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We perform analytical calculations to study the persistent current I of a g-charged hard-core
boson gas in mesoscopic rings enclosing a magnetic flux ®, and find that this current is periodic in
® with the period ®¢ = hc/q. More interestingly, in the presence of a single §-function impurity,
it has been found that there generally exists a spontaneous Aharonov-Bohm flux as long as the

current-induced flux is included.

Mesoscopic metallic rings exhibit a spectacular ther-
modynamic property: they carry a persistent nondissi-
pative current due to the Aharonov-Bohm (AB) effect!
when they are threaded by a magnetic flux ® = § A - dl,
where A is the vector potential.?”® This current is a pe-
riodic function of the flux ® with the period ®q = hc/e.
In this case the flux ® which drives the persistent cur-
rent I is the sum of the externally applied flux ®.y¢ and
the flux ®; induced by the current itself, ® = ®cyy + P;.
Most theoretical discussions neglect the second term,”®
which is justified for the experimental structures realized
so far. Recently, Wohlleben et al.® addressed a possi-
bility that in the ballistic regime a mesoscopic metallic
ring can self-sustain a persistent current in the absence
of an external magnetic lux. Note that in metallic sys-
tems the charged carriers—electrons—are fermions. To
the best of our knowledge, there have been no investiga-
tions on the persistent current of a g-charged hard-core
boson gas in mesoscopic rings. Although a hard-core bo-
son is fermionlike in some sense, the parity effect due
to the finite number of hard-core bosons N will play a
crucial role in the existence of a spontaneous AB flux in
the ground state. In this paper, we study the persistent
current of a hard-core boson gas, via the AB effect, in
mesoscopic rings. As an interesting prediction, in the
presence of a single impurity with d-function potential,
the spontaneous AB flux does appear in these systems
regardless of the boundary condition being antiperiodic
or not and N being even or odd, which are, respectively,
in marked contrast with the impurity-free situation and
the case of metallic rings.

Let us first consider IV impenetrable g-charged bosons
in a ring with radius R (circumference L = 2w R), van-
ishingly small circular cross section 7(d/2)?, lying in the
zy plane. Here the magnitude of R should be chosen
so that bosons retain the phase memory throughout the
ring. A solenoid passes through the opening of the ring
and carries the static magnetic flux ®ext, which can be
continuously varied. This is a typical problem described
by the Hamiltonian of a one-dimensional (1D) hard-core
boson gas in the presence of the AB flux, which is defined
by the following conditions.

(i) The wave function is symmetrical with respect to
the interchange of particle coordinates (Bose-Einstein
statistics).
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(ii) The wave function satisfies the cyclic boundary
condition, which in the presence of the AB flux reads
in part

Y(zy+ L,x2,...,ZN) = e W(zy,2,,...,2N8), (1)
with a similar condition for the derivative. Here f =
®/® is the AB flux in units of the flux quantum @, =
hc/q. Equation (1) shows clearly that all physical quan-
tities will be the periodic function of & with the period
Py.

(iii) The wave function vanishes whenever two particle
coordinates coincide.!?

Because the wave function must vanish if any two par-
ticles touch, the full configuration space can be divided
into N! subspaces of the type R;: (0 < z3 < z2 <

- < zny < L). Inside R;, ¥ satisfies a free particle
Schrédinger equation, but since ¥ = 0 on the boundary
of Ry, ¥ must be a determinantal wave function, namely,

U(z1,Zg,...,2y) = det |e?Fn®i| (2)

in R;. On the other hand, condition (i) requires that ¥
should not change sign when two coordinates are inter-
changed. Consequently, in any region which is a permu-
tation of Ry,

U = (~1)P det |7 3)

where (—1)F denotes the sign of the permutation, and is
defined as the parity of the number of transpositions of
two variables which brings any other region to the region
R;. Under the modified boundary condition (ii), Eq. (1),
the k’s are found to be

2n/L)(n+ f) forodd N
Fn = { 227"§ng" + f)+ 1/2) for even N, (4)

where n = 0,+1,%+2,..., and f is in the range
[-1/2,1/2). Thus the energy level in the presence of
AB flux is given by

o (n+ f)? for odd N
Bn = (5)
2
siez(n+ f +1/2)? for even N,
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which is explicitly parity dependent due to the evenness
or oddness of N. Then, at zero temperature, the total
energy for a fixed number of particles is

E = <> h2n? N#2
- 2mR?2 ' 2mR?

n=-—ngo

1 (6)

for N = 2no + 1 with ng = 0,1,..., and

no—1
R(n+1/2)? N _,
E= n;_n 2mR? 2mR? f (7)
for N = 2ngy with ng = 1,2, ... . Using the relation®%12
q OF,
[ 8
e T (8)

one can obtain the persistent current in the ring

Nqh
T 2rmR2 £ )
which is a piecewise periodic function of the AB flux. In
each periodic region, I varies linearly with & and there
are discontinuous jumps when one period ®, is over.
‘We then consider the AB flux induced by the persistent
current itself. It is easy to see that the induced AB flux

and the magnetic energy are,® respectively,
Lc
=——7T 10
fr 3, (10)
and
@2

Ep = =% f? 11
B~ oce2’ (11)

which means that when ®; becomes comparable to @y,
the energy stored in the magnetic field of the system
also changes appreciably, away from the value &2, , /2Lc?
supplied by the external source to ®2/2Lc?. Here L is
the self-inductance of the ring and has the classical ex-
pression for the ring with circular cross section geom-
etry, L = () R[In(16R/d) — Z]. In the absence of
the external flux, fext = 0, Egs. (9) and (10) lead to
a unique self-consistent solution: f(*) = 0. On the other
hand, the total energy of the whole system consists of
two parts: the energy of particles in the ring £ and the
energy of the magnetic field Ep, ie., Er = E + Ep.
It is very interesting to find that the total energy Er
reaches its minimum just at f = f(*) = 0, which implies
that unlike the case of metallic rings, the spontaneous
current is absent in 1D mesoscopic rings composed of
hard-core bosons, regardless of the number of particles
N being even or odd. However, if we choose the an-
tiperiodic boundary condition in the absence of the AB
flux, ¥(z, + L, za,...,zN) = —¥(z1,2Z2,...,ZN), Which
is not unreasonable when we insert a w-phase-shift junc-
tion in the ring; we could easily find a ground state with
a spontaneous AB flux

