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Quantum-classical complexity-security tradeoff in secure multiparty computations

H. F. Chau*
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 31 December 1998; published 16 February 2000!

I construct a secure multiparty scheme to compute a classical function by a succinct use of a specially
designed fault-tolerant random polynomial quantum error correction code. This scheme is secure provided that
~asymptotically! strictly more than five-sixths of the players are honest. Moreover, the security of this scheme
follows directly from the theory of quantum error correcting code, and hence is valid without any computa-
tional assumption. I also discuss the quantum-classical complexity-security tradeoff in secure multiparty com-
putation schemes and argue why a full-blown quantum code is necessary in my scheme.

PACS number~s!: 03.67.Dd, 03.67.Hk, 03.67.Lx, 89.70.1c
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I. INTRODUCTION

Quantum computers are more powerful than class
computers in a number of applications such as integer
torization@1#, database search@2# and secret key distribution
@3,4#. In addition, careful use of entanglement reduces
multiparty communication complexity of certain function
@5# and allows secret sharing@6#. On the other hand, certai
postmodern cryptographic applications, including bit co
mitment @7# and ideal two-party secure computation@8#, are
impossible if the cheater has a quantum computer. Thus,
important to investigate the power and limitation of quantu
computers. Moreover, the quantum versus classical and
curity versus complexity tradeoffs for certain multipar
computational tasks deserve in-depth study.

In this paper, I analyze the quantum versus classical
security versus complexity tradeoffs in secure multipa
computation. In secure multiparty computation,n players
each with a private classical inputxi want to compute a
commonly agreed classical functionz5 f (x1 ,x2 , . . . ,xn) in
such a way that~i! all players either know the value ofz or
abort after detecting a cheater or eavesdropper,~ii ! no one
can gain information on the private input of an honest pla
except those logically followingz, and~iii ! a limited number
of cheating players cannot alter the final outcomez. More-
over, the above three conditions hold even if all cheaters
eavesdroppers cooperate.

Secure multiparty computation can be used as a b
building block for a number of extremely useful protoco
including secure election and anonymous messages br
cast. Thus, it is important to devise a secure multiparty co
putation scheme that tolerates as many cheaters as pos
on the one hand, and requires as few communications
tween the players as possible on the other.

Several classical secure multiparty computation sche
exist in the literature. The security of some of these sche
@9# is based on the security of either certain~classical! oblivi-
ous transfer or~classical! bit commitment protocols. Henc
their methods are insecure if a cheating player has unlim
computational power. Ben-Oret al. @10# and Chaumet al.
@11# independently proposed multiparty computation me
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ods based on a distributed computing version of the so-ca
(k,n)-secret sharing scheme@12#. Their schemes are uncon
ditionally secure provided that fewer than one-third of t
players cheat. This is true even when the cheaters coope
The one-third cheating player bound is tight among all cl
sical protocols that allow secret communications betwe
any two players@10#. Later Rabin and Ben-Or showed that
each player can broadcast a message to all other players
each pair of players can communicate secretly, then ther
an unconditionally secure way to computez fewer if less
than one-half of the players cheat@13#. The one-half cheating
player bound is tight among all classical schemes that al
secret communications between any two players as well a
public broadcasting@13#.

How many resources are required in classical conditi
ally secure multiparty computation? In all classical schem
known to date, then players must communicate secure
with others. Hence,n(n21)/2 classical secure communica
tion channels are required. Suppose each player has a pr
input of lengthk, then initially they have to distribute thei
private inputs via certain secret sharing schemes. To do
each player has to send outO(nk) bits. Thus,O(n2k) bits of
~secret! classical communication are necessary for the ini
setup in the whole system. To perform distributed compu
tion, up toO(n2k) bits of ~secret! communication and com
putation per arithmetical operation are required@10,13#. In
addition, to verify that every player’s secret input is correc
distributed in the secret sharing scheme, an extraO(n3k) bits
of communications are needed@10,11,13#. Since the number
of secret communication channels scales quadratically w
the number of players, classical secure multiparty compu
tion is rarely used in practice for more than, say, ten play
@14#. In fact, the classical schemes by Ben-Oret al. and
Chaumet al., being generic, are designed primarily to poi
out the plausibility of secure multiparty computation.

II. QUANTUM SECURE MULTIPARTY COMPUTATION
SCHEME

Now, let me report a quantum secure multiparty comp
tation scheme that requires fewer communication chan
and resources at the expense of tolerating fewer chea
Without lost of generality, I may assume that the priva
input for each player as well as the output of the functiof
©2000 The American Physical Society08-1
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H. F. CHAU PHYSICAL REVIEW A 61 032308
are chosen from a finite fieldFq for some primeq. My
scheme goes as follows

