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THE THERMAL RESPONSE OF A PULSAR GLITCH: THE NONSPHERICALLY SYMMETRIC CASE
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ABSTRACT

We study the thermal evolution of a pulsar after a glitch in which the energy is released from a relatively
compact region. A set of relativistic thermal transport and energy balance equations is used to study the thermal
evolution, without making the assumption of spherical symmetry. We use an exact cooling model to solve this
set of differential equations. Our results could differ significantly from those obtained under the assumption of
spherical symmetry. Even for young pulsars with a hot core like the Vela pulsar, a detectable hot spot could be
observed after a glitch if a large amount of energy is released in a small region close to the surface of the star.
The results suggest that the intensity variation and the relative phases of hard X-ray emissions in different epochs
may provide important information on the equation of state.

Subject headings: dense matter — stars: evolution — stars: interiors — stars: neutron — X-rays: stars

1. INTRODUCTION

The studies of the thermal evolution of pulsars are believed
to provide vital information on the internal properties of the
neutron stars (for a review, see, e.g., Tsuruta 1992). Theoretical
cooling curves are often compared with the surface tempera-
tures of pulsars with different ages. However, different pulsars
clearly have different parameters, e.g., the rotation period (P)
and the surface magnetic field (B), which may affect the cooling
processes. Several proposed internal heating mechanisms, e.g.,
the frictional heating between the crustal superfluid and the
crust (Alpar et al. 1984a; Shibazaki & Lamb 1988), the crust
cracking (Cheng et al. 1992), the chemical heating (Reisenegger
1995), etc., all depend on the pulsar parameters, i.e., P and B.
Furthermore, different pulsars have different internal proper-
ties, e.g., mass, equation of state, impurity content, etc., which
strongly affect the cooling curve. Hence, ideally speaking, one
would like to study the thermal evolution process of an indi-
vidual pulsar. But realistically, the normal cooling process is
extremely slow and cannot be followed observationally for an
individual star.

The thermal evolution of a pulsar after a glitch is particularly
interesting in that it fills in this gap. A large amount of energy
could be suddenly released during the period jump (glitch).
The energy will eventually be transported to the surface of the
star and released in the form of a transient thermal X-ray emis-
sion. Several authors (Van Riper, Epstein, & Miller 1991;
Chong & Cheng 1994; Hirano et al. 1997) have calculated the
thermal evolution of pulsars after glitches, but they all assumed
that the energy is generated in a spherical shell inside the star.
They found that the glitches cannot produce very significant
observed results for young pulsars like the Vela pulsar (Van
Riper et al. 1991). However, at least part of the energy released
in the glitch could be deposited in a compact region in the
inner crust, by either superfluid unpinning in a small pocket
where the vortex lines are piled up (see, e.g., Cheng et al. 1988
and Alpar & Pines 1995) or crust cracking (see, e.g., Ruderman
1991 and Cheng et al. 1992). The transport of this amount of
energy is clearly not spherical symmetric (although, to a good
approximation, the background geometry is spherical). In this
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Letter, we study the general case of the energy transport inside
neutron stars after a glitch, without the spherical symmetry
assumption. In § 2, we derive the general relativistic non-
spherical symmetric transport and energy balance equations. In
§ 3, the necessary physics inputs and solution algorithms for
solving this set of relativistic differential equations are de-
scribed. In particular, three important factors, which strongly
affect the thermal evolution of pulsars after a glitch, including
the total energy released from a glitch, the depth at which the
energy is released, and the area over which it is released, are
discussed. Numerical results are presented in § 4, with a brief
discussion in § 5.

2. GENERAL RELATIVISTIC NONSPHERICAL SYMMETRIC
THERMAL TRANSPORT AND ENERGY BALANCE EQUATIONS

The Newtonian thermal transport and energy balance equa-
tions are given, respectively, by

dT ds
= · F 5 2C 5 2nT 2 Q (1)V ndt dt

and

F∇T 5 2 , (2)
K

where F is the energy flux, is the specific heat capacity, TCV

is the temperature, n is the particle number density, s is the
specific entropy per particle, Qn is the neutrino emissivity per
unit volume, and K is the thermal conductivity.

