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The electron and positron chemical potentials and their volume derivatives are calculated in
Al using the first-principles pseudopotential technique and the frozen-core approximation method,
respectively. The positron deformation potential of —8.03 eV obtained by this method agrees very
well with that found in other first-principles calculations. The variation of the positronium work
function with temperature is calculated by including the thermal lattice vibrations into the electron
and positron potentials. It is observed that the temperature dependence of the positronium work
function does not arise entirely from the volume expansion of the lattice as has been suggested in
the past. Proper inclusion of the nonzero-temperature derivative of the positronium work function
at constant volume leads to good agreement between the positron deformation potential as obtained
from positronium work-function data and present theoretical values.

I. INTRODUCTION

That an electron cannot escape from a solid without
additional energy was first understood in terms of its
work function in the solid by Einstein in 1905.! A com-
plete many-body theory of the electron work function
in a solid, however, had to await the work of Lang and
Kohn in 1971.2 In their theory the work function (¢-) is
separated into the bulk electron chemical potential (p—),
which is the difference of the ground state energies before
and after the removal of an electron from the solid, and
the surface dipole potential (A) which arises from the
electrons “spilling out” beyond the surface planes. The
electron is electrically repelled back into the solid by the
surface dipole potential. The work function is thus ex-
pressed as ¢_ = —u_+A. On the other hand, low energy
positrons from a positron beam after implantation into
the near surface region of single crystal metals thermalize
in a short time, and in most cases a fraction of them es-
cape spontaneously into the vacuum.? This phenomenon
arises because the positron is attracted by the same sur-
face dipole potential A into the vacuum. The positron
work function (¢, ) may also be expressed in terms of the
positron chemical potential (p4) and the surface dipole
potential with an opposite sign because of the attraction,
i.e., ¢4 = —py — A. In such measurements it is also seen
for most metals that some of the thermalized positrons
pick up electrons to form positronium atoms which es-
cape spontaneously into the vacuum.? Since the positro-
nium atom is electrically neutral, the emission is not con-
trolled by the surface dipole potential. The positronium
work function given by ¢ps = ¢ + ¢ — 6.8 eV is thus
a bulk property, the surface dipole potential canceling to
give ¢ps = —pu_ — py — 6.8 V.

Measurements of the positronium work function in alu-
minum at different temperatures have been performed.*>
It is observed that the positronium work function has a
linear temperature dependence. The temperature influ-
ences ¢ps through (i) thermal expansion of the volume
Q2 of the solid and (ii) thermal vibrations of the atoms
around their mean positions. The temperature coefficient
for the positronium work function at constant pressure
is given by
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With the deformation potential characterizing the

positron-phonon coupling and the thermal expansion co-
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efficient defined as E4 = —Q (_56—)7‘ and 8 = 5 (—7—,)},,
respectively, Eq. (1.1) is rewritten as

Abps _ —BEg4 + (3¢P“) .
Q

dT oT (1.2)
The positron deformation potential can thus be obtained
from this equation provided the value of the second
term is known. Unfortunately, there is no experimen-
tal method available to measure its contribution. How-
ever, Gullikson and Mills® in their measurement argued
that the contribution of the second term is exceedingly
small and the temperature dependence of the positro-
nium chemical potential is entirely due to the volume
expansion of the solid. With this assumption and with
the known value of 3 for Al at room temperature, E4 has
been calculated from the slope of %{% to have the value
—11.5 eV, whereas the other experimental data by Rosen-
berg, Howell, and Fluss* give —13.7 eV. The value calcu-
lated in the linear muffin-tin-orbital method within the
atomic-spheres approximation (LMTO-ASA) by Boev,
Puska, and Nieminen® is —7.7 eV and by Puska et al.”
is —7.85 eV. The simple uniform electron gas model by
Bergersen et al.® gives —8.6 eV, the magnitude of which
is also quite small compared to the experimental value.
The disagreement of the experimental data with the the-
oretical data could arise from two sources. First, a large
scatter in the data may have resulted in a wrong slope
being assigned, thus giving too small a value for E;. The
second and more likely explanation is that the neglect
of the temperature derivative of the positronium work
function at a constant volume (if it has the same tem-
perature dependence as that of 3) may result in an incor-
rectly calculated deformation potential. Although Boev
and (?_';) s
they gave no quantitative values. On the basis of physicgl
arguments they have speculated that since (8“—")9 >0

