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We have compared multiple-scattering results of angle-resolved photoelectron diffraction spectra between
the exact slab method and the separable propagator perturbation cluster method. In the slab method, the source
wave and multiple scattering within strongly scattering layers are expanded in spherical waves while the
scattering among different layers is expressed in plane waves. The transformation between spherical waves and
plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single
outgoing plane wave in the detector’s direction. The slab is infinitely extended parallel to the surface. Normal
to the surface, enough layers are included to ensure convergence of the calculated intensity. The separable
propagator perturbation approach uses two approximation#. separable representation of the Green's-
function propagator andi) a perturbation expansion of multiple-scattering terms. The cluster size is finite,
typically containing 50 atoms or less. Results of this study show that using a cluster of 148 atoms, the largest
cluster used to date, the cluster size is still too small for the cluster results(08INfo converge with those
of the slab method. Ideas to improve the perturbation expansion cluster method are discussed.
[S0163-182608)01324-1

[. INTRODUCTION single plane of atoms or a slab containing many planes of
closely spaced atoms. The slab method has been used to
Because of its chemical specificity, angle-resolved photodetermine the surface geometry of adsorbed atoms and mol-
electron diffraction is very useful in studying the geometricecules on different substratés-’ Recently, the slab method
structure, electronic properties, and magnetic properties dias been extended to include relativistic magnetic-spin di-
clean and adsorbate-covered surfaces. For clean surfacesyroism effect$®-22The slab method of angle-resolved pho-
high-resolution measurements can separate out the photteelectron diffraction shares many features with the slab ap-
electron signal from surface-induced shifted core levels. Th@roach of LEED, such as the use of symmetry, calculating
technique is a local probe that does not require long-rangkyer emission, and diffraction matrices once and using these
order [as opposed to low-energy electron diffraction for multiple variations of interlayer distances, usiRdactors
(LEED)*?]; however, the systems studied in detail so far allfor structural determination, eté
possess ordered two-dimensional periodicity, at least in the Recently, Rehr and Albef® introduced a separable
crystal structure of the substrate. This is because in order tgropagator perturbation cluster approach. In this method, the
gather enough signal for the measurement, multiple equivamultiple scattering is divided into scattering paths in a per-
lent events must be cumulated. turbation expansion, with each order indicating the number
_To describe the experiment for systems with two-of times a photoelectron is scattered by an ion-core potential.
dimensional periodicity, it is convenient to use a slab geompecause two-dimensional periodicity is not assumed, the at-
etry to track the emission and (.jlffra_ctlo.n process of the phoyms are confined to a finite clusfér?® To go beyond third-
toelectron. The experimental situation is to measure the fluyger perturbation expansion, it becomes necessary to intro-
of an outgo_mg _plane wave in a given directiép in the duce a separable representation for the Green’s function
far-field region (i.e., dW/kof’ defined as the number of propagator. While the separable expansion is formally exact
electrons entering solid angti), per unit img. A proper i taken to infinite order, most calculations included only
description requires matching of the electron wave field(6x6) matrices in the separable form. Rher and Albers have
across the solid-vacuum interface. In the slab apprdch, shown that this approximation method converges for x-ray
this matching is done by requiring the conservation of paraladsorption fine structuf® (XAFS). Recently, a number of
lel momentumk{}=k?" inside and outside the solid. In the authors have applied this method to angle-resolved photo-
slab method, the photoelectron excitation matrix elementglectron diffraction(ARPD) spectroscopﬁ?
are explicitly calculated and multiple scattering within ~ The purpose of this paper is to study the convergence of
strongly scattering “layers” is carried out in the spherical- the Rehr and Alber¢RA) method when applied to ARPD.
wave representation. Multiple scattering among layers idmmediately, we note a number of differences between
which the scattering is less strong is carried out in the planeXAFS and ARPD:(i) The lowest order, i.e., strongest event,
wave representation. The transformation between sphericéti the scattered wave of XAFS involves at least two back-
and plane-wave representations is done by well-establishegtatterings, once at a neighboring atom and once at the emit-
procedures. Similar to the combined-space metfiadbvel-  ting atom. By contrast, the strongest scattered wave in ARPD
oped for LEED, a strongly scattering “layer” could mean a may not contain any backscattering at all. There are many
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such strongly scattered amplitudes in glancing angle ARPDrocal lattice vectog; hence, it is necessary to consider addi-
A backscattering event is defined as one that has a scatteritignal plane-wave directions given by
angle larger than 90fii) In XAFS, an angular integral of the . R
interference is taken at the emitting site. The #htegral Kin(9) =[Kkg+9, =K. in(9)€,], 4
smooths out angular anisotropies. No such angular integral ish
taken in ARPD. Thus, we expect that ARPD would require avnere
better convergence from an approximation method. _ 2 VRN )
We test the RA method by choosing a variety of systems kin(@)=VMAD(E+Vo+IVi) = (ky+9)*%  (5)
to test the different approximations used in the method. WeA photoelectron in ankg,+g direction can be scattered into
use horizontal linear chains of atoms of different lengths tathe detector’s direction by a lattice plane. The photoelectron
test the multiple-scattering perturbation expansion. We use wave field in the interstitial region is given by a linear com-
vertical chain with an emitter at one end to test the separableination of plane waves with wave vectors given in Et).
approximation. We use a cluster of 148 Ni atoms arranged iin the plane-wave representation, reflection and transmission
a Ni(001) lattice to test the convergence of cluster size. ThematricesR>~, T>* from individual planes or composite
major finding of this paper is that even using a cluster of 1445ye(g aregggenerated using the method of LEED’ The