~1! All players agree on a common computation
basis for quantum computation, an exponentially sm
security parametere.0, as well as two random polynomia
quantum error correcting codes~QECC’s! C1 and C2 @15#.
In particular, they chooseC1 to be the@@n,1,d##q code where
the prime q.n, and 3d<n12. More precisely,C1 en-
codes eachqary quantum registerua0& into n qary quan-
tum registers(a1 ,a2 , . . . ,ad2150

q21
^ i 51

n ua01a1yi1a2yi
21•••

1ad21yi
d21&/q(d21)/2 whereyi are distinct nonzero elemen

in Fq . The distance of this code isd and hence it can correc
up to d[@(d21)/2# errors.1 Furthermore, I denote the
@@n,1,d##q QECC ua0&°(a1 ,a2 , . . . ,an2d1150

q21
^ i 51

n ua01a1yi

1a2yi
21•••1an2d11yi

n2d11&/q(n2d11)/2 by C̃1. In addi-
tion, C2 is chosen to be the@@4d811,1,2d811##q random
polynomial QECC@15# whose fidelity of quantum computa
tion using imperfect devices is greater than 12e. ~Since the
random polynomial QECCC2 has a fault-tolerant implemen
tation @15#, by concatenate coding, the threshold theorem
fault-tolerant quantum computation guarantees the existe
of such a QECCC2 @15–17#.! As we shall see later on, th
choice of the value of the distanced affects only the numbe
of cheaters that can be tolerated by the scheme.

~2! Each player sets up a quantum channel with a cen
routing station. He or she may establish relay stations al
each quantum channel in such a way that the noise leve
each quantum channel segment is small enough to per
entanglement purification.~See Refs.@18–20# for details.!
Furthermore, each player also has access to a classical p
unjammable channel for broadcasting.

~3! The players, central routing channel and relay stati
separately prepare a few copies of the stateuF&
[(k50

q21ukk&/Aq. They encode each copy using QECCC2,
and share these encoded statesuF& between the two ends o
each quantum communication channel segment. Then,
perform a fault-tolerant entanglement purification proced
as discussed in Refs.@19,20# on these shared states. Ne
these possibly impure encoded statesuF& shared between
each channel segment from one player to another are
nected together by quantum teleportation@4,18,21#. Finally,
each pair of players tests the purity of their shared enco
statesuF& by a variation of the fault-tolerant random hashi
technique described in Ref.@4#. ~Readers may refer to Ap
pendixes A and B for detailed descriptions of the telepo
tion and random hashing procedures, respectively.! They
proceed to step~4! only if the random hashing test is pass
for each pair of players. In this case, each pair of players
share a number of almost perfect encoded logical statesuF&.
The entanglement shared between each pair of players in
way can then be used to securely transport states am
themselves in step~4!. Clearly, shareduF& is not the only

1The distance of this code is less than that reported in Ref.@15#.
Nonetheless, I still call this a random polynomial code because
code closely resembles that reported in Ref.@15#.
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possible way to establish such an entanglement. In fact,
may replace the stateuF& in this scheme by an Einstein
Podolsky-Rosen~EPR! pair. Nevertheless, the scheme w
become slightly complicated after such a replacement
one has to teleportqary instead of binary quantum registe
in step~4!.

~4! Let xi be the private classical input of playeri; then he
or she preparess5O„log(1/e)… copies of the stateuxi&. He or
she also prepares a number of preset quantum registeru0&
that will be used later on in the reversible quantum com
tation. Playeri first encodes each of his or her prepared qu
tum registers using the QECCC1. Then, playeri further
encodes thej th quantum register in each of his or her e
coded states usingC2 and teleports the resultant quantu
registers to playerj using their previously shared encode
stateuF& from step~3! for all j Þ i . He or she also encode
each of thei th quantum registers byC2 and keeps those
quantum registers himself or herself. All players keep th
received quantum registers private as well. In what follow
use the subscript ‘‘L’’ to the state ket to denote a state tha
encoded and distributed among then players using this pro-
cedure. In addition, the players also prepare a numbe
preset quantum registersu0&, encode it first byC̃1, and then
by C2. The players then distribute these encoded preset
isters among themselves in a similar way as in sharing t
private inputs. I use the subscript ‘‘L˜ ’’ to the state ket to
denote such an encoded and distributed state. Statesu0&L and
u0& L̃ will be used as preset registers during the revers
computation in step~6!.

~5! In order to make sure that everyone follows step~4!
honestly, a playerj ~the verifier! may challenge a randomly
chosen playeri ~the prover! using a fault-tolerant random
parity check method similar to that used in Ref.@4#. More
precisely, playerj publicly announces a sequence$ck%k51

s of
integers inFq such that(k51

s ck50. Then every player is
required to help playerj to compute the random parit
(k51

s ckxik by distributed fault-tolerant quantum computatio
~FTQC!, wherexik denotes the state of thekth copy of the
private input of playeri. Clearly, the choice of QECC’sC1
andC2 enables us to perform the above quantum compu
tion in a fault-tolerant waywithout any measurement an
ancilla @15#. Also, the method of distributing the private in
put state in step~4! allows the players to perform the abov
FTQC in a distributed mannerwithout any communication
between them.

To verify if the result computed~which I call the random
parity! is equal to zero, all players measure and publi
announce their measurement outcome along their comm
agreed computational basis on their correspondingC2 en-
coded quantum registers that encode the random parity.
causeC1 is an @@n,1,d##q random polynomial QECC, the
measurement results of the players correspond to the cl
cal @n,d,n2d11#q Reed-Solomon encoding of the rando
parity. Naturally, they continue only if the random pari
inferred from this classical Reed-Solomon encoding is ze
This verification process has to repeatO„log(1/e)… times for
each proving playeri so as to guarantee security.