et al.® have given expressions for (‘?—,1:)
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and (?—TT) < 0 there is some cancellation in (%—2’;—')
Q Q

resulting in a small value. However, it cannot be as-

9¢ps
sumed that (?f"_)

present work we have computed the contributions of the
lattice vibrations to ¢ps using a different method. We
shall show that the temperature coefficient (at constant
volume) of the positron chemical potential is lower than
that of the electron chemical potential, suggesting that
the deformation potential derived from the experimental

would vanish identically. In the

data, on the assumption that (%ﬁi’f.—‘)n can be neglected,

is higher than the actual value.

II. THEORY

The evaluation of the electron and positron chemical
potentials is based on the local density approximation
(LDA).%7 The electron band energies are solved from
the ab initio pseudopotential theory. The self-consistent
pseudopotential with electron charge density p(r) is given
by

Vos(£)= Vien(r) + Vi (o(x)) + Vae(p(r))
= C_oulomb(r) + ch(p(r)) ’

where Vi, is the combination of local V.L and nonlo-

cal VNI pseudopotentials,® Vj is the Hartree potential,
and V. the exchange-correlation potential.'® Since Vioy
and Vg are both Coulombic in nature, we have denoted
their sum by VS_ o ... The electron chemical potential is
defined as the sum of the Fermi energy and the exchange-
correlation potential calculated with the charge density

(po) at the surface of the Wigner-Seitz cell”

H-= EF + ch(po) - <VC'oulomb> -
Here (VG uiomp) is the crystal averaged Coulomb poten-
tial evaluated on the surface of the Wigner-Seitz cell.
Since the present calculation is based on the pseudopo-
tential method, there is an energy shift between extended
cores and the pointlike ones.!! The electron chemical po-
tential is corrected for this shift, which is given by

1 Ze?
ap=g [ (vhw+Z=) 2.

r

(2.1)

(2.2)

(2.3)

where € is the unit cell volume.l'! This term has been
evaluated in the work function calculation of Si by
Pennetta'? by using core electronic charge density, which
may not be correct for all pseudopotential calculations
because of the nonuniqueness of the pseudopotential.
The positron potential is constructed in the model
where there is one positron in the many-electron system.
In the frozen-core approximation the positron potential is
purely Coulombic in nature, with repulsion to the point
nuclei and attraction to the valence and frozen-core elec-
tron charge densities. The valence and core charge den-
sities are calculated from the pseudopotential method
and the Roothaan-Hartree-Fock wave functions,'3 re-
spectively. In addition to this there is an attractive short-
range electron-positron correlation potential Vopp:

V+ (l‘) = Vg;)ulomb(r) + I/COI'I'(p(r)) .

The correlation potential is calculated in a homogenous

(2.4)

electron gas based on the LDA.'* The positron chemical
potential is defined as

K+ = EO + Ecorr y (25)

where Ej is the zero point energy relative to the average
electrostatic potential (VI , ) on the surface of the
Wigner-Seitz cell. With the positron ground state wave
function at zero temperature ¥ (r)], Ey is defined as®7

EO = /dar‘l’l(r)[_%vz + V(-):ulomb(r)]q’-i"(r)

_(V(;;ulomb) . (26)
The electron-positron correlation contribution to the
positron chemical potential is

Beors = / B | Ui (1) 2 Veore (o(r) -

There are two major corrections to the change of the
energy levels in the solid resulting from the thermal vi-
bration of the atoms. Fan!® proposed a temperature-
dependent self-energy correction involving an electron-
phonon coupling term in the second order to give a shift
in the energy levels. In the other method the lattice
potentials are corrected by the temperature-dependent
Debye-Waller factor [W (G, T')],'¢ which is in turn related
to the total mean squared displacement of the atoms.?
Allen and Heine'® combined both the self-energy and
Debye-Waller corrections into one expression involving
the second order in atomic displacement. The expres-
sions given by Boev et al.® are based on this scheme. We
have adopted the second procedure in the present work.
The self-consistent electron pseudopotential of Eq. (2.1)
is Fourier transformed to the reciprocal space to obtain
Vps(G) and then multiplied by exp[—2W (G, T)] to in-
clude lattice vibrations,

V(G,T) = Vps(G)exp [-2W (G, T)] .