To generalize the above equations to a relativistic situation,
we make the following assumptions: (1) The neutron star is
rotating slowly enough that the metric tensor describing the
background spacetime can be written as (Tolman 1934)

( ), where2 2F(r) 2 2L(r) 2 2 2 2 2ds 5 2e dt 1 e dr 1 r dv 1 sin vdJ
. (2) The diffusion limit is appropri-L(r) 2 21/2e 5 (1 2 2Gm/rc )

ate for the energy transport. (3) There are no other entropy-
generating mechanisms besides diffusion, and second-order
flux terms in the transport are negligible. (4) Fluid motion inside
the star due to the thermal effects is negligible. These simpli-
fying assumptions are clearly justified for the problem at hand.
The energy transport is then governed by the following equa-
tions. The energy-momentum tensor can be written as mnT 5
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, where is the 4-m n mn m n m n m(r 1 P)U U 1 rg 1 q U 1 U q U
velocity of the fluid flow, r is total energy density measured
in the rest frame of the fluid, and P is the pressure in the rest
frame of the fluid. The heat flow is given by m mnq 5 2K(g 1

, where is the 4-acceleration andm n mU U )(T, 1 Ta ) a 5 U Un n n n;m

is the effective conductivity, e.g., (t, r, v, J)3K 5 K(T ) K ∝ T
for photon diffusion. Since we assume that there is no fluid
motion, the 4-velocity of the fluid is Ua 5 (e2F, 0, 0, 0) and
aa 5 (0, e , 0, 0). The 4-heat flow is given by qa 522L­ Fr
[0, 2Ke22L , 2 , 2(K/r2 sin2) ]. The2(­ T 1 T­ F) (K/r ) ­ T v­ Tr r v J

energy-momentum tensor components related to the energy
transport equation are the following: 5 ,tt t t 22FT 5 rU U re

5 2 , Ttv 5 f v 5tr r r t 2F22LT 5 f 5 q U Ke (­ T 1 T­ F)r r

qvUt 5 2 , and TtJ 5 fJ 5 qJUt 52F 2(Ke /r ) ­ Tv

2 . To express the thermal transport equa-2F 2 2(Ke /r sin v) ­ TJ

tion in terms of local observables, we note that
ˆâbT 5

, where 5 (eFdt, eLdr, rdv, r sin
ˆˆ ˆa a b b ab a(­z /­x ) (­z /­x ) T dz

vdJ) are the unit-one forms and 5 (dt, dr, dv, dJ). There-adx
fore, the relativistic thermal transport equation is given by

Fe FiF( )e T 5 2 , (3);i K

where the subscript “ ” denotes the spatial covariant deriv-; i
ative on the constant time slice of the metric, with i 5 r, v,
J, Fi 5 the locally measured energy flux in spher-

ˆˆ ˆ ˆˆ ˆtr tv tJ(T ,T ,T )
ical coordinates [ 5 2 ,

ˆˆ ˆˆtr (L1F) r 2F2L F tvT 5 e f Ke ­ (e T ) T 5r

5 2 , and 5ˆˆF v tJ F Jre f (K/r) ­ T T 5 e r sin vfv

2 ]. We can see that this equation (i) reduces(K/r sin v) ­ TJ

to equation (2) when F and L go to zero in the Newtonian
limit and (ii) reduces to the equations of, e.g., Straumann
(1984), with 5 5 0, in the spherical symmetric­/­v ­/­J
case.

The energy balance equation can be derived by the conser-
vation of the energy-momentum tensor, namely, tm0 5 T 5;m

1 1tt r v r r rT (2/r) f 1 (cos v/ sin v) f 1­ f 1 f ­ L 1 3f ­ F 1;t r r r

, where . Herev J tt 22F 2F­ f 1 ­ f T 5 (­r/­t) e 5 (­r/­t) ev J ;t

is the rate of change of energy density measured in the­r/­t
proper frame; it depends on the processes under consideration.
For example, if only heat conduction is considered, one has

, with being the heat capacity measured­r/­t 5 C (­T/­t) CV V

in the proper frame. We include neutrino emission, which
leads to 1 F 2F2L 2 2 r L13F­r/­t 5 C (­T/­t) e Q 5 (e /r ) ­ (r f e )V n r

1 . Using the relations be-2F v 2F J(e / sin v) ­ (sin vf ) 1 e ­ fv J

tween and , we obtaina af F

2(F1L)dT e ­ ˆF 2 r 2F( )2 C 1 e Q 5 r F eV n( ) 2dt r ­r
F Fe ­ e ­ˆ ˆv J( )1 F sin v 1 F . (4)

r sin v ­v r sin v ­J

It is very easy to see that the above equation again recovers
the well-known spherical symmetric case, as well as the New-
tonian limit.