atoms, the cluster results still have not converged to that ofn|y additional quantities to add are the source layer matrices
the slab method. Ideas to improve the perturbation expansiofy, ihe photoelectron. These are giver? by

cluster approach are discussed.

The remainder of this paper is organized as follows: Sec- Yo [kE(9)](1— rﬁéﬁa)[Ll
tion Il summarizes the main features of the slab method. A[kiﬁ(g)]=a02 ! !
Section Ill does the same for the RA method. The perturba- B LL
tion expansion convergence test using horizontal chains of % wan—1 pga aciki(g)-d
atoms is presented in Sec. IV. In Sec. V, we test the (6 X(1=tG*) | M e (9", (6)
X 6) separable form. We test results of a 148-atorfD0L) i . ,
cluster with the slab method in Sec. VI. The error in the/Notice that the source wave is evaluated not only inkhe
boundary condition used in the RA method is examined irirection butin all theky,+g directions. The constant in Eg.
Sec. VII. In Sec. VIII, we present conclusions and com-(®) iS
ments.

C(o:(

1Lo kLin(g)

2m
g

Ziﬂ')
Il. THE SLAB METHOD NA
In the slab method, we divide a system with two- whereA is the two-dimensional unit cell area in the layer.

dimensional periodicity into atomic planes or composite lay-1he VectorM{’ contains the photoelectron excitation ele-
ers parallel to the surface. Each plane or composite layd€nts. Itis given b
must have a two-dimensional periodicity commensurate with
the other planes/layers of the system. No order is required in Mf=D.A - f dQ Y (F)F YL (T
the stacking sequence or interlayer spacing normal to the !
surface. The number of layers included in the calculation is - dv
determined by the attenuation of the electron inside the ma- xf r2dr e Rl(r,) =— R(r,), (7)
terial. Typically, the calculation seeks intensity convergence dr,
of ~2%, meaning that 20-40 layers are included for enerywhere A is the photon's vector potential,D=
gies up to 400 eV, depending on the inelastic damping.  (—1)'i'"*Y(es/mc)[1/(E—&;)], with &;=the energy of the

The detection direction defines a parallel wave vekior  core level and, has its origin at the nucleus of the emitting
On the vacuum side, a real wave vector is defined by atom. The quantity-f, in Eq. (6) is the in-plane multiple-

KoY (k1 kOU) B scattering matrix fqr a Bravais lattice. Thel sugs over all
f fbL =2/ Bravais lattices, which make up a composite layer. The layer

wherek®'= \/(2m/%2)E—k?, and &, is a unit vector point- propagator&** are defined in Eq(42) of Ref. 2. The emit-
ing normally from solid to vacuum. The kinetic energy of the ting atom can be situated in any layer of the slab and the
photoelectron i€. Inside the material and in the interstitial photoelectron intensity is the sum of independent events. Ap-
region outside the muffin-tin spheres, the wave vector ilying thekg, conservation law across the interface, and ne-
complex and is given by glecting multiple reflections at the inner potential step, the
differential flux in thek; direction is given by
I(iﬁ:(kfll vikLinéz)v 2
dw fi A2

where _ngf =0 2m)?