In addition, all players use a similar distributed fau
is
8-2
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QUANTUM-CLASSICAL COMPLEXITY-SECURITY . . . PHYSICAL REVIEW A61 032308
tolerant random parity checking technique to verify the p
rity of the distributed encoded preset quantum registersu0&L
and u0& L̃ among themselves. They proceed to step~6! only
when all the measurement results are consistent with the
sumption that there is no cheater or eavesdropper aro
Thus, in order to establish the required security,O„log(1/e)…
private input states prepared and distributed in step~4! are
wasted.~An alternative way to perform the random pari
check measurement is to ask the players to teleport t
shares of the encoded random parity quantum registers to
verifier. Then the verifier makes the appropriate measu
ment and publicly announces the outcome.!

~6! To compute the commonly agreed classical funct
z5 f (x1 ,x2 , . . . ,xn), the n players perform distributed
FTQC on their received quantum particles. The players k
every quantum state private except the final result.

To be precise, they first decompose the classical func
f into a commonly agreed composition of elementary ope
tors. Each elementary operator is in the form of~i! register-
wise addition ux&°ux1a&, ~ii ! registerwise multiplication
ux&°uax&, ~iii ! generalized controlled -NOT gate ~C-NOT!
ux,y&°ux,x1y&, and ~iv! generalized Toffoli gate
ux,y,z&°ux,y,z1xy&, for some fixedaÞ0 @22#.

At this point, each player should haver 5O„log(1/e)…
,s remaining quantum registers distributed among the
selves. Moreover, all the remaining distributed quant
states of an honest player, upon quantum error correc
should be identical. Clearly, the choice of the random po
nomial QECC’sC1 andC2 together with the private secur
distribution method in step~4! allow, the players to perform
the first three types of elementary operators without a
measurement or communication between the players@15#.
Thus, they can perform the fault-tolerant operation on thr
remaining distributed quantum registers one by one. In
way, they end up withr identical resultant states if they ar
honest.

To perform the fourth type of elementary operato
namely, a generalized Toffoli gate on ther remaining dis-
tributed encoded states, the players do the following. F
they collectively synthesize the distributed sta
(a,b50

q21 ua,b,ab&L /q3/2 among themselves using their verifie
distributed statesu0& L̃ by a procedure based on that in Re
@17# as follows:

u0,0,0,0& L̃

°
1

q2 (
a,b,c,k50

q21

ua,b,c,k&L ~1a!

°
1

q2 (
a,b,c,k50

q21

vq
2kcua,b,c,k&L ~1b!

°
1

q2 (
a,b,c,k50

q21

vq
k(ab2c)ua,b,c,k&L ~1c!

°
1

q5/2 (
a,b,c,k,x50

q21

vq
k(ab2c1x)ua,b,c&L ^ ux& L̃ , ~1d!
03230
-

s-
d.

ir
he
e-

n

p

n
-

-

n,
-

y

is

,

t,

wherevq is a primitiveqth root of unity.
To arrive at Eq.~1a! in a fault-tolerant manner, eac

player i simply has to perform the local Fourier transform
tion ua&°(b50

q21vq
miabub&/Aq on his or her corresponding

quantum registers, wheremiPFq is a unique solution for the
system of equations( i 51

n mi51 and ( i 51
n miyi5( i 51

n miyi
2

5•••5( i 51
n miyi

n2150. I denote this fault-tolerant transfor
mation by F. In fact, Appendix C shows thatFu0&L

5(k50
q21uk& L̃ and Fu0& L̃5(k50

q21uk&L . Then Aharonov and
Ben-Or tell us how to arrive at Eqs.~1b! by fault-tolerant
controlled-phase-shift gatewithout any communication be-
tween the players@15#. More precisely, each playeri applies
ua,b&°vq

piabua,b& to their share of the third and fourt

quantum registers wherepiPFq satisfies( i 51
n pi521 and

( i 51
n piyi5( i 51

n piyi
25•••5( i 51

n piyi
2d50. Subsequently,

arriving at Eq. ~1c! from Eq. ~1b! requires the
fault-tolerant controlled-controlled-phase-shift ga
ua,b,c&L°vq

abcua,b,c&L . For the random polynomial cod
C1 with 3d<n12, this operation is achieved when ea
player i applies the controlled-controlled-phase-shift ga
ua,b,c&°vq

r iabcua,b,c& to his or her corresponding share
the encoded first, second, and third quantum registers, w
r iPFq is the solution~not necessarily unique unless 3d11
5n) of the system of equations( i 51

n r i51 and ( i 51
n r iyi

5( i 51
n r iyi

25•••5( i 51
n r iyi

3d50. Finally, to arrive at Eq.
~1d! from Eq.~1c! in a fault-tolerant way, the players simpl
apply the same local Fourier transformF that creates Eq.
~1a! to their share of the fourth quantum register.~Again, the
proof can be found in Appendix C.! In summary, the players
can evolve their share of quantum states to Eq.~1d! in a
fault-tolerant mannerwithoutany measurement, communica
tions or the use of ancillary particles.

