation the statistical density matrix
at a steady state can be written as

0 1
p= Pt{]- + [ dt'eetl /0 dw [ﬂeHe(l) (t’, iw)
+ﬂth(1) (tl, iw)
+mew—mwwmvmm”-m

Here py = exp[— ¥ —Bc(He+aHy,—pN)| witha = T, /T,
and A(t',iw) = exp[—wPBe(He + aHpn)]A(t') exp[wB.(H.

+aHpy)] with A(t') having the Heisenberg time
dependence.! J, = Zk(aek/ak)ekclck, J, =
> q(092/0Q)ucablbq, and I3 = 3, (dex/IK)cf e,

where ex = k2/2m is the energy of the electron with
momentum k and g, is the energy of the phonon with
momentum q in branch A. Since VF,,(t') should be
switched on adiabatically, limy_, o, VF,,,(¢') = 0, it is
reasonable to take VF,,(t') = F,et'/T with 7 the av-
erage relaxation time due to the electron-impurity and
electron-phonon scattering as well as the interactions be-
tween electrons. For the terms involving VF,,(t') in
Eq. (8), the integrations over ¢ and w are easily done,
and so the NSO density matrix is given by

(1] 1
p= pl{l + -/_ dtlest' A dw l:ﬁeHe([) (t’, ’LT)

+,@th(3) (t', iw)

+) T[T = (Tm)e) - vpm] } 9)
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III. HOT-ELECTRON THERMOELECTRIC
POWER

In the steady state, hot-electron transport is deter-
mined by the force and energy balance equations. The
time derivatives of the center-of-mass momentum oper-
ator P and the Hamiltonian operator H. of the rela-
tive e.lectron system are given by P = NeE — i[P, H,]
and H, = —i[H,, He)] with N the charge carrier density.
Their statistical averages with respect to the density ma-
trix given by Eq. (9) should vanish for the steady state,

e, (P) =0 and (He) = 0. Taking E to be along the z
axis and VF,, along the y axis, and using the standard
Green’s function technique,”® we obtain for the force
and energy balance equations

NeE + F(vq,T.) =0, (10)

NeEvy — W(vq,Te) = 0, (11)

where v, is the drift velocity due to the applied electric
field, and

F(va,T.) =2 |M(g,A)[*g=T12(q, gzva + Qg2)

q,\
X[n(B2r) — 1(Be(gzva + Rgr))]
+n: Y |u(g)|*g=112(a, ¢zva), (12)

W(va,Te) =2 |M(q, V)[*Qeall2(q, 2va + Dga)
q,A

X[n(BRgx) — n(Be(gzva + Rqr))]- (13)

Here M(q,)) and u(q) are, respectively, the electron-
phonon and electron-impurity interaction matrix ele-
ments, and n; is the impurity concentration. n(w) is the
Bose factor. II(q,w) = Y, a(k,q,w) =27y, [f(ex)—
flext+q)] 6(w — ex + €xtq), is the imaginary part of the
retarded electron density-density response function with
f(w) as the Fermi function at the temperature T.. Its
renormalization due to the Coulomb interaction between
electrons can be easily obtained in the random-phase ap-
proximation.” Equations (10)—(13) can be used to deter-
mine the solutions of v4 and T, for given F and T'. In the
low-field limit, taking T. = T and expanding F(vq,T)
to the linear order in vg: F(vg) = —Nm7; vg, from
Eq. (10) we get the Ohmic resistivity p = (m/N et
where the inverse transport lifetime 7, = 7,71 + Toh o
with

ZI (q)|2¢2 2dll2(k, q,w) ) (14)

i = Nm dw

w=0

= 2 ePPax
Toh = oo TZIM 02?21 (k, q, q«\)(ﬁT__l)—z'

(15)

The electric current density is given by J = (e/m)(P).
The statistical average of P with respect to Eq. (9) is
easily performed, yielding J, = Nevq = 0E witho = 1/p
and

N
Jy = ( me) (Te(Ks/2 — nK3/2)VBe — K3/2Vp], (16)

where

Be

K, = ;3/—2 /:0 Teedef(e)[l — f(e)]- (17)