The Schrodinger equation is solved in the momentum
space to get both the band energy E,x and wave function
¥,k (r) with » and k being the band index and the wave
vector, respectively. The charge density is calculated at
different temperatures as

p(r) =3 F_(Bnk,T) | Ype(r) |* -
nk

(2.7)

(2.8)

(2.9)

F_ is the Fermi-Dirac distribution function. The elec-
tron chemical potential at a given temperature is ob-
tained from the recalculated Fermi energy, the Coulomb
potential, and the correlation potential in a same manner
described for the zero-temperature formalism.

The positron potential at a finite temperature is also
obtained in a similar manner to the electron case. The
positron potential V. (r) in Eq. (2.4) is first Fourier trans-
formed to the reciprocal space and then corrected for the
Debye-Waller factor. The wave vector of the positron at

A\ 1/2
finite temperature is given by ky = %ﬂg—m—)
m* is the effective mass of the positron. In addition to
this it is taken that the positron behaves like a classical
particle with Boltzmann distribution. With these extra

conditions the zero-point energy of the positron in Eq.
(2.6) is modified as

where
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Eo=Y Fi(ks,T) / &Brug ()

ky

x[_%vz + Vét)ulomb(r)]‘llk+ (r) - (VCtzulomb) ’
(2.10)

where F (k;,T) is the Maxwell-Boltzmann distribution
function. Like Ey, the correlation energy in Eq. (2.7) is
modified as

Beore = 32 FelkinT) [ 00, (0)Veons () s, ()
k
" (2.11)
III. RESULTS AND DISCUSSIONS

The pseudopotential calculation is carried out at the
zero-temperature lattice constant 7.656 a.u. to obtain the
electron chemical potential. The self-consistent pseudo-
charge-densities together with the core charge densities
are used in the frozen-core positron potential to obtain
the positron chemical potential. Both the electron and
positron chemical potentials are presented in Table I. We
also present the electron and positron chemical poten-
tials obtained by Boev et al.® and Puska et al.” in their
LMTO-ASA calculation in Table I. The chemical po-
tentials obtained in this calculation are in good agree-
ment with their values. The calculation is carried out
at slightly different lattice constants around the zero-
temperature lattice constant to obtain the volume deriva-
tive of the electron and positron chemical potentials. The
different contributions to the positron deformation po-
tential, F4, are given in Table I. We also present the
corresponding contributions obtained previously by both
Boev et al. in their LMTO-ASA calculation and the su-
perposition of free atoms method. The calculated values
of Bergersen et al.® using a uniform electron gas model
are also tabulated in Table I. In our calculation we have
obtained the volume coefficients of the Fermi energy, the
exchange-correlation potential, and the average Coulomb
potential energy as —13.23 eV, 3.57 eV, and 2.52 eV,
respectively. Unfortunately the corresponding data in
other calculations are not available for comparison. It
is interesting to see that the lattice expansion coefficient
of the electron chemical potential lies between the values
calculated in the LMTO-ASA method and in the uniform
electron gas model. We have used soft-core pseudopoten-
tials which are stronger than the potentials used in the
uniform electron gas model, but weaker than those used
in LMTO-ASA method. In general, with more intersti-
tial space available, the electron charge density decreases
with volume expansion. The exchange-correlation poten-
tial in turn becomes less attractive resulting in the ob-
served positive volume coefficient of 3.25 eV. Since in the
pseudopotential method the charge density is primarily
distributed in the interstitial region, the electron density
decreases slowly compared to the LMTO-ASA calcula-
tion. For this reason the volume derivative of the corre-
lation potential in the LMTO-ASA calculation is larger
than our result. The volume expansion of the lattice also
decreases the Fermi energy of the solid, giving a nega-
tive volume derivative, and it is this rapid decrease in
Fermi energy which is mainly responsible for the mag-
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nitude and sign of the volume derivative of the electron
chemical potential. In the uniform electron gas distri-
bution picture, the decrease of the charge density at the
Wigner-Seitz radius is slower than in the pseudopotential
scheme. This results in a smaller value of the exchange-
correlation potential component and a larger value of the
volume derivative of the electron chemical potential.

