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Quantum-classical complexity-security tradeoff in secure multiparty computations
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| construct a secure multiparty scheme to compute a classical function by a succinct use of a specially
designed fault-tolerant random polynomial quantum error correction code. This scheme is secure provided that
(asymptotically strictly more than five-sixths of the players are honest. Moreover, the security of this scheme
follows directly from the theory of quantum error correcting code, and hence is valid without any computa-
tional assumption. | also discuss the quantum-classical complexity-security tradeoff in secure multiparty com-
putation schemes and argue why a full-blown quantum code is necessary in my scheme.

PACS numbes): 03.67.Dd, 03.67.Hk, 03.67.Lx, 89.70c

I. INTRODUCTION ods based on a distributed computing version of the so-called
(k,n)-secret sharing schenh&2]. Their schemes are uncon-
Quantum computers are more powerful than classicaflitionally secure provided that fewer than one-third of the
computers in a number of applications such as integer fagdlayers cheat. This is true even when the cheaters cooperate.
torization[1], database sear¢@] and secret key distribution The one-third cheating player bound is tight among all clas-
[3,4]. In addition, careful use of entanglement reduces theical protocols that allow secret communications between
multiparty communication complexity of certain functions any two playerg10]. Later Rabin and Ben-Or showed that if
[5] and allows secret shariri§]. On the other hand, certain €ach player can broadcast a message to all other players and
postmodern cryptographic applications, including bit com-€ach pair of players can communicate secretly, then there is
mitment[7] and ideal two-party secure computati@j, are  an unconditionally secure way to computefewer if less
impossible if the cheater has a quantum computer. Thus, it i1an one-half of the players chg¢ag]. The one-half cheating
important to investigate the power and limitation of quantumplayer bound is tight among all classical schemes that allow
computers. Moreover, the quantum versus classical and s&ecret communications between any two players as well as in
curity versus complexity tradeoffs for certain multiparty public broadcasting13].
computational tasks deserve in-depth study. How many resources are required in classical condition-
In this paper, | analyze the quantum versus classical anglly secure multiparty computation? In all classical schemes
security versus complexity tradeoffs in secure multipartyknown to date, then players must communicate securely
computation. In secure multiparty computatiam,players  with others. Hencen(n—1)/2 classical secure communica-
each with a private classical input want to compute a tion channels are required. Suppose each player has a private
commonly agreed classical functi@s f(xq,Xs, ... X,) in input of lengthk, then initially they have to distribute their
such a way thati) all players either know the value afor ~ private inputs via certain secret sharing schemes. To do so,
abort after detecting a cheater or eavesdropfierno one each player has to send dd{nk) bits. Thus,O(n?k) bits of
can gain information on the private input of an honest playefsecret classical communication are necessary for the initial
except those logically following, and(iii) a limited number  setup in the whole system. To perform distributed computa-
of cheating players cannot alter the final outcoméore-  tion, up toO(n?k) bits of (secret communication and com-
over, the above three conditions hold even if all cheaters angutation per arithmetical operation are requifd®,13. In
eavesdroppers cooperate. addition, to verify that every player’s secret input is correctly
Secure multiparty computation can be used as a basidistributed in the secret sharing scheme, an ax(a’k) bits
building block for a number of extremely useful protocols of communications are needgt0,11,13. Since the number
including secure election and anonymous messages broadf secret communication channels scales quadratically with
cast. Thus, it is important to devise a secure multiparty comthe number of players, classical secure multiparty computa-
putation scheme that tolerates as many cheaters as possiblen is rarely used in practice for more than, say, ten players
on the one hand, and requires as few communications b¢14]. In fact, the classical schemes by Ben-€ral. and
tween the players as possible on the other. Chaumet al, being generic, are designed primarily to point
Several classical secure multiparty computation schemesut the plausibility of secure multiparty computation.
exist in the literature. The security of some of these schemes
[9]is based on the security of elthe_r certéifassical oblivi- Il. QUANTUM SECURE MULTIPARTY COMPUTATION
ous transfer ofclassical bit commitment protocols. Hence SCHEME
their methods are insecure if a cheating player has unlimited
computational power. Ben-Cet al. [10] and Chaumet al. Now, let me report a quantum secure multiparty compu-
[11] independently proposed multiparty computation meth-+ation scheme that requires fewer communication channels
and resources at the expense of tolerating fewer cheaters.
Without lost of generality, | may assume that the private
*Electronic address: hfchau@hkusua.hku.hk input for each player as well as the output of the function
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are chosen from a finite field, for some primeq. My possible way to establish such an entanglement. In fact, one