The hot-electron thermoelectric power is defined as S =
—e ™ Y(Vu/VT) under the open circuit condition (J, =
0), and then we have

_ 1 Ky oT,
- (@) () (%), e

where (87T./8T)g is determined by Egs. (10)-(13).

is interesting to notice that in the low-field limit where
T = T and (0T./0T)g = 1, the present formula for
S has the same form as that obtained from the Boltz-
mann equation approach in the relaxation time approx-
imation provided that the relaxation time 7 in Eq. (17)
is considered to be energy dependent [r = 7(€)].2:13
It will be shown in the next section that in the hot-
electron transport problem 7 is mainly determined by
the strong electron-electron interaction rather than by
the electron-impurity or electron-phonon scattering. The
present result for S, derived within the balance equation
approach,”™® is believed to be suitable for systems with
strong electron-electron collisions.!? If 7 is assumed to be
a constant, the ratio of K5/; to K3/ is independent of
scattering. In this case, one finds from Eq. (18) that the
scattering effect on S is embodied only in (8T./0T)g,
and in the low-field limit S becomes independent of scat-
tering.2''® In most semiconductors the carriers in ther-
mal equilibrium obey the Maxwell-Boltzmann distribu-
tion. Under the assumption of a constant 7, K, is easily
evaluated and a simple formula is obtained as

k 5 m T,
- alE), -

with p = kpT. In[(N/2)(2wh? /mkpT.)3/?).

IV. BOLTZMANN EQUATION APPROACH

In order to show the applicability of Egs. (18) and (19)
to the hot-electron transport we use a relaxation-time
collision model'* to derive the formula for S in the limit
of T. = T. In the presence of an electric field F along the
z direction and a temperature gradient VT along the y
direction the Boltzmann equation can be written as
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I:eEvm — vy (ek; Eor + V,u,)} (?Tf
Kk

one-body two-body

. (20)

T ot

collision collision

All the drift terms due to external forces are placed on
the left-hand side of the equation. The one-body and
two-body collision terms describe the scattering of elec-
trons by phonons and impurities and the scattering due
to the electron-electron interaction, respectively. Under

the relaxation-time approximation they are given by!214
one-body
ol M-l e
collision
two-body
of -1
- = —Te [f(k) — fo(k — mvq)], (22)
collision

where fo(k) is the equilibrium distribution function. The
effect of the two-body collision term is to drive the dis-
tribution at a rate 1/7.. towards a displaced Boltzmann
distribution with a center-of-mass momentum muvg, while
the one-body scattering is to drive the distribution at
a rate 1/7¢ towards the equilibrium one. Substitut-
ing Egs. (21) and (22) into Eqg. (20) and expanding
fo(k — mvy) to the first order in v4,'2 we obtain the
correction to the distribution function, g = f — fo, as

g(k) = —Teff [EE'Um —_ vy (Ek; NVT + V”)} %

aék
e fo
Tee Okg’

—muy (23)

where Tef = TkTee/(Tk + Tee). The electric current den-

sity can be calculated by J = (e/m) Y, kg(k). It then
follows from Eq. (23) that

Jm<7'eff> _ Ne’E
Tk o m

J<> = 2 (remendo — wlre)o) VT T

Tk

(Tett)o, (24)

+(Temr)o Vi, (25)

where

(A(k))o = (2/3N) Y A(k)ex(—0fo/ex)- (26)
k

The results for o and S are easily obtained from Eqs. (24)
and (25). If 7., is much greater than 7y, one finds from
Teff =~ T that

o= Ym0, (27)

_ 1 {Tkex)o
e

which are just the well-known Boltzmann results. On the

other hand, the hot-electron transport problem belongs

to the opposite limit, i.e., Tee < Tk- In this case, Teg =

Tee, taking it as a constant independent of k, we have
Ne? 1

g = 721_/—7](—)0, (29)

)

In obtaining Eq. (30) we have used the relations (ex)o =
5kpT/2 and (1)o = 1. Equation (29) is the formula for
conductivity in the balance equation approach” 2 and
Eq. (30) is found to be the same as Eq. (19) in the limit
of T,=T.