3. PHYSICS INPUTS AND NUMERICAL ALGORITHMS

Physics inputs include a stellar model, thermal conductivity,
heat capacity, neutrino emissivity, superfluidity, surface tem-
perature treatment, and the position and amount of the energy
released by a glitch. In our calculations, we divide a neutron
star into two parts. The region from the neutron star center to
the place where the mass density equals the nuclear density

g cm23 is defined as the core, while the region14r 5 2.8 # 10N

from to the boundary density g cm23 is defined9r r 5 10N b

as the crust. The core is treated as isothermal with a time-
dependent temperature. In the crust region, the temperature
after a glitch has both spatial and temporal variations; hence,
an “exact” or “evolutionary” treatment is necessary (Nomoto
& Tsuruta 1987; Van Riper 1991). In our treatment, the energy
flow and the spatial dependence of the temperature throughout
the crust are followed, but the thermal effects on the stellar
structures are neglected; i.e., the same hydrostatic stellar model
is used throughout the evolution.

The stellar structure of a neutron star is determined by the
equation of state (EOS). We consider three representative EOSs
in this Letter, with the total mass of the neutron star in all three
models taken to be 1.4 M,. The first EOS is the BPS model
(Baym, Pethick, & Sutherland 1971), which is often used as a
soft EOS in neutron star cooling studies. The BPS model results
in a high central density and little mass in the crust, and hence
it has a small radius. The second EOS used is the PPS model
(Pandharipande, Pines, & Smith 1976), which is a stiff EOS
with a low central density, a thick crust, and a large radius.
The third EOS, the UT model (Wiringa & Fiks 1988), is a
representative intermediate stiff model. Its central density, crust
thickness, and radius are between those of the BPS and PPS
models.

In the crust region, we fitted the thermal conductivity data
provided by Van Riper (1991), who followed the work of Itoh
et al. (1984a, 1984b, 1984c, 1984d), together with the quantum
corrections of Mitake, Ichimaru, & Itoh (1984). The ions A
and Z, which are required in the conductivity formulae, are
taken from Lattimer et al. (1985). It is important to note that
the conductivity decreases as the temperature increases.

For a star with a core temperature ∼108 K, the important
neutrino emission processes include electron bremsstrahlung,
neutron-neutron, neutron-proton bremsstrahlung, and the mod-
ified Urca process. The rapid cooling processes, e.g., pion con-
densation (see, e.g., Maxwell 1979) or the direct Urca process,
etc., will not be considered here.

The heat capacities in the crust region come from extreme
relativistic degenerate electrons and from nonrelativistic neu-
trons and ions. The capacities of electrons and neutrons are
given by Glen & Sutherland (1980). The capacities of ions are
given by Van Riper (1991). The capacities of the core are
mainly due to the relativistic electrons, the superconducting
protons, and the superfluid neutrons (Maxwell 1979). The tran-
sition temperature of normal-superfluid neutrons is given by
Takatsuka & Tamagaki (1971).

We use an empirical formula (Gudmundsson, Pethick, &
Epstein 1983) to relate the surface temperature and theTs

boundary temperature at . Eichler & Cheng (1989) haveT rb b

shown that the thermal response time between the boundary
and the surface is on the order of seconds, which is even less
than our numerical time step (greater than 10 s). The above
relation is clearly valid in our computation.

The actual energy released from a glitch is not known. In
fact, different models can give very different results. There are
several such examples. First, the neutron star is known to con-
sist of two components, superfluid and normal matter, which
need not have the same angular velocity as the star spins down.
Glitches may result from the sudden angular momentum trans-
fer between these two components (Alpar et al. 1984a, 1984b).
The energy released from a glitch in such a model is
∼ , where is the moment of inertia of the crustI DQ (Q 2 Q ) Ic c s c c

and of those components strongly coupled to the crust, which
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Fig. 1.—The thermal profiles of the hot spot on the surface of the neutron
star of the UT EOS labeled by the time in days after a heat input of DE 5

ergs induced by a glitch released at g cm23 ≤ g42 11 1210 3 # 10 r ≤ 3 # 10
cm23 in a nonspherical symmetric case as a function of polar angle. The core
temperature is K.8T 5 10c

is in general very close to the total stellar moment of inertia,
is the observed jump of the crustal angular velocity, andDQc

is the angular velocity lag between the crustal com-Q 2 Qc s

ponent and the superfluid. However, the angular velocity lag
cannot be directly determined. The model-dependent estimation
of this angular velocity lag ranges from 1023 to 10 rad s21