scheme goes as follows may replace the statgb) in this scheme by an Einstein-
(1) All players agree on a common computational Podolsky-RoserfEPR pair. Nevertheless, the scheme will

basis for quantum computation, an exponentially smallbecome slightly complicated after such a replacement for

security parameteg>0, as well as two random polynomial one has to telepodary instead of binary quantum registers

quantum error correcting cod¢é@ECC'S C; andC, [15].  in step(4).

In particular, they choosg; to be the[[n,1d]], code where (4) Letx; be the private classical input of playiethen he

the prime g>n, and 3I<n+2. More precisely,C, en- or she prepares=0O(log(1/e)) copies of the statf;). He or

codes eachyary quantum registefa,) into n gary quan- She also prepares a number of preset quantum reg|€ters
tum registersEgl‘éz] . ..,ad,1:o®in:1|a0+ ary;+azy’+ - - - that will be used later on in the reversible quantum compu-

n d-1y /4@~ D)2 yypy distinct | i tation. Playei first encodes each of his or her prepared quan-
Tad-1Yi >.q wherey; are distinct nonzero elements ., registers using the QECC,. Then, playeri further
in Iy . The distance of this code ésand hence it can correct o codes thgth quantum register in each of his or her en-

— 1

up to 6=[(d—1)/2] erro(;s.l Furthermore, n' denote the coged states usinG, and teleports the resultant quantum
[[n.1d]lq QECClag)—33 4, ... &, ,.,=0®i=1/80Fa1Yi  registers to playej using their previously shared encoded
+agyi+ - - +an7d+lyp—d+1>/q(n—d+1)/2 by C,. In addi- state| D) from step(3) for all j#i. He or she also encodes
tion, C, is chosen to be thg{4d’ +1,1,2d" +1]], random each of thEI'Fh quantum registers bZ, and keeps those _
polynomial QECJ 15] whose fidelity of quantum computa- quantum registers hlmself or _herself. All players keep their
tion using imperfect devices is greater thar d. (Since the received quantum registers private as well. In what follows, |
random polynomial QECC, has a fault-tolerant implemen- US€ the subscript “L" to the state ket to denote a state that is
tation [15], by concatenate coding, the threshold theorem iff"coded and distributed among thelayers using this pro-
fault-tolerant quantum computation guarantees the existenc&®dure. In addltlon,_ the players also_prepa~re a number of
of such a QECQC, [15-17.) As we shall see later on, the preset quantum reg|stek@>., epcode it first byC,, and then
choice of the value of the distandeaffects only the number by C,. The players then distribute these encoded preset reg-
of cheaters that can be tolerated by the scheme. isters among themselves in a similar way as in sharing their

(2) Each player sets up a quantum channel with a centrgbrivate inputs. | use the subscript “Lto the state ket to
routing station. He or she may establish relay stations alongenote such an encoded and distributed state. S@jteand
each quantum channel in such a way that the noise level if0); will be used as preset registers during the reversible
each quantum channel segment is small enough to perforgomputation in ste§6).

entanglement purificationSee Refs[18-2(Q for deta}ils) ~ (5) In order to make sure that everyone follows stép
Furthermore, each player also has access to a classical publignestly, a playey (the verifie) may challenge a randomly
unjammable channel for broadcasting. chosen playei (the provey using a fault-tolerant random