V. NUMERICAL CALCULATION AND
DISCUSSION

As an example, we study the hot-electron effect on S
for p-type Ge. It is assumed that the transport is due
to the heavy holes with a parabolic band and the scat-
tering mechanisms include both acoustic and nonpolar
optical phonons. All parameters we employ are exactly
the same as those listed in Ref. 8. The procedure for cal-
culating S is to first determine vg and T, from the force
and energy balance equations [Egs. (10)—(13)], and then
to substitute them into Eq. (18) or (19) for obtaining
S. The calculated results for v4 and T, as functions of
electric field strength E at several lattice temperatures
are shown in Fig. 1, where a comparison between the

7.5 10.0
P-TYPE Ge
9.0
8.0
o~ 7.0
Z
g 6.0
- : =
g q450 ~
> : -
= a0 B
B
3.0
2.0
1.0
0.0
4.0

logio E (V/cm)

FIG. 1. Drift velocity vq (solid line) and temperature ratio
Te/T of holes as functions of the electric field strength at dif-
ferent lattice temperatures [(a) 20 K, (b) 77 K, and (c) 220 K].
The black dots refer to the experimental data on p-type Ge
from Ref. 13 for E along the (100) direction. All the param-
eters we employ are listea in Ref. 8.
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FIG. 2. Calculated thermoelectric power as a function of
the lattice temperature at different electric field strengths.

theoretical values for vg (solid lines) and experimental
data (black dots) of Reggiani et al.!®> has been carried
out. As shown by dashed lines in Fig. 1, the temper-
ature ratio T./T is larger as the electric field becomes
stronger and the lattice temperature becomes lower. Us-
ing the solutions for vy and T, and taking the density
of carriers as 1.3 x 10!*/cm3?, we have calculated S from
Eq. (19). In Fig. 2, we show the T' dependence of S at
different E, together with its zero-field result (the up-
permost curve). With an increase in FE, the hot-electron
S varies gradually towards the decreasing direction and
becomes negative at higher electric fields. The chemi-
cal potential is always negative over the parameter range
under consideration. It then follows from Eq. (18) that
the sign reversal in S comes from the sign change of
(8T, /8T)g. The calculated results shown in Fig. 3 in-
dicate that at high fields (e.g., E = 5000 V/cm), the
slope (0T./0T)E becomes negative over a large temper-
ature range, where negative S appears. In order to ex-
plain more explicitly why (87./0T)g becomes negative
at high fields, we take a nondegenerate semiconductor
with only the electron—acoustic-phonon interaction as an
example. Let us introduce a temperature-dimension pa-
rameter §, = mv? with v, the sound speed and m the
effective mass (, ~ 1 K for v, = 5 x 10° cm/s and
m = 0.6m.), then it is straightforward to show that
under the limit T./6, > 1 and to the lowest order in
(Te/6,)~1,7 the following equation can be derived from
Egs. (10)—(13):

NeE[va/vs + 3(va/ve) "] = 24(Tc/0,)%%,  (31)
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FIG. 3. Calculated hole temperature as a function of the
lattice temperature at different electric field strengths.

where A is a constant term. In the low-field limit:
vg/vs < 1 and T, close to T, Eq. (31) reduces to
NeE = (2A/3)(va/vs)(T./0,)%/?, which is the well-
known Ohm'’s law with vg varying linearly with E. In
this case, (0T./0vq4)E < 0, and further taking into ac-
count that (8vg/0T)g < O, one finds (0T./0T)r =
(8Te/6vd)E(6vd/8T)E > 0. The (avd/aT)E < 0 stems
from the fact that for a constant E, a decrease in T al-
ways leads to the decrease of phonon scattering, and so
the drift velocity vq increases. In the high-field case:
vg/vs > 1, however, the situation is quite different.
Equation (31) becomes NeEvg = 2A4v,(T./0,)%/? with
(8T./8v4)E > 0 so that (8T./0T)g < 0.

In summary, we have derived an analytic expression for
the thermoelectric power of electrons under a strong elec-
tric field by using the NSO method and the balance equa-
tion approach. At zero field it reduces to the same form
as that derived from the Boltzmann equation approach
in the relaxation-time approximation provided that the
condition Tk > Te. is well satisfied. The calculated re-
sults indicate that the hot-electron effect on S not only
changes its magnitude but also may alter its sign.
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