(Alpar et al. 1984a, 1984b; Epstein & Baym 1988; Alpar,
Cheng, & Pines 1989). The glitch energy predicted by these
models could be 1038–1042 ergs. Van Riper et al. (1991) esti-
mated that the energy released from the glitch is between 1041

and 1043 ergs if the sudden angular momentum transfer takes
place in the interstitial pinning region. Ruderman (1991) argued
that the glitch may result from the crust cracking, and the
energy released from the crust cracking is ∼ ergs over38 210 v23

a small volume with a typical size of 105 cm. Here v23, in units
of 1023, is the maximum shear angle beyond which the crust
will break. For a pure Coulomb lattice, v is between 0.1 and
0.01, but for an impurity-dominant lattice, v can be as small
as 1025. It has been shown that even when 1043 ergs of glitch
energy is released in a spherical shell inside a young pulsar
with a hot interior, the temperature rise on the surface of the
neutron star is undetectable (see, e.g., Van Riper et al. 1991
and Chong & Cheng 1994). However, if a large amount of
energy is indeed released in a small region close to the stellar
surface, it may result in a detectable hot spot on the stellar
surface. There are three crucial questions, namely, how much
glitch energy is released in a small region, what is the depth
at which this energy is released, and where is the area over
which it is released. The answers to these questions are again
very model dependent. A detailed discussion on the energy
released from various glitch mechanisms will be presented else-
where. In this Letter, we will assume the largest possible value
of the glitch energy ergs, which is released at the42DE 5 10
depth of the crust ∼1012 g cm23 over a typical size of ∼105 cm.

At time , the heat is deposited in a small volume att 5 0
and ; is the radius where the density isr 5 r v 5 0 r r 5g g g

g cm23 (see Fig. 1). Without a loss of generality, we choose1210
the hot spot to be centered at , which gets rid of the J-v 5 0
dependence in the transport problem. The transport equations
in the crust region are solved by explicit finite-differencing,
while the core is taken to be isothermal with a time-dependent
temperature Tcore determined by the total heat inflow and the
core heat capacity. In a typical run, the spatial resolution is
taken to be , with a variable time stepN # N 5 100 # 50r v

determined by the stability requirements. The numerical con-
vergence of the results has been checked carefully. The tem-
perature is cell-centered, while the flux is centered on the cell
surface. The inner and outer boundary conditions for the flux
are given explicitly by

F(1, j) F(core)( )e T 1, j 2e Tcore
r 2F2L( )F 1, j 52Ke ,

Dr

1 ≤ j ≤ N , (5)v

at the inner boundary and

2rsr 4( ) ( )F N 1 1, j 5jT N , j , 1 ≤ j ≤ N , (6)r s r v2rob

at the outer boundary; rob and are, respectively, the radii ofrs

the outer boundary of the crust and the star; j is the Stefan-
Boltzmann constant; Ts(Nr, j) is the surface temperature of the

jth angular cell at rob. The initial temperature distribution within
the crust is that of the equilibrium state of the same star with
the initial core temperature. The temperature evolution is given
by standard finite-differencing of equation (4). With a second-
order scheme, no extra boundary condition is needed for equa-
tion (4) since the temperature is cell-centered.

4. RESULTS

We believe the energy is released at g cm23 ≤113 # 10
g cm23, with a solid angle of centered12 C Cr ≤ 3 # 10 2 # 2

at . The initial temperature of the core is taken to beCv 5 0
K, and the released energy ergs, which is8 42T 5 10 DE 5 10c

about the energy released by the Vela pulsar after a giant glitch.
Figure 1 shows the surface temperature versus the polar angle
at different times. The hot spot is gradually spreading away
from , and it takes about 275 days for the surface tem-Cv 5 0
perature to reach the maximum for a UT star. The temperature
at maximum is about 5 times higher than the background tem-
perature. However, the hottest region is concentrated in a solid
angle of centered at .C C C2 # 2 v 5 0

Figure 2 shows the evolution of the surface luminosity as
function of time for three different EOSs, i.e., PPS, UT, and
BPS. The peak luminosity is higher, the time needed to reach
the peak is shorter, and the relaxation time is also shorter for
the softer EOS in comparison with the stiff one. This is true
for the following reason: the soft EOS has a much thinner
crust. We can see that there are substantial differences among
these EOSs.