(3) The players, central routing channel and relay stationgarity check method similar to that used in Rgf]. More
separately prepare a few copies of the std)  precisely, playej publicly announces a sequeng}i_, of
=3{25|kk)/\/g. They encode each copy using QEQS,  integers inF, such thatS}_,c,=0. Then every player is
and share these encode_d sp’;ﬁtb$ between the two ends of required to help playej to compute the random parity
each quantum communication channel segment. Then, they®__ ¢, x;, by distributed fault-tolerant quantum computation
perform a fault-tolerant entanglement purification procedurgFTQC), wherex;, denotes the state of theth copy of the
as discussed in Ref$19,20 on these shared states. Next, private input of playei. Clearly, the choice of QECC'E,
these possibly impure encoded staldy shared between angc, enables us to perform the above quantum computa-
each channel segment from one player to another are COfpn in a fault-tolerant waywithout any measurement and
nected together by quantum teleportatjdnl8,21. Finally,  angilla[15]. Also, the method of distributing the private in-
each pair of players tests the purity of their shared encodeg; state in stej4) allows the players to perform the above
state§®) by a variation of the fault-tolerant random hashing FTQC in a distributed mannewithout any communication
technique described in Reff4]. (Readers may refer to Ap- petween them.
pendixes A and B for detailed descriptions of the teleporta- T verify if the result computedwhich | call the random
tion and random hashing procedures, respectiveley  parity) is equal to zero, all players measure and publicly
proceed to stefd) only if the random hashing test is passed announce their measurement outcome along their commonly
for each pair of players. In this case, each pair of players wilbgreed computational basis on their correspondizgen-
share a number of almost perfect encoded logical sfdtps  coded quantum registers that encode the random parity. Be-
The entanglement shared between each pair of players in thigysec, is an[[n,1d]], random polynomial QECC, the
way can then be used to securely transport states amoRgeasurement results of the players correspond to the classi-
themselves in stepd). Clearly, shared®) is not the only g [n,d,n—d+1], Reed-Solomon encoding of the random

parity. Naturally, they continue only if the random parity
inferred from this classical Reed-Solomon encoding is zero.
The distance of this code is less than that reported in [R&].  This verification process has to repé&atiog(1/e)) times for
Nonetheless, | still call this a random polynomial code because thi€ach proving player so as to guarantee security.
code closely resembles that reported in R&8§]. In addition, all players use a similar distributed fault-
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tolerant random parity checking technique to verify the pu-wherew, is a primitive gth root of unity.

rity of the distributed encoded preset quantum regi§@rs To arrive at Eq.(1a) in a fault-tolerant manner, each
and|0); among themselves. They proceed to st@ponly  playeri simply has to perform the local Fourier transforma-
when all the measurement results are consistent with the agpp, |a>H23;éw$iab|b>/Ja on his or her corresponding
sumption that there is no cheater_or eavesdropper arounaUantum registers, whera, € I, is a unique solution for the
Thus, in order to establish the required secu@ylog(1/k)) . n 3 n <n 2
private input states prepared and distributed in s@pare  SYSteM 0: equant|_01n§i:1mi—1 and 2 ymyy; =21 MYi
wasted.(An alternative way to perform the random parity — "~~~ =i=1Miy; ~=0. I denote this fault-tolerant transfor-
check measurement is to ask the players to teleport theffation by . In fact, Appendix C shows thag|0).
shares of the encoded random parity quantum registers to tie2f-o/k)t and §/0)f=3{-glk)_. Then Aharonov and
verifier. Then the verifier makes the appropriate measureBen-Or tell us how to arrive at Eq$lb) by fault-tolerant

ment and publicly announces the outcome. controlled-phase-shift gateithout any communication be-
(6) To compute the commonly agreed classical functiontween the playerfl5]. More precisely, each playémapplies
z=1f(Xy,Xz, ... Xy), the n players perform distributed |a,b)ewgiab|a,b> to their share of the third and fourth