(K"K C k)| ®)

: 2
Kiin= V(2m/A%) (E+Vo+iVy) k. © Here, C(k;,) is the plane-wave coefficient just inside the
In Eq. (3), V, is the inner potential an¥, is the imaginary  solid. This coefficient is calculated by starting with the layer
potential inside the solid. source coefficientsA [ki;(g)] and applying the standard
Diffraction of a photoelectron by an ordered lattice planeLEED layer stacking methods such as the combined-space
changes its parallel momentum by a two-dimensional recipmethod® layer doubling, or renormalized forward
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n ip @
GLu(p)= 2 X(PT (o), C)
é. Detector
o wherep=Kk(R—R'). The value ofw depends or. andL’.
! This transformation is done in two steps. The first step is to
separateé5_ | /(p) into energy- dependent radial and angular-
Vacuum dependent terms by rotatingonto thez axis of the coordi-
............... nate system. This leads to the following expansion for
Solid NAE? (8)) G (p):
o € S en g R
- P G L (p)=— R (p~ # R (p). (10
| \R/ U Ak (g))t Lu(p=— M; (P DO (PR, (D). (10)
N l In Eqg. (10), R'mﬂ([)) rotatesp onto thez axis. The second
T Rz Ty step involves a contour integration that separates the indices

(b

I 'andl’ in g;’""(p). The resulting expression is

min1,1” ||

g1 (p)= 2 Yl Vulp) (#=0), (1D

FIG. 1. Schematic diagram of slab method showing the source

vectorsA[k;,(g9)] and layer scattering matricé’gg?, anng*gT where the spherical coefficieryLV(p) ande(p) are given

by
scattering’® method to obtain converged plane-wave coeffi-
cients at the interfacésee Fig. 1 Thus, the slab method of | B (— 1)“N|MC,(”+ M(z)zh?
photoelectron diffraction differs from LEED theory only in YurP)= (+v)! (12)

that instead of considering a single incoming plane wave,
there are now two sets of plane waves(g) with coeffi-  nd
cientsA[K;,(g)]. These plane waves are created at a given (21+1)CM(2)2"
atom in a given layer and their diffracted amplitudes are }Ly(p):—'l
summed coherently. For each detection directi@H, the (Ni.vt)
slab method produces simultaneously the differential fluxesn Eqgs. (120 and (13, z=1/ip and Cf”’(z)
for all the relatedks,+g directions. In terms of summing =(d*/dz")C|(z), with C,(z) being thelth degree polyno-
multiple-scattering paths within a slab, the slab method ofial factor of the spherical Hankel function.
ARPD is exact, just as LEED theory is exact in this respect. So far, the transformation is formally exact as long as
Approximations in the dynamical model such as the muffin-enough basis waves are included. The first approximation in
tin potential, the Debye-Waller model for temperature ef-this method is to evaluate multiple-scattering paths by per-
fects, the no-reflection condition at the inner potential stepfurbation expansion and to stop the expansion at a finite or-
etc., introduce uncertainties in the theory. However, theseéer. TheNth path, withN—1 scatterers for the total propa-
factors affect equally the slab and cluster approaches. Isotrg@ator corresponding to Fig. 2 is
pic and anisotropic tempz%rag%ﬂe corrections have been intro-
duced in the slab methad~>" The angular dependence of N-1) _
the Debye-Waller factor is accounted for as a cosine function ~ “n 'Lo(Rl""'RN)_(% Cuy o)t (Ro)
in the cluster approach, while in the slab method, an expan-
sion in partial waves is used. Because of the differences in XGp, (P, (RDGL (1)
the treatment of the Debye-Waller factor, all the tests done in

) ; (14
this work are for the case of no temperature correction. Tem-
perature correction, of course, provides an additional dampand substituting from Ed9), we obtain
ing effect in real systems and can aid significantly in the
convergence of the perturbation expansion. Thus, the resul glprtrt o)
of this paper can be viewed as setting the worst-case limit fo LN '—o(Rl""’RN): P1P2---PN {;}
the convergence of the perturbation expansion under the '
guoted electron mean free path. XExy g (PN PN—1) X

(13

Lo.L
M )\2')\:(1)1 !pN)

XFx o, (P3.2)Fy )\ (P2.p1), (15
lll. THE SEPARABLE PROPAGATOR

where th rabl ring-ampli m !
PERTURBATION METHOD ere the separable scattering-amplitude matfiggs(pp’)

at each site are given by
In the Rehr-Alber cluster approaéhthe spherical wave

representation of the electron propagar, . [k(R—R’)] Fou(pp)=> td“k(p)fL,(p’) (16)
is expressed as a separable sum: T A
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each calculation until the intensity converges, if that hap-
pens. In cases where the intensity diverges, the MS order is
stopped at a high number.

The second approximation of the RA method is to keep
only a few terms in thet,v indices. Typical calculations kept
(m,v)=(0,0), (£1,0), (0, D, and (=2,0), i.e., (6x6) ma-
trices. In Sec. V, we shall examine whether this is enough in
ARPD for typical systems of interest.