The volume derivative of the positron chemical po-
tential in the present calculation lies between the val-
ues calculated by LMTO-ASA and uniform electron den-
sity methods, due to the same reason as given for the
electron chemical potential. Like the electron exchange-
correlation potential, the positron correlation potential
is attractive in nature. Hence the decrease in the charge
density at the interstitial region results in a positive con-
tribution to the volume coefficient of the positron cor-
relation energy. But the lattice expansion decreases the
positron potential, which results in lowering the zero-
point energy. In the present calculation the cancellation
of the nuclear and frozen-core charge densities is more
rapid, to make the positron potential weaker than in the
LMTO-ASA calculation, but strong enough compared to
the uniform electron gas result.

The temperature derivative of the electron chemi-
cal potential is calculated first by obtaining the self-
consistent pseudopotentials at zero-temperature lattice
constant and then by modifying them by the thermal vi-
brations of the atoms at different temperatures. We have
varied the temperature from 100 to 600 K in this calcula-
tion. It is observed that p_ varies linearly with temper-
ature. The temperature coefficients of Er and Vic(po)
are found to be 0.241 meVK~! and 0.014 meVK™!, re-
spectively. There is no appreciable change of the average

potential. The value of (%"T’—)n is calculated as 0.255

meVK™!. Our positive temperature coefficient of the
electron chemical potential agrees with the prediction of
Boev et al.® With increasing temperature the potential is
damped by the vibrations of the atoms, to result in low-
ering the charge density in the interstitial region. From
our calculation we find that the thermal lattice vibrations
of the atoms in the solid do not change the valence and
core charge densities appreciably, but increase the Fermi
energy.

The positron chemical potentials are computed for dif-
ferent temperatures with the positron wave vector (k)
calculated by taking the effective mass of the positron
to be 1.15.1° They are found to decrease linearly with
the temperature. The values of %&1 and Q%fis“ are found
to be —0.3962 meVK™! and 0.0011 meVK™!, respec-
tively. The change in average chemical potential is found
to be negligibly small. The value of %‘T" is calculated to
be —0.3951 meVK~1. Since the potentials are damped
by the lattice vibrations, the positron chemical potential
is expected to increase with increasing temperature as in
the case of the electron chemical potentials. Although the
shift in mean atomic positions affects the positron distri-
bution in every cell, the lattice vibrations can squeeze the
positron from a cell that is contracted into an expanded
neighboring cell. This may cancel the damping produced
by the Debye-Waller factor and the positrons can lower
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TABLE I. The contributions of the electron and positron chemical potentials to the positron
deformation potential E4. SFA is the superposition of free atoms and UEGM the uniform electron
gas model. The values of u— and u4 are for the zero-temperature lattice constant.

Sp

po po S Q2% Q28zerc =g Eq
(eV) (eV) (eV) (eV) (eV) (eV) (eV)
LMTO-ASA® ~0.74 —3.35 ~6.00 —3.42 1.72 ~1.70 T
LMTO-ASAP —~0.76 —3.65 —6.02 —~1.83 —17.85
SFA® —2.76 1.74
Present method —~0.58 -3.35 —7.14 —2.43 1.54 —~0.89 —8.03
UEGM® —7.80 —2.20 1.40 —0.80 —8.60

®Reference 6.
bReference 7.
°Reference 8.

their energies to adjust to the vibrations of the atoms.
Taking the calculated values of the temperature deriva-
tives of the electron and positron chemical potentials,

the value of %2? is found to be 0.1401 meV K.