FTQC on their received quantum particles. The players keeauantum registers wheng, € I satisfiesS"_ p;=—1 and
n

every quantum state private except the final result. n <n 2 2d_
To be precise, they first decompose the classical functio1=1P1Yi= Zi=1Pi¥i ="+ =2i_1pYi =0. Subs_equently,
f into a commonly agreed composition of elementary operadVing at Eq. (10 from Eg. (1b) requires the
tors. Each elementary operator is in the form(iofregister- fault-tolerang1 . controlled-controlIed—phase—shlft. gate
wise addition|x)—|x+a), (i) registerwise multiplication |a'bv(?>Lqu |a,b,c>L.. For the ra|_1dom polynomlal code
|x)~|ax), (iii) generalized controlled NOT gate (C-NOT)  C: with 3d=n+2, this operation is achieved when each
Ix,y)—|x,x+y), and (iv) generalized Toffoli gate player i applies the controlled-controlled-phase-shift gate
IX,y,2)—|x,y,z+xy), for some fixeda# 0 [22]. |a,b,c>Hwa‘ab°|a,b,c> to his or her corresponding share of
At this point, each player should have=O(log(1/))  the encoded first, second, and third quantum registers, where

<s remaining quantum registers distributed among themr, ¢ I, is the solution(not necessarily unique unlessl8 1
selves. Moreover, all the remaining distributed quantum_p) of the system of equationE" =1 and 3M_ny;
i= i=

states of an honest player, upon quantum error correction,
should be identical. Clearly, the choice of the random poly
nomial QECC’sC; andC, together with the private secure

distribution method in step4) allow, the players to perform : : :
the first three types of elementary operators without an 13) to their share of the fourth quantum registgtgain, the

measurement or communication between the plagegg  Proof can be found in Appendix £ln summary, the players
Thus, they can perform the fault-tolerant operation onrthe &0 €volve their share of quantum states to Bgj in a
remaining distributed quantum registers one by one. In thifault-tolerant mannewithoutany measurement, communica-
way, they end up with identical resultant states if they are tions or the use of ancillary particles.
honest. After the players have evolved their quantum particles to
To perform the fourth type of elementary operator,the distributed state in Eqld), they measure their share of
namely, a generalized Toffoli gate on theemaining dis- the fourth encoded quantum register along the commonly
tributed encoded states, the players do the following. Firstagreed computational basis and then publicly announce their
they collectively synthesize the distributed statemeasurement results. In this way, they end up having a clas-
33,1 0la,b,ab), /g*? among themselves using their verified sical [n,n—d+1d], Reed-Solomon code and after error
distributed state$0); by a procedure based on that in Ref. correction, they can infer the measurement outcome of the
[17] as follows: fourth encoded quantum register along the commonly agreed
computational basis. Suppose the inferred measurement re-

SNny?=-..=3"r,y¥¥=0. Finally, to arrive at Eq.
(1d) from Eq.(10¢) in a fault-tolerant way, the players simply
apply the same local Fourier transforgnthat creates Eq.

10,0,0,0¢ sult is A, then the state ket of the remaining three
. distributed  encoded quantum  registers  becomes

1 qz bk L Sa Lk 0wk M]ab,c) 1g2=33 L ola,b,ab+ ) /q.
qu abek=0 la.b.c. k), (1a So, by applying a fault-tolerant generalized C-NOT gate de-

pending on the measurement resultthey eventually syn-
-l e thesize the stat&3 % ;|a,b,ab), /q collectively.
= ab;@O wq “la,b,c,k) (1b) At this point, using their newly synthesized distributed
o encoded stat€d % |a,b,ab), /q as ancilla, then players
q-1 implement the generalized Toffoli gate in a fault-tolerant
>= > ok 9ab,ck) (19  manner using a variation of Gottesman’s method in Ref.
a,b,c.k=0 [23]. (See also Ref[17] for details) More precisely, they
1 q-1 perform the following transformation using a number of
-— wg(ab7c+x)|a,blc>|—®|x>[’ (1d) faultttolerant generalized C-NOT gates and a fault-tolegant
g°'c ab,ckx=0 gate:
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Ill. SECURITY OF THE QUANTUM SCHEME