After the players have evolved their quantum particles
the distributed state in Eq.~1d!, they measure their share o
the fourth encoded quantum register along the commo
agreed computational basis and then publicly announce t
measurement results. In this way, they end up having a c
sical @n,n2d11,d#q Reed-Solomon code and after err
correction, they can infer the measurement outcome of
fourth encoded quantum register along the commonly agr
computational basis. Suppose the inferred measuremen
sult is l, then the state ket of the remaining thre
distributed encoded quantum registers becom
(a,b,c,k50

q21 vq
k(ab2c1l)ua,b,c&L /q25(a,b50

q21 ua,b,ab1l&L /q.
So, by applying a fault-tolerant generalized C-NOT gate
pending on the measurement resultl, they eventually syn-
thesize the state(a,b50

q21 ua,b,ab&L /q collectively.
At this point, using their newly synthesized distribute

encoded state(a,b50
q21 ua,b,ab&L /q as ancilla, then players

implement the generalized Toffoli gate in a fault-tolera
manner using a variation of Gottesman’s method in R
@23#. ~See also Ref.@17# for details.! More precisely, they
perform the following transformation using a number
fault-tolerant generalized C-NOT gates and a fault-toleranF
gate:
8-3
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H. F. CHAU PHYSICAL REVIEW A 61 032308
1

q2 (
a,b,c50

q21

ux,y,z,a,b,ab&L

°
1

q3/2 (
a,b,c50

q21

vq
zcux2a,y2b&L ^ uc& L̃ ^ ua,b,z1ab&L .

~2!

Now the n players measure their shares of the first th
encoded registers along the commonly agreed computati
basis. Regarded as classical Reed-Solomon codes, their
licly announced measurement outcomes can then be us
infer the ~quantum! measurement results of the first thr
registers along the commonly agreed computational ba
Suppose the inferred measurement results of the first t
registers arel1 ,l2, andl3, respectively. Then, by addingl1
to the fourth register,l2 to the fifth register, andl1y1l2x
2l1l2 to the sixth register, they get the statevq

l3zux,y,z
1xy&L . Finally, they obtain the stateux,y,z1xy&L , which is
the result of a generalized Toffoli operation, by applying
suitable phase-shift gate in the sixth register then follow
by another controlled-controlled-phase-shift operator to
first and second registers.~As I have discussed previously
players may perform these operations without any comm
nication because of the choice of the QECC’sC1 and C2
together with the fact thatl1 ,l2, andl3 are classical data.!

To ensure accuracy, the players perform the above
cessr times to ther supposedly identical signal states. In th
way, they end up by implementingr identical generalized
Toffoli operators if all players are honest.@At this point,
readers may wonder why I do not check the purity of an
lary state(a,b50

q21 ua,b,ab&L /q directly. The reason is tha
random parity checking does not work for this ancillary st
because the state of the untested particles will be altere
the test itself. Readers may also ask why I do not apply
fault-tolerant Fourier transformation gate to obtain(k50

q21uk&L

from u0&L . The reason is that all known fault-tolerant Fo
rier transformation gates for the@@n,1,d##q QECC C1 with
3d<n12 to date require collective measurements on
encoded quantum registers and hence are liable to erro
the presence of cheaters. An alternative method to perf
the required measurement is to assign once and for a
randomly chosen player for each of ther 5O„log(1/e)… sup-
posedly identical signal states. Whenever it comes to a m
surement, players teleport their states to be measured to
corresponding assigned player who then makes the nece
measurement and publicly announces the measurement
come.

~7! In order to make sure that the players indeed foll
the distributed FTQC in step~6! honestly, they carry out the
random parity verification testO„log(1/e)… times on their
final state using the same method as described in step~5!.
Finally, to obtain the value ofz5 f (x1 ,x2 , . . . ,xn), the n
players separately measure their share of quantum regi
that encode the value ofz along the commonly agreed com
putational basis, and then publicly announce their meas
ment outcomes. They then infer the value ofz using standard
classical Reed-Solomon code error correction.
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III. SECURITY OF THE QUANTUM SCHEME

Now, I claim that the above scheme correctly compu
the classical functionz5 f (x1 ,x2 , . . . ,xn) with a probability
12l e for some fixed constantl >1, provided that no more
thand players cheat. In addition, thosed[@(d21)/2# cheat-
ers know nothing about the private inputs of every hon
player and they cannot alter the final outcomez. These
claims are true even if all cheaters cooperate and have
limited computational power.

To prove the above claims, one observes that there
four possible ways for the above scheme to go wro
namely, the presence of noise, bad instruments, eavesd
pers, and cheating players. Remember that a cheater
deliberately announce wrong measurement results
thereby mislead others. One must also make the most p
mistic assumption that all cheaters and eavesdroppers c
erate and control everything except the instruments in
laboratories of the honest players. The cheaters may e
have unlimited computational power. Using the argumen
Ref. @4#, I first show that we can safely neglect the effect
noise and bad instruments. Since all steps in the ab
scheme are performed in a fault-tolerant manner, the the
of FTQC tells us that with probability 12e we may assume
that noise and bad instruments simply affect the error s
dromes but not the quantum information encoded in
states@15–17#. The theory of QECC also tells us that lear
ing error syndromes give no information about the quant
information encoded in the state@24,25#. Consequently, by
restricting myself to the evolution of quantum informatio
contained in the encoded quantum registers, I may ana
the behavior of the above scheme in a noiseless environm
from now on.