With the lattice thermal expansion 8 at 300 K taken
as 70.8x107% K120 the value of d—‘?%‘i is 0.71 meVK™!
which is slightly less than the experimental data of Gul-
likson and Mills,® but significantly lower than the data
of Rosenberg et al.? The recalculated deformation po-
tential from the data of Gullikson and Mills is —8.61 eV,
which is the same as that calculated in the uniform elec-
tron gas model and is also in reasonable agreement with
the value of —8.03 eV found in this work. At this stage
we do not justify that the uniform electron gas model is
better than the present or the LMTO-ASA calculations
for the positronium work function. We simply point out

that inclusion of the term (%’%}’%) leads to a removal of
Q

the previous discrepancies between theoretically and ex-
perimentally obtained positron deformation potentials.

Uncertainties that exist in the experimental values of Eg4
(Refs. 5 and 4) and the neglect in the present work of
the self-energy correction contribution are factors which
have to be addressed before more concrete conclusions
can be drawn. As a point of interest, it is noted that the
theoretical E, values compiled by Boev et al.® for heav-
ier elements come into better agreement with experiment
without any lattice vibration corrections. For example,
Pb with a theoretical E4 of —6.39 eV is compared with
the experimental values of —6.11 eV,?! and —6.13 eV.%
While we would suggest calculations be made of the lat-
tice vibration effect for these elements, we point out that
the Debye-Waller correction will be smaller for heavier
atoms. In aluminum, which is a light element, the effect
of lattice vibrations is seen more clearly.

ACKNOWLEDGMENTS

Dr. M. Sob is thanked for helpful comments on this
work. One of us, B.K.P, would like to thank the Univer-
sity of Hong Kong for financial support.

! A. Einstein, Ann. Phys. (Leipzig) 17, 132 (1905).

?N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).

3 A. P. Mills, Jr. in Positron Solid-State Physics, edited by
W. Brandt and A. Dupasquier (North-Holland, Amster-
dam, 1983), p. 432.

*1. J. Rosenberg, R. H. Howell, and M. J. Fluss, Phys. Rev.
B 85, 2083 (1987).

5 E. M. Gullikson and A. P. Mills, Jr., Phys. Rev. B 385, 8759
(1987).

8 0. V. Boev, M. J. Puska, and R. M. Nieminen, Phys. Rev.
B 36, 7786 (1987).

7" M. J. Puska, P. Lanki, and R. M. Nieminen, J. Phys. Con-
dens. Matter 1, 6081 (1989).

8 B. Bergersen, E. Pajanne, P. Kubica, M. J. Scott, and C.
H. Hodges, Solid State Commun. 15, 1377 (1974).

9 G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys.
Rev. B 26, 4199 (1982).

1D, M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980); parametrized in J. Perdew and A. Zunger, Phys.
Rev. B 23, 5048 (1981).

1 J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979).

12 C. Pennetta, Solid State Commun. 77, 159 (1991).

13 E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974).

14 J. Arponen and E. Pajanne, Ann. Phys. (N.Y.) 121, 343
(1979); J. Phys. F 9, 2359 (1979); parametrized in P. A.
Sterne, J. H. Kaiser, J. C. O’Brien, and R. H. Howell, in
Positron Annihilation, Vol. 105-110 of Materials Science
Forum, edited by Zs. Kajcsos and Cs. Szeles (Trans. Tech,
Aedermannsdorf, 1992), p. 469.

' H. Y. Fan, Phys. Rev. 82, 900 (1951).

18 M. L. Cohen and J. R. Chelikowsky, in Electronic Structure
and Optical Properties of Semiconductors, edited by M.
Cardona (Springer-Verlag, Berlin, 1988), p. 182; E. Anton-
cik, Czech. J. Phys. 5, 449 (1955); C. Keffer, T. M. Hayes,
and A. Bienenstock, Phys. Rev. Lett. 21, 1676 (1968).

TL. C. Feldman and J. W. Mayer, Fundamentals of Sur-
face and Thin Films Analysis (North-Holland, Amsterdam
1986), p. 158.

'8 p. B. Allen and V. Heine, J. Phys. C 9, 2305 (1976).

19 P. Kubica and M. J. Scott, J. Phys. F 4, 1969 (1974).

20 N. W. Ashcroft and N . D. Mermin, Solid State Physics
(Holt, Rinehart and Winston, New York, 1976), p. 496.

21 P. J. Schultz and K. G. Lynn, Phys. Rev. B 26, 2390 (1982).