IV. THE MULTIPLE-SCATTERING EXPANSION
APPROXIMATION

The RA method sums multiple-scattering terms by pertur-
bation expansion and cuts off at a finite order. We can learn
from an analogy in LEED, which has to deal with similar
scattering terms. In LEED, the multiple scattering within a
plane of atoms is grouped into a layer matrix of the f¢eme

FIG. 2. Four-leg scattering path with each solid line represent£q. (58) of Ref. 27:
ing a two-body Green’s-function propagator and each ciekeept
for Ry qnd R,) a scattering cen_ter. The dashed lines represent the L :t|[}—§SP£][L1m (18)
separation of each propagator into sums ovetafter Ref. 23.

wherer | , is a layer scattering matrix, is an atomic scat-
and the angular-momentum-dependent termination matrix ig.; ; SP .
g p tering matrix (vectop, andG,, is the sumof all two-body

- 1 propagators in that layer. This sum is giverfby
My (PPN =T (p) T (o) 17
~ SP _ —ik-P

N Eq. (16, TX(p)=Rin(2)7k(p) and Ti(p) Gl = 2, Cu(Pe 7, 19
:R'mﬂ(Q;l)}'W(p), where RA'Mm(Q;]) is a rotation matrix
that rotates the bond directignonto thez axis of the coor-
dinate system. The spherical expansion coeffici@:it;(p)
and¥,,(p) are given in Eq(12) of Ref. 23.

It is important to realize that for strongly scattering paths,
the perturbation expansion may diverge. If the perturbation sp sp sp
sum fails to converge, the method will give the wrong result =G G L Gl e+ (20)
no matter how many orders are included. In fact, when di-
vergence occurs for a particular scattering pathway, the callhe question is: Do Eqg¢18) and (20) always produce the
culated amplitude increases rapidly as higher orders aréame results?
added. If the perturbation order is artificially limited, then a  Mathematically, the expansion in E@O) is valid and the
divergent amp"tude may appear physicaL but the value i¢wo equations will produce the same results if and only if the
wrong. Therefore, to ensure that divergent terms are properliargest eigenvalue onf,tw has a magnitude less than
flushed out, it is important to increase the multiple scatteringunity. Otherwise, the perturbation expansion in E) will
(MS) order[i.e., the largest number ¢fmatrices included in  diverge to unphysical results, while the matrix inversion in
Eq. (14)] to see if the calculated intensity converges or not.Eq. (18) will remain valid. SinceG; 1, is complex, the
For general systems with no long-range order, conventionahatrix [1—GS™t] is never singular and its inverse always
evaluation calculations have restricted the cluster size to lessyjsts. The 'slab method of ARP@Refs. 3 and #uses the

than 50 atoms and for such a cluster size, the MS order ifyatrix inversion form of Eq(18) to treat multiple scatterings
restricted to three or four. Recently, Vi al™ have intro-  jn g |ayer.

duced a backward summing method, which is very efficient |f only a few atoms in a chain or cluster are included in a

in summing the perturbation expansion. This method calcura calculation, then the results will always converge with a
lates the amplitudes{™, which representth-order scat- high enough MS order. This is because a short chain has
terings in which an electron starts at atorand reaches atom only a few strong forward scattering paths and after these are
j, followed by all subsequent scatterings until it is collectedexhausted, higher orders belong to backscattering events,
at the detector. The indicasj run over alli#j combina-  which rapidly converge. In real situations, the system under
tions of atoms in a cluster. The calculation starts with the lasineasurement is macroscopic, often involving the scattering
scattering amplitudes\i(jm), wherej is the atom of the last from hundreds of atoms. The multiple scattering is, of
scattering before the electron is collected at the detector. Theourse, limited by inelastic damping. To achieve true conver-
method then traces backwards all scattering paths towardgence, it is necessary to keep increasing the number of atoms
the emitter. The computation time depends linearly on theuntil additional forward scattering paths do not appreciably
MS order. All cluster results in this paper are done using thehange the total intensity. It is also necessary to make sure
backward summing method. We increase the MS order irthat the MS order is large enough.

where the vectoP connects all pairs of atoms separated by
distance|P| in the layer. If one uses the perturbation expan-
sion, one can write in terms of two-body propagators by
expanding Eqs(18) and(19) into
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Vo 1506V FIG. 4. Plot of the mean free path vs wave number Yor
@1 I—Slab Infinite Chain =5.33 and 10 eV.