Then it remains for me to show that no more thand
cheaters can obtain partial information on the private inp
of some honest players. In addition, these cheaters ca
alter the output of the classical functionf. In order to do this,
one first has to understand the function of each step in
scheme. Steps~2! and ~3! are direct generalizations of th
entanglement-based quantum key distribution protocol p
posed by Lo and Chau in Ref.@4#. The aim of these two step
is to share the almost perfectly encoded stateuF& between
any two pairs of players so that they can teleport quant
states in a fault-tolerant manner from one to another at a l
time in step~4!. Step~5! makes sure that every player fo
lows step~4! to distribute his or her private input as well a
the preset quantum registers using the QECC’sC1 and C̃1.
The actual computation is carried out in step~6!, and finally,
the computational result is varified and measured in step~7!.

A. Private inputs of an honest player are secure up to step„5…
of the quantum scheme

I have two cases to consider in order to show that thd
[@(d21)/2# cheaters obtain no information on the priva
inputs of the honest players up to the random parity ver
cation in step~5! of the quantum scheme. The first case
when the proving playeri in step~5! is honest. In this case
the encoded stateuF& sharing scheme in step~3! between the
proving playeri and all other honest players is a straightfo
8-4
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QUANTUM-CLASSICAL COMPLEXITY-SECURITY . . . PHYSICAL REVIEW A61 032308
ward generalization of the quantum key distribution proto
of Lo and Chau in Ref.@4#. More important, as stated i
Appendix B, the random parity test in step~5! maps the basis
B5$(k50

q21vq
kbuk,k1a&/Aq%a,bPFq

to basisB up to a global

phase. Therefore the proof of Lo and Chau in Ref.@4# ap-
plies. In particular, they have already proved that the fide
of every encoded stateuF& shared between any two hone
players is at least 12e even in the presence of eavesdropp
and cheaters@4#. Then in steps~4! and ~5!, eavesdroppers
and cheaters can access only the public classical comm
cations between the honest players. Fortunately, these
sical messages contain no information about the telepo
quantum state@21#. Hence, no one apart from the sender a
the receiver knows the teleported state. Thus, thesed cheat-
ers have access to at most their share ofd quantum registers
of the distributed encoded stateuxi&L . Since C1 is a
@@n,1,d##q QECC, knowledge of thed quantum registers in
the hands of the cheaters contains no information on
private inputxi at all.

The second case is that the proving playeri is dishonest.
Clearly, the job of the dishonest playeri is to somehow mis-
lead the other players into believing that he or she is hon
More precisely, playeri tries to devise a method~possibly
with the help of the otherd21 cheaters in the system! so as
to pass the verification test in step~5! with a probability
greater than 12l e for some fixed positive constantl . Note
that measuring every quantum register of an arbitrary qu
tum codeword of the@@n,1,d##q random polynomial QECC
C1 along the commonly agreed computational basis give
classical@n,d,n2d11#q Reed-Solomon codeword. In add
tion, if the C1 encoded quantum stateuC& containsd erro-
neous quantum registers, then after measuring along
computational basis, we end up getting a classical Re
Solomon codeword with at mostd erroneous registers. Sinc
d,n/4 @25,26#, if an error can be handled by the QECCC1,
the corresponding error after measurement can be handle
the corresponding classical Reed-Solomon code. Moreo
a coarse-grained measurement, that is, the process of
suring each quantum register along the computational b
together with the inference of the quantum state from
Reed-Solomon code, can be regarded as a projective m
surement along theC1 encoded computational basis on t
quantum state. In the verification step~5!, all then2d hon-
est players indeed measure the quantum states along
commonly agreed computational basis. The random pa
check does not alter the state of the unmeasured quan
particles. Therefore, the coarse-grained measurements
formed by the honest players commute with each other;
hence each coarse-grained measurement result will in no
change the outcome of all subsequent measurements@4#.
Thus, theoretically, the honest players may push their coa
grained measurement forward to the time when the quan
states are just prepared. Consequently, the probability
cheating playeri will pass the quantum verification test i
step~5! cannot exceed the probability of passing a class
random parity verification test in which playeri is allowed to
prepare only a classical mixture of states@4#. Clearly, the
probability that playeri cheats and yet he or she passes
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classical verification test is no greater than 1/qr where r is
the number of independent rounds of tests performed. C
sequently, by repeating the quantum random parity
logq(1/e) times, the probability that playeri cheats and yet he
or she passes the quantum verification test in step~5! is at
most e. Once the quantum verification test is passed,
fidelity of the remaining untested quantum states as bein
valid input uxi& is equal to 12l e for some constantl inde-
pendent ofn ande. Thus, the entropy of each of the untest
quantum states is equal to logzq1l e. Hence, the cheater
have an exponentially small amount information about
private inputs of every honest player@4#. Using a similar
argument, I know that the fidelity of the distributed pres
quantum registersu0&L and u0& L̃ is also equal to 12l e.

Therefore, I conclude that if there are at mostd cheaters
and they choose to perform measurements individually, t
the probability that these cheaters can obtain partial inform
tion on the private inputs of the honest players is bound
from above byl e for some fixed constantl .0 up to step
~5! of the quantum scheme.