In comparing the luminosity evolution between the spherical
symmetric case and the nonspherical symmetric case (cf. Fig.
1 of Chong & Cheng 1994, hereafter CC94, with our Fig. 2),
we find that there are three major differences between these
two cases: (1) The surface luminosity of the spherical sym-
metric case reaches the peak almost 5 times faster than that of
the nonspherical symmetric case. This results from the fact that
the nonspherical symmetric case has a much higher temperature
that decreases the conductivity considerably. (2) The peak of
the total luminosity in the spherical case is lower than that of
the nonspherical symmetric case. This is so because in the
nonspherical case, more energy comes out through the surface
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Fig. 2.—The evolution curves of the total luminosity for PPS, UT, and BPS
stars denoted by solid, dashed, and dot-dashed lines, respectively.

instead of heating the core. (3) Most importantly, although the
changes of the total luminosity for the spherical case and the
nonspherical case are very small, the surface temperature of
the nonspherical symmetric case at a cap area changesC C2 # 2
drastically (cf. our Fig. 1 with Fig. 3c of CC94), while the
surface temperature changes very little in the spherical sym-
metric case. In other words, a hot spot should show up on the
surface of a neutron star 200–300 days after the glitch, and it
should last for about a few hundred days if the EOS is soft or
intermediately stiff.

In calculating the evolution of the total luminosity for dif-
ferent core temperatures, we find that the surface luminosity
of the cooler model reaches its maximum earlier. This results
from the fact that the conductivity is higher for lower tem-
perature. The relative increase in the luminosity of the cooler
star is higher than that of the hotter star. The net increase of
the luminosity of the cooler star is a little higher than that of
the hotter star. It is true for the following reason: the energy
of the glitch spreads to the stellar surface of the cooler star
faster than that of the hotter star. However, the total energy
emitted during the thermal afterglow period is about the same
in these two cases. We have also calculated the thermal evo-
lution inside the neutron star at (cf. Fig. 1 of Cheng &Cv 5 0

Li 1998). In comparing this with the spherical symmetric cases
(see, e.g., Fig. 2 of CC94), we find that the temperature of the
heat pulse is much higher in this case because the energy is
released in a much smaller volume. The heat pulse is propa-
gating outward as well as inward, with a speed slower than
that of Figure 2 of CC94 (where the core temperature is chosen
to be 106 K, and hence the conductivity is much larger).

5. DISCUSSION

Based on a set of general relativistic thermal transport and
energy balance equations, we studied the thermal evolution of
a neutron star after a glitch. There are large uncertainties in
some factors that strongly affect the thermal response of a
pulsar after a glitch, i.e., the total energy released from a glitch,
the depth at which the energy is released, and the area over
which it is released.

For illustrative purposes, we have assumed that there is 1042

ergs of glitch energy released in a compact region with a typical
size 105 cm at density ∼1012 g cm23; then a hot spot can appear
on the stellar surface. For a UT star with an interior temperature
of ∼108 K, although the surface luminosity increases by only
∼10%, the radiation is emitted from a small area with a tem-
perature higher than the background temperature by a factor
of ∼5. This results in a periodic hard X-ray pulse emission that
should stand out clearly from the soft X-ray background. A
soft EOS greatly enhances this effect, and a stiff EOS reduces
it: the thermal response to a glitch can provide important con-
straints on the EOS.

The time it takes to reach the peak luminosity is long, typ-
ically ∼1 yr for a UT star; this may make it difficult to relate
the hard X-ray pulse to the glitch generating it. However, since
the energy released by each glitch should be at a different place
on the star, comparing the relative pulse-phase difference with
the intensity variation of the hard X-rays observed in different
epochs can provide evidence for this phenomenon. Together
with a detailed spectral analysis, the EOS could be deduced.
A detailed report on this subject and a comparison with ob-
served data will be presented elsewhere.
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