- - - - Cluster 15 atoms

0.5 4

X o ~—— ; ah k(A linear chain of 15 atoms is already quite convergent. In an
051 ° ! s S ¢ infinitely long chain, all atoms are equivalent. The results of
6lev 381eV a single atom emitting and all atoms emitting should be iden-

_ tical, except for a factor of, the number of atoms in the
FIG. 3. (@) The RA result for a 13-atom chain, 2.49 A apart chajn. The fact that in Figs.(8 and 3d), the cluster results

(.broken ling, compared to thg slab result for an infinite ch&nolid with all atoms emitting converge to the slab results shows
line). The RA result shows divergencéa) The RA result(broken that for a 15- or 40-atom chain with 15-eV damping, the
line) for a 40-atom chain. The result shows divergence. The SIa%dge effect is small '

result for_an infinite chain is the solid link) gnd(d) The RA result We point out that in order to obtain the good agreement

(broken ling for 40-atom and 15-atom chains, respectively, ShOW_ShOWH in Figs. &) and 3d), we have used compldin E

ing convergence to the infinite chain slab regstilid line). gs. ! . plé a.
(15), wherever appropriate. Previous calculati§nsave

: : - ikR
We show the perturbation expansion test results in FiguSed the complek only in the exponential functiog™" but

3(a) for a horizontal linear chain of 13 Ni atoms. The detec-the real part ok is used elsewhere in EGL5). _ _
tion direction is normal to the chain. The emitting atom is at N this section, we have established that for linear Ni
the center of the chain and the atoms are placed at the Ni-Njhains with 13—40 atoms, the backward summing scheme of
nearest-neighbor distance of 2.49 A. The inelastic dampind'® MS expansion diverges with typical dampings used in
is V,=4.0 eV, a number usually used in LEED calculations-EED calculations. With very large dampings, the cluster
at these energies and no temperature correction is includelf?€ar chain result can be brought to convergence. In Figs. 4
The figure shows that the normalized intensity, defined a&nd 5. we show the relation between the electron mean free
(1—1,)/1, wherel is the total intensity and, is the unscat- Path\ vs wave number for various choices of damping. The
tered(direct intensity, calculated by the RA method via the electron mean free path is defined as the distance in a solid at

. . e . . _1
backward summing scheme diverges to unphysical results 4hich the initial intensity has decreased by". For the
a number of wave numberroken lind. The normalized Majority of materials, actual mean free paths in solids corre-

intensity for an infinite horizontal Ni chain, calculated by the SPond to damping values between 3.5 to 5.5 eV. These val-
slab method, is also show(solid line). Figure 3b) shows Ues are used in LEED calculations.

the RA result for a 40-atom horizontal Ni chain. The damp-

ing is increased t&, =10 eV. All the atoms in the chain are V. CONVERGENCE TEST FOR THE SEPARABLE

emitters and the sum of the normalized intensities is shown REPRESENTATION

(broken ling. We see that even at this very large damping,

the perturbation expansion is still divergent, producing un- In the RA method, the two-particle propagator
physical intensities at a number of wave numbers. In thé5, | (k|R—R’|) is expressed as a separable diqg. (9)].
figure, we also show the intensity from the slab calculationin actual applications, the order included is usually<@®),

for an infinitely extended horizontal Ni chaifsolid line). which is correct to term®©(1/(kR)?). In this section, we
Figure 3c) shows the cluster resul#0 atoms, all atoms are investigate errors caused by the finite order in the separable
emitterg with V,=15 eV. At this damping, the RA intensity form. We show in Fig. 6 the slab vs cluster calculations of
finally converges to that of the slalinfinite chain) result.  normalized intensities for a vertical four-atom Ni chain sepa-
Figure 3d) shows the cluster result with 15 atoms. The goodrated by 2.49 A. The MS order included is 20. With this high
agreement with the slab result shows that With=15 eV, a  MS order for the short chain, all forward scattering events in
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FIG. 5. Plot of the mean free path vs wave number\fpe 15
and 20 eV.

FIG. 7. Same as in Fig. 6, except (445) matrices are used in
the RA method.

MS= 20 must be due to the separable representation trunca-
tion.