In the event that the players choose to teleport their r
dom parity state to the verifier who then makes the neces
measurement, the proof of security up to step~5! is similar.
Note that if the verifier is honest, then the above proof a
plies. On the other hand, if the verifier cheats, two thin
may happen. First, the verifier may wrongly announce
inconsistent result. This leads to an immediate abortion
the scheme; hence, he or she cannot obtain any extra in
mation on the private input of an honest player. Second,
verifier may turn a blind eye to a measurement result tha
inconsistent with the no cheater or eavesdropper assump
Sinced/n,1/6, a nonzero fraction of the verifiers are ho
est. So, afterO„log(1/e)… rounds of random parity tests, th
probability that the private input of an honest player lea
out is less thanl e for some fixed constantl .0 up to step
~5! of the quantum scheme.

Thus I conclude that if there are at mostd cheaters and
the players choose to teleport the particles encoding the
dom parities to the verifiers before making measureme
then the probability that cheaters obtain partial informat
on the private input of an honest player is less thanl e for
some fixed constantl .0.

B. Cheater cannot alter the computation result

Now I proceed to show that thesed cheaters cannot alte
the outcome of the function evaluationf with a probability
greater thane in steps~6! and ~7! of the quantum scheme
Since one may regard any illegal quantum manipulation
the d cheaters as decoherence acting on up tod quantum
registers in the QECCC1, the theory of FTQC implies tha
anyquantummanipulation by these cheaters cannot alter
final outcome of the functionf. Nevertheless, the theory o
FTQC assumes that all measurements of the encoded q
tum state and manipulation of classical data are error-free
it remains for me to show that measurement and class
data manipulation by cheaters also cannot alter the outc
of the functionf.
8-5
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H. F. CHAU PHYSICAL REVIEW A 61 032308
Because of the choice ofC1 and C2, there are two pos-
sible operations in the scheme that require measureme
classical message communication, namely, the verifica
test and the generalized Toffoli gate. As I have discus
previously, incorrect measurement or classical mess
broadcasting in a verification test results in the immedi
abortion of the scheme. Hence it cannot alter the final ou
of the functionf. So it remains for me to consider the case
a generalized Toffoli gate. Recall that the generalized Tof
gate is collectively synthesized by then players from the
verified distributed encoded stateu0& L̃ in step ~6!. Fortu-
nately, if the players choose to perform their measureme
individually, then all measurement results in step~6! are in
either the @n,d,n2d11#q or the @n,n2d,d#q Reed-
Solomon code forms. Hence thed cheaters cannot alter th
measurement outcome and the value ofz.

On the other hand, if they choose to teleport their state
their corresponding randomly assigned player, then in or
to pass the final random parity test in step~7! with a prob-
ability greater thane, the cheaters must arrange the state
the final outcomez5 f (x1 ,x2 , . . . ,xn) for each of ther
5O„log(1/e)… copies of quantum particles to be almost ide
tical. This is possible only when all ther randomly assigned
players who are responsible for measurement cheat, sinc
probability that all randomly assigned players cheat is eq
to (d/n) r5O(e). Consequently, the probability that thed
cheaters can alter the final value ofz without being detected
is equal tol e for some fixed positive constantl .

C. Cheater cannot obtain partial information during
distributed computing of the function f

Although cheaters cannot alter the final outcome of
computation with a probability greater thanl e for some
fixed positive constantl , readers may ask if these cheate
can obtain partial information on the private input of an ho
est player in steps~6! and ~7!. Now, I show that this is not
possible. Using the same argument as in Sec. III B toge
with the choice of@@n,1,d##q codesC1 and C2, the only
possible place for information leakage is the measurem
performed by the players during the implementation o
generalized Toffoli gate. As I have discussed in Sec. III B
the players choose to measure individually, then thed cheat-
ers cannot alter the joint measurement result that is requ
during the collective and distributive synthesis of the an
lary state(a,b50

q21 ua,b,ab&L /q as well as during the imple
mentation of the generalized Toffoli gate. Moreover, t
theory of QECC tells us that the value of these measu
ments contains no information on the distributed enco
stateux,y,z&L . Recall that thed cheaters have access only
their shares of the entangled quantum state together with
classical information on the measurement results on
fault-tolerant generalized Toffoli gate. SinceC1 is an
@@n,1,d##q QECC, this information alone is not enough f
the cheaters to obtain any information onux,y,z&L and hence
the private inputs of an honest player.

On the other hand, if the players choose to teleport th
corresponding states to the randomly assigned players be
making measurements, then we cannot control the action
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cheating assigned player. Nonetheless, by looking into
synthesis scheme of the ancillary state(a,b50

q21 ua,b,ab&L used
in step~6!, we see that the cheating assigned player can o
alter the third encoded quantum register of this ancilla
state. In other words, the cheating assigned player can o
after error correction, alter the state of the last quantum r
ister in Eq.~2!. Right after all players teleported their corre
sponding quantum registers to the cheating assigned pla
thed cheaters would control the first three encoded quan
registers together with shares of the distributed enco
fourth, fifth, and sixth registers. Consequently, the redu
density matrix of the quantum registers controlled by t
cheating assigned players is independent ofx,y, and z.
Hence it is impossible for thed cheaters to obtain partia
information on the private input of an honest player.

In summary, using the results in Secs. III A–III C, I con
clude that the quantum secure multiparty computat
scheme in Sec. II is secure provided that no more thad
players cheat. Moreover, the security is unconditional fo
does not rely on any computational assumption.

In the alternative scheme that the players teleport th
quantum states to some randomly chosen players and
these assigned players make the measurement, the pro
similar that thed cheaters cannot alter the final outcomez
and that they cannot obtain extra information on the priv
input of an honest player.