Ff® =+ (2+87°>mR?/NLg®) ™", (12)
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which may be observable.

Now, it is very desirable to explore the effects of impu-
rity scattering on the I-® characteristics because such a
situation may be more realistic. For simplicity, we con-
sider only a single impurity characterized by a §-function
potential, V(z) = vd(x) (v > 0). Obviously, the solution
to this model has the form

®(z1,Z3,...,zn) = (—1)F det |a,e*n® 4 b e *n%i ]|,
(13)

Using the transfer-matrix method, it is not difficult to
obtain

cos(kL) + %sin(kL) = (=) tcos(2nf), (14)

where @ = m~y/h?%. Note that, for the odd N case, the
problem investigated here is quite similar to the one-
dimensional Dirac comb,!® with 27 f in Eq. (14) being
replaced by the dimensionless Bloch wave vector KL.
Figures 1 and 2 show, respectively, the numerical results
for E-® and I-® characteristics at zero temperature for a
ring with odd V. It can be clearly seen from Fig. 1 that
the energy E for a fixed N has a minimum at a nonzero
|®(®)|, which is due to the fact that the presence of the
é-function impurity in the ring eliminates the zero-valued
k, and therefore for an odd number of hard-core bosons
(N = 2ng + 1), either +k,, or —k,,, is not filled while
the currents in other occupied states with +k are pairwise
cancelled. Consequently, the spontaneous AB flux can be
roughly expected near this point. More rigorously, this
AB flux should be determined self-consistently, the value
of which, ®(), is just the nontrivial intersection of the
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FIG. 1. Energy of particles versus the dimensionless flux f
for an odd number of particles in the ring with the strength
of a single d-function impurity QL as (a) 0.5, (b) 2.0, and (¢)
4.0, where €0 = A%/2mR2.
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FIG. 2. Persistent current versus the dimensionless flux f
for an odd number of particles in the ring in the presence of
a single d-function impurity. The value of QL is the same as
that given in Fig. 1 and Io = geo/27h.

curve described by Eq. (10) and that shown in Fig. 2.
It is particularly remarkable that the total energy Er
reaches its minimum at ® = &), je., %L}:@(,) =0,
BTZ,(ETTIQ:{)(;) > 0, from which we can conclude that the
AB flux state with the spontaneous current is stable, and
it is in fact the ground state of the system. In addition,
in the limit of d — 0 (£ — o0), the sustained persis-
tent current approaches zero while the amplitude of the
spontaneous AB fluz is still finite ) — &) which is
just the nontrivial zero-point value of I in Fig. 2. On
the other hand, one can also obtain the energy spectrum
in the case of an even N by shifting a half &, along
the ® axis, and correspondingly the AB flux can also be
self-sustained as well. Notable is that the curve of I-®
characteristics becomes more smooth with increasing the
strength of the §-function potential (see Fig. 2).
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Finally, we wish to discuss an issue addressed recently
by Loss and Martin (LM).!* In the framework of the
Luttinger liquid model, LM concluded that the sponta-
neous persistent current is absent for interacting spin-
less fermions confined to a strictly one-dimensional meso-
scopic ring (i.e., d = 0). The conclusion seems also valid
for the case of d = 0 in our model. Therefore, it is un-
derstandable that the current-induced flux ®; is absent
in their quantum-electrodynamics calculations performed
for the strictly 1D model because ®; cannot be automat-
ically included. However, in reality, the diameter of the
wire d should not be exactly zero so that the current it-
self could induce a flux in quasi-1D rings according to the
conventional physical considerations. In particular, it is
our belief that the current-induced flux would appear au-
tomatically if quantum electrodynamics calculations are
rigorously made on a real three-dimensional (3D) model
even when d — 0. More importantly, although the model
Hamiltonian we use is strictly one-dimensional, the sys-
tem considered here is actually three-dimensional [i.e.,
the ring with a finite cross section 7(d/2)?], and so is
the current. Because of this, it appears reasonable and
acceptable that the current-induced flux ®;, even in the
limit of I — 0, is incorporated into the 1D Hamiltonian
as in the 3D case,® and ®; is self-consistently determined
in the ground state.

In summary, we have presented analytical analyses on
the persistent current I of a hard-core boson gas, via
AB effect, in mesoscopic rings, and find this current is
periodic in ® with the period ®9 = hc/q. More interest-
ingly, in the presence of a single §-function impurity, it
has been rigorously shown that there generally exists a
spontaneous AB flux as long as the self-induced flux is
included, regardless of the number of hard-core bosons
being even or odd and the boundary condition being an-
tiperiodic or not. So far, we have only dealt with the lim-
iting case of strongly correlated one-dimensional bosonic
systems. There is no doubt that the soft-core interaction
between bosons will further complicate the analysis.
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