In Figs. §a)—6(c), we show the comparison for this sys-
tem with V,=5, 15, and 20 eV, respectively. The emitter is
placed at the deep end of the chain. We note that the cluster
result is always larger and the discrepancy is quite insensi-
tive to the value of damping. The insensitivity to the value of

the chain would have been included and the only high-ordeflamping confirms that the discrepancy is not due to the per-
events discarded in the RA method are those that contaif¢rbation expansion. To fix this problem, we note that the
many backscatterings. Since high-order backscatterings af€xt set of(v,u) values discarded by the §66) matrix are
small, their discard in this case is certainly justified. There{0,+3) (1,=1), (0,%4), (2,0, and (1,+2). If these are in-
fore, any difference between the RA calculation and the sla§luded, the matrix becomes (%35). Figure 7 shows the
calculation for this normal emission four-atom chain with cluster result using (1615) matrices compared to the slab

Vertical 4-atom Chain

Surface _

Emitter

0=0° ¢=0° V[ =5.33eV
(@) 2 — Slab
] — - Cluster(6x6)
= Py IO /
P // N // N .1
X o k(@AY
L 5 6 7 8 9 10
-1
V= 15.0eV
‘ k(@A"Y
4 5 6 7 8 9 10
C
© 4 ] Vi=200eV
- //—\\,///
X o ; et ‘ k(&Y
4 5 6 7 8 9 10
6leV 381eV

FIG. 6. The slab resultsolid line) vs the RA cluster result
(dotted ling for a four-atom vertical Ni chain, using ¢66) matri-
ces in the propagator separable representation.

result. The comparison is almost perfect even \At
=5.33 eV.

In this section, we have shown that for source atoms bur-
ied four or more atomic layers deep, theX(6) separable
form may not be enough. However, since the intensity from
a buried layer is weak, the error should not be serious for
emissions from bulk materials. Higher thanX6) matrices
in the separable form are necessary only if the study is on a
buried heterogeneous interface or buriédoped layers situ-
ated four or more atomic layers below the surface. We have
also tested the case of a vertical three-atom Ni chain sepa-
rated by 2.49 A and the emission is from the deegmsid)
atom. The results show that the X&) separable form is
accurate for this case.

VI. Ni (001)-(1x 1), CLUSTER SIZE EFFECT

Having shown that the perturbation approximation in the
cluster method diverges for long linear Ni chains with 4—10-
eV damping and that the (66) separable form causes er-
rors from a few to 100% in the normalized intensity for
four-or-more-layer buried atoms irrespective of damping, we
investigate in this section how these factors affect emissions
from a solid. We choose a simple test case, €00l) slab
with an ideal (1< 1) structure. The initial state is a Ni core
level and all elements in Eq7) are set to zero except g,
=1. This corresponds to an outgoisgwave at the source
atom. It is the simplest possible source wave and is, in fact,
unphysical because real source waves obey the dipole selec-
tion rule. However, thes-wave source does provide a mini-
mum standard for testing the approximations used in the
cluster approach. Both the slab and cluster calculations use
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identical dynamical inputs: inelastic damping=>5.33 eV,
no temperature correction, the inner potentgl is set to
zero, and ten phase shifts are used. The shape of the clustel
chosen as follows: We construct a half ellipsoid, with its
midcircle as the surface and its long radius pointing down-

wards. The radius of the midcircle is 7.8 A and the long 7 21

radius is 11.7 A. We then place a(801) lattice in this half
ellipsoid. The surface layer of the Ni lattice is at the mid-
circle with a Ni atom at the center of the circle. All Ni atoms
in a (001 lattice that fall within the boundaries of the half
ellipsoid are included. This construction includes 148 atom:
and the atoms lie in seven atomic planes. As indicated be
fore, this is the largest size cluster calculated by the RA
method to date. Because of tABAB... stacking sequence
of Ni(001), the emitting atom is at the center of each odd
layer and one of four nearest to center atoms of each eve
layer. The comparisons with the slab calculations are mady
separately for emitting atoms in the top, second, and thirc
layers.

Because the cluster approach is a real-space method, t
far-field form of the propagator is used in the differential
coefficientdw/dQ;, without consideration of wave match-
ing at the interface. The ray bending at the interface is thel
included in anad hocmanner by using an inside angfe:

|k
N L
On=tan Rek, in

(21)

(2)8=0° $=0°
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FIG. 8. Comparison of normalized ARPD curves between the

emitter in the top layer.

in the cluster method. We shall see in the next section that
this ad hocmodel contains significant errors at emission di-
rections glancing to the surface.

slab (solid line) and cluster(broken ling results for N{001) with

A similar trend, i.e., the increasingly poor comparisons

with deeper layer emitters, also appears for the glancing

The comparisons are shown in Figs. 8-10, with the slayngle emission directiong=70°. However, in addition,
results shown by solid lines and the RA cluster results showihere is a sizable worsening in the intensity comparisons.