IV. COMPLEXITY AND SECURITY TRADEOFF
BETWEEN THE QUANTUM AND CLASSICAL SCHEMES

Clearly, the above quantum secure multiparty compu
tion scheme requiresO(n) quantum channels, a public clas
sical unjamable broadcasting channel, andO„n2k log(1/e)…
bits of quantum and classical communication in order to d
tribute and compute the classical functionf, wherek is the
length of each private input. Distributed FTQC of registe
wise addition, registerwise multiplication, and generaliz
CNOT gate do not require any communication. Distribut
FTQC of a generalized Toffoli gate requiresO„nk log(1/e)…
bits of classical message broadcast, or equivalen
O„n2k log(1/e)… bits of classical communication between th
players if they choose to perform their measurements in
vidually. Distributed FTQC of a generalized Toffoli gate r
quires O„nk log(1/e)… bits of classical communication
should the choose to teleport the states and measure
collectively by the randomly assigned players. Moreover
classically nondistributed computingf requiresT time steps
andSspace, then the distributed quantum computing sche
in step ~6! above requiresO(nT11e) time steps and
O(nSlogT) space for anye.0 @27#. Hence, the amount o
communication required for distributed FTQC of a classi
function f is bounded from above byO„n2kT11elog1/e)…
should players use the alternative teleportation plus meas
ment method. In contrast, the best classical secure multip
computation scheme known to date requires O(n2) commu-
nication channels andO(n3kT) bits of communication. Thus
the quantum secure multiparty computation scheme requ
fewer channels and less computation or communication t
the best known classical algorithm to date.
8-6
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QUANTUM-CLASSICAL COMPLEXITY-SECURITY . . . PHYSICAL REVIEW A61 032308
Nevertheless, the improvement of the quantum sche
over the classical one comes with a price tag. Recall that
maximum number of cheaters tolerated by this quant
scheme is related to the maximum possible distanced of a
QECC that maps oneqary quantum register ton qary quan-
tum registers. Since I am using the@@n,1,d##q QECC with
3d<n12, my scheme can tolerate only asymptotically up
strictly fewer than 1/6 cheaters. On the other hand, the
known classical scheme is unconditionally secure provi
that strictly more than one-half of the players are honest
other words, the quantum scheme reported here trades s
rity for communication complexity.

V. FULL-BLOWN QUANTUM CODE IS REQUIRED
IN THE QUANTUM SCHEME

At this point, readers may question if a full-blown QEC
is required in this quantum scheme because phase erro
not affect the final outcomez. Rather surprisingly, the an
swer is yes. In fact, I shall show that ifC is a linear map
sending one quantum register ton quantum registers, the
any two of the three following conditions imply the thir
one:~1! C is a QECC correcting up tod spin flip errors;~2!
C is a QECC correcting up tod phase shift errors;~3! the
partial trace over anyn2d registers gives no information o
the initial unencoded wave function.

The theory of QECC implies that~1! and~2! ⇒ ~3!. Now
I shall show that~1! and~3! ⇒ ~2!. The remaining case tha
~2! and~3! ⇒ ~1! can be proven in a similar way. I divide th
n players into two groups. Groups A and B haven2d andd
players, respectively. By Schmidt polar decomposition,
encoded normalized state(kakuk&L can be written
as r5( i , j ,k,k8akāk8Al i(k)l j (k8)uai(k)& ^ ubi(k)&^aj (k8)u
^ ^bj (k8)u, whereuai(k)& andubi(k)& are eigenvectors of the
reduced density matrices as seen by groups A and B, res
tively. Hence, taking a partial trace over group A, conditi
~3! above tells us that

TrA~r!5 (
i , j ,k,k8

akāk8^aj~k8!uai~k!&ubi~k!&^bj~k8!u ~3!

is independent ofak . This is possible only ifubi(k)&[ubi&
andAl i(k)l j (k8)^aj (k8)uai(k)& are independent ofk for all
i , j . Condition~1! implies that

(
i , j

Al i~k!l j~k8!^bi uS†ubj& ^ai~k!uS8uaj~k8!&5dk,k8LS,S8 ,

~4!

whereSandS8 are spin flip operators such that each acts
no more thand quantum registers, andLS,S8 is independent
of k and k8 @24,25#. Sinceubi& is independent ofk, Eq. ~4!
holds if one replacesS by a general quantum error operat
G which acts on no more thand quantum registers. Sinc
groups A and B are arbitrarily chosen, Eq.~4! is valid if one
replacesS8 by G. Once again, sinceubi& is independent ofk,
I conclude that Eq.~4! is true even if one replaces the tw
spin flip operatorsSandS8 by general quantum error opera
tors G andG8 which act on no more thand quantum regis-
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ters. Consequently,C is a QECC correcting up tod errors
@24,25#. In particular, condition~2! is valid.

VI. OUTLOOK

In summary, I have reported and proved the security o
quantum secure multiparty scheme to compute class
functions. The scheme makes essential use of fault-tole
quantum computation and a specially designed quantum
ror correcting code. While the quantum scheme tolera
only about one-third the number of cheaters as the b
known classical scheme to date, it requires an asymptotic
smaller amount of communication between the players.