by broken lines. The wave number is from 4 to 104
corresponding to the 61-381 eV energy range. The detectior
angles#,¢ are measured from the surface normal &§hti0]
direction, respectively. We first comment on the normal
emission results. The comparison between slab and cluste
results is decent for an emitter in the top or second layer
[Figs. 8a) and 9a)]. The comparison is unacceptable when
the emitter is from the third laydFig. 10@)]. Here, we note
major antiphase peaks between 4.5-535 /nd again be-
tween 7—8 A1, What causes these large discrepancies? For
the 148-atom cluster size and lattice geometry, with emitters
located in the top three layers of the lattice, the situations of
13-atom-long linear chains and buried source atdfosr
layers down depicted in Figs. 3 and 6 do not exist. There-
fore, the discrepancy is not due to MS expansion divergence
or the cutoff of the RA separable form. Instead, we attribute
the discrepancy as due to insufficient cluster size, bearing in
mind for the slab calculation, multiple scattering from many
more atoms per layer and many more layers is included. An
independent evidence that the discrepancy is not due to per
turbation expansion divergence is the fact that increasing the
MS order does not alter the cluster result. This shows that the
cluster result has converged, except that the converged resul
is wrong because the cluster size is too small. Because of the
shape of the half ellipsoid, increasingly more relevant atoms
in the plane are missing from the cluster when the emitter is
from a deeper layer. This explains the increasingly poor
comparisons for the deeper layer emitters.

@)0=0° ¢=0°
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FIG. 9. Same as in Fig. 8, except emitter is in the second layer.
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The poor results af=70° are due to errors in the boundary I 6 \w/ 9 1

condition in the cluster model. This will be discussed in the P
next section. ¢ 381ev

FIG. 11. The slab resultsolid line) vs the RA cluster result

VIl. THE INTERFACE BOUNDARY CONDITION (dotted ling for a two-atom vertical Ni chain, wittvy=0 eV and

i V,=5.33 eV for various forward scattering angles.
The cluster method sets the last leg of the scattering path