This scheme also tells us that higher dimensional Cald
bank Shor Steane~CSS!-like quantum error correcting code
with fault-tolerant implementation have far-reaching applic
tions outside the context of quantum-mechanical compu
tion. While quantum code is not the only possible way
protect quantum information during computation@28#, cheat-
ing players may do all the nasty things that only full-blow
quantum code can handle. Hence quantum code is an es
tial ingredient in this secure multiparty computation schem
Moreover, no binary@@n,1,d##2 CSS code withd.n/7 is
known to date. Thus higher dimensional quantum code@29#
appears to be an essential ingredient in causing my sch
to tolerate strictly fewer than one-sixth of cheating playe
Since fault-tolerant computation of a general non-CSS-l
code requires collective measurements@23#, it seems likely
that C1 should be a CSS-like code@30#. In addition, by re-
placing the random polynomial codesC1 and C2 by corre-
sponding continuous quantum codes@31# of the form
ua0&°*da1 da2•••dad21^ i 51

n ua01a1yi1•••

1ad21yi
d21&, my scheme also works for continuous qua

tum variables.
Rains showed that no binary@@n,1,2d11##2 quantum

code exists ford.n11 @32# and a simple modification o
the proof of the optimality of the five-quantum-register co
in Refs.@25# and@26# shows that@@n,1,d##q codes must sat-
isfy d/n,1/4. Thus, it may be possible to design a QEC
based secure multiparty computation scheme that toler
up to one-quarter cheaters. It would be instructive to fi
such scheme, if any.

It is also natural to ask if it is possible to extend th
scheme to perform multiparty computation of aquantum
function. That is, given a commonly agreed unitary opera
U as well asn private quantum statesuxi&, is it possible to
computeU ^ i uxi&? Clearly, such a scheme exists if all th
players are honest. The players may simply modify
scheme in this paper a little by dropping all the verificati
tests that check the identity of the private inputs, final outp
and correct implementation of generalized Toffoli gate
Nevertheless, there is no obvious way to use the rand
parity test to check the validity of a general quantum sta
Moreover, a player may cheat by using delay measurem
tactics as in the proof of the impossibility of quantum b
commitment@7#. It is, therefore, of great interest to know if
is possible to achieve quantum multiparty computation o
quantum function in the presence of cheaters.
8-7
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APPENDIX A: PROCEDURE FOR TELEPORTING A
qARY STATE

The qary state quantum teleportation process goes as
lows: The sender and the receiver first share the stateuF&
5(k50

q21ukk&/Aq before the sender makes a joint measu
ment on the quantum stateuC& to be teleported and his o
her share of the stateuF& along the basis$(k50

q21vq
bkua,a

1k&/Aq%a,bPFq
% wherevq is a primitive qth root of unity.

Then, the sender informs the receiver of the measurem
result. If the measurement outcome is(k50

q21vq
bkua,a

1k&/Aq, then the receiver may reconstruct the quantum s
uC& by applying the unitary transformationux&°vq

b(x2a)ux
2a& to his or her share of the original stateuF&.

APPENDIX B: PROCEDURE FOR THE RANDOM
PARITY –HASHING TEST

Let us consider the basisB5$(k50
q21vq

kbuk,k1a&/
Aq%a,bPFq

. Clearly, one may transform from one basis st
ket to another by local unitary operations alone. I denote
set of all such transformations byT. Furthermore, the regis
terwise generalized C-NOT operation maps the basis st
B^ B[$uA& ^ uB&:uA&,uB&PB% to B^ B up to a global
phase. Therefore the random parity–hashing test goes as
lows: The two parties cooperate and randomly apply a tra
on
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form f iPT for each share of the entangled quantum st
they obtain in step~3!. Then they apply registerwise gene
alized C-NOT operations to a number of randomly selec
pairs of their resultant entangled quantum states. Fina
they measure the outcome of their final target quantum r
ister along the computational basis. They continue only
their measurement result is consistent with the hypoth
that their share of quantum particles are all in the stateuF&.
If they continue, they apply suitable transformationsgiPT
on their remaining shares of quantum states so as to b
them back to the stateuF&. Clearly, this random parity
checking procedure is a direct generalization of that use
Ref. @4#.

APPENDIX C: ACTION OF F

Here I show thatFu0&L5(k50
q21uk& L̃ . The proof ofFu0& L̃

5(k50
q21uk&L is similar. Recall thatF denotes the collective

action ofua,b&°vq
miabua,b& by the i th player on their share

of the encoded quantum registers, wheremiPFq satisfies the
system of equations( i 51

n mi51 and ( i 51
n miyi5( i 51

n miyi
2

5•••5( i 51
n miyi

n2150. Thus,

Fua0&L5 (
a1 ,a2 , . . . ,ad21 ,b0 ,b1 , . . . ,bn2150

q21

3vq(
i 51

n

(
j 50

d21

(
k50

n21

miajbkyi
j 1k

^ i 51
n ub01b1yi1•••1bn21yi

n21&. ~C1!

Summing overa1 in Eq. ~C1! gives bn2150; and then
summing overa2 gives bn2250. Inductively, I conclude
that Eq. ~C1! becomes(b0 ,b1 , . . . ,bn2d

vq
a0b0^ i 51

n ub01b1yi

1•••1bn2dyi
n2d&. Hence, by puttinga050, I obtain

Fu0&L5(k50
q21uk& L̃ , which is our required result.
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