at R, =k¢R.., which points from the last scattering atom to from dw/dQ; . This point has already been discussed in
the detector. Our version of the RA metfibdnakes arad ot 5 '
hoc correction by pointingR.. along 6, given in Eq.(21). To illustrate the effect of the boundary condition, we
While this adjustment improves the comparison with the slalyp o in Figs. 11 and 12 the comparison between the cluster
method, it does not totally correct the effect. The proper way,nq sjah methods for a vertical two-Ni atom chain, as a func-
to propagator the photoe_lectron across an interface,_ as {%n of the detection angle. Figures (81-11(d) show that
done. in th(_a sla_b r_nethod,_ls to start with the wave function afy,q comparison is good for scattering angles varying from 0°
a pointR just inside the interface and transform the near- 60°, but atd=80°, there are large errors in the cluster
field spherical Hankel function into the pIane—yvave represenyathod. especially at low values. Figures 12)—12d) ex-
tation. The coefficients of the_plane waves with parallt_al MOpipit the same trend, with good comparisons dt
mentum ky, are expressed in terms of an expansion In_j3qe 180, phut the agreement deteriorates at the glancing
Yim(K;h). From Egs.(2) and (3), we notice that the argu- angle of 100°.
ments of the spherical harmonics are complex. Spherical har- As mentioned in Sec. VI, we have set the inner potential
monics with complex arguments are defined and used ikyo to zero in the comparison. For a nonzerg, the error
LEED theory[for the definition ofY,y(z,#) with complex  caused by the boundary condition would be even larger. On
z, see Ref. 27, Appendix A The differential fluxdw/dQi the other hand, iV,=0 andV,—0, the two calculations
is then evaluated by finding the numberlqgfstates the de- should agree because the solid and vacuum will become the
tector collects on the vacuum side. A discussion of this prosame medium, as is assumed in the cluster boundary condi-
cedure can be found in Ref. 5, Eq4)—(23). tion. We demonstrate this in Figs. 13 and 14 where we have
The cluster method, on the other hand, uses spherical hareduced the damping to 1 efthe inner potential is again set
monics with realf,¢ throughout. The method applies the to zerg. The improvements at=80° and 100° are large and
far-field condition from the last scattering site to the detectorobvious.
This is only justified if the entire space is a single medium These figures show that the error increas&&itind/orV,
(i.e., if the solid’s potentiaMy+iV, fills the entire space, increase. Unfortunately, to minimize the boundary condition
including the detect9r In the presence of an interface, the error, it is necessary to use a very small valu&/pf How-
formula used in the cluster method fdw/d(}; is different  ever, according to Fig. 3, a very laryg is needed for con-
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vergence of the perturbation expansion approximation. Thusa(reFlEédl& Same as in Fig. 11, excep§=0eV andV,=1.0 eV
these two approximations in the cluster method require con- '
tradictory inputs to make them work.
The reason why we choose a two-atom chain to test theecalculate each news, . (k|d;—d;|) in a complex struc-
boundary condition effect is because a two-atom system dodsral search.
not include the separable matrix. Therefore, the truncation In this paper, we have shown that the truncation of the
problem illustrated in Fig. 6 does not enter here and theseparable form to (86) does not cause serious problems
discrepancy observed in Figs. 11 and 12 is entirely due to théor photoemission from an overlayer or a bulk sample. It
boundary-condition effect. would, however, cause intensity errors for emission from a
buried (deeper than three layerketerogeneous interface or
s-doped layerse.qg., errors in the forward focusitfg* inten-
VIll. CONCLUSIONS AND COMMENTS sity). The cluster method’s boundary condition causes inten-
i . sity and peak position errors mainly in sm&lland large
The RA method is originally developed for extended 4amping situations at grazing collection angles. The most
XAFS where it has been shown to work wéllFor photo-  serigys problem with the backward summing cluster method
electron diffraction from ordered systems, the RA methodg hat the perturbation expansion diverges if a cluster is
can hardly compete with the slab method for either efﬂmencxame enough to contain long linear chains. We have recently
or accuracy. The RA method is confined to work within @ ggteq the case of a (001 plane of atoms with a radius of
finite cluster—currently it is difficult to include more than a 15 g A (ie., an 1l-atom chain for the diameter and using
few hundred atoms. The slab method, on the other han(_JI, h%'il:4 eV with no temperature correctipnThe backward
the freedom to use the angular-momentum representation Q{,mming cluster method diverges with this size of the plane.
the plane-wave representation, depending on the scatteringtortnately, planes with smaller radii do not converge to
strength. In the plane-wave representation, variations in thg,o result given by the slab method.
interlayer distances; are handled very efficiently because ~ ggcayse real surfaces have defects and many interface
thefe variations only change the exponential coeff|cus:nt}s)robmmS involve atomic arrangements with no long-range
e'kin(9-dij The layer scattering matricél'sgg,i and Rgg,i are order, it is important to develop convergent cluster
unaffected, and hence, many interlayer spacing variationsiethods** We now discuss how the backward summing
can be calculated in a very short time. The cluster method;luster method can be improved. A constraint of the current
on the other hand, works always in real space and one muspproach is that before performing a set of calculations, the
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Vertical 2-atom Chain some large clusters. If the cluster calculation diverges at
i some energy, but if the pathcut is preset, the divergence may
not always show up as unphysically large numbers. As a
result, the cluster calculation may be wrong without the user
g knowing it. A better approach is to allow the perturbation
V= 1.0eV expansion to increase via iteration. The number of iterations
6 =100° —_ Slab increases until numerical convergence is achieved, if at all.
— - Cluster We have recently reformulated the backward summing
/\ K (A cluster method as solving for two-centered scattering ampli-
&9 : . X
b\ 6 7 8 5 b tudes via a set of simultaneous equatithdVe use a
relaxation-iteration method to self-consistently solve the set
of simultaneous equations to obtain converged two-centered
(b) 0.4 — scattering amplitudes. The relaxation method iterates the
/\ ) scattering amplitudes until they converge to within preset
X o N k(@AY accuracies. The number of iterations to achieve convergence
\5\/ 6 4 8 depends on structure and dynamical factors such as energy,
0.4 scattering factors, inelastic damping, etc. The relaxation
9 =140° method extends the realm of convergence for the MS expan-
sion. For example, using the relaxation method, the emission
X o ‘ ‘ ) intensity from the plane of NO01) atoms with a 12.5-A
4 5 6 \/7 N g radius (V,=4 eV and with no temperature correctjpwhich
0.4 is divergent under the backward summing method, becomes
0= 180° convergent. Furthermore, the relaxation method has compu-
tation time scaling adN?, whereN is the dimension of the
1y set of simultaneous equations, instead Nf, which is
X o /\ /\ /\ k(A1) needed in conventional matrix-inversion methods. The
o1 5 s/ o S relaxation-iteration method is faster than conventional per-
turbation methodg¢such as the backward summing method
and at the same time, it produces convergent results in all
FIG. 14. Same as in Fig. 12, excey4=0eV andV,=1.0eV  materials using typical inelastic damping. Details of this
are used. method are presented elsewh&te.

Surface__ Emitter

(@03

6leV 38leV
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