1 9
E a,;c::o [x.y2,8,,ab). Now, | claim that the above scheme correctly computes
the classical functiom=f(xq,X,, . .. X,) with a probability
1 9t . 1— /e for some fixed constanf=1, provided that no more
~ e ;zo wglx—ay-b) @|c)i®lab,z+ab) . thans players cheat. In addition, thoge=[ (d—1)/2] cheat-

ers know nothing about the private inputs of every honest
(2 player and they cannot alter the final outcormeThese
claims are true even if all cheaters cooperate and have un-

Now the n players measure their shares of the first thredimited computational power.

encoded registers along the commonly agreed computational TO prove the above claims, one observes that there are
basis. Regarded as classical Reed-Solomon codes, their puBur possible ways for the above scheme to go wrong,
licly announced measurement outcomes can then be used fi@mely, the presence of noise, bad instruments, eavesdrop-
infer the (quantum measurement results of the first three Pers, and cheating players. Remember that a cheater may
registers along the commonly agreed computational basigleliberately announce wrong measurement results and
Suppose the inferred measurement results of the first thré@ereby mislead others. One must also make the most pessi-
registers ard ;,\,, and\ 3, respectively. Then, by adding mistic assumption that all cheaters and eavesdroppers coop-
to the fourth register), to the fifth register, and;y+\,x  €rate anq control everything except the instruments in the
—\;\, to the sixth register, they get the stax%3z|x,y,z laboratories of the honest players. The cheaters may even

. . L have unlimited computational power. Using the argument in
+xy), . Finally, they obtain the state,y,z+xy), , which is ,
the result of a generalized Toffoli operation, by applying aRef. [4], | first show that we can safely neglect the effect of

suitable phase-shift gate in the sixth register then followed' 2'>¢ and bad Instruments. Since all steps in the above
X scheme are performed in a fault-tolerant manner, the theory
by another controlled-controlled-phase-shift operator to thé

first and second registeréAs | have discussed previously, Of FTQC tells us that with probability e we may assume

players may perform these operations without any commuthat noise and bad instruments simply affect the error syn-

Y X dromes but not the quantum information encoded in the
nication because of the choice of the QECCsg and C, i
together with the fact that, .\, and\ are classical data. stateg15-17. The theory of QECC also tells us that learn

To ensure accuracy, the players perform the above prolpg error syndromes give no information about the quantum

. . > . ._Information encoded in the staf@4,25. Consequently, by
cess times to ther supposedly identical signal states. In this o ; . ;
) i : . restricting myself to the evolution of quantum information
way, they end up by implementing identical generalized

Toffoli operators if all players are honegiat this point contained in the encoded quantum registers, | may analyze
P play i > POINL — yhe hehavior of the above scheme in a noiseless environment
readers may wonder why | do not check the purity of ancil-

_ . . from now on.
lary statengb1=O|a,b_,ab)L/q directly. The reason 1S that Then it remains for me to show that no more than
random parity checking does not work ].cor thls_ancnlary State heaters can obtain partial information on the private inputs
because the state of the untested particles will be altered lyf some honest players. In addition, these cheaters cannot
the test itself. Readers may also ask why | do not apply th ' 4

. _ a1 Qlter the output of the classical functi@rin order to do this,
fault-tolerant Fourier transformation gate to obt&ifolk).  gne first has to understand the function of each step in the

from |0}, . The reason is that all known fault—toleran'g Fou- scheme. Step&2) and (3) are direct generalizations of the
rier transformation gates for tH{gn,1d]]q QECCC, with  gptanglement-based quantum key distribution protocol pro-
3d=n+2 to date require collective measurements on theposed by Lo and Chau in Ré#]. The aim of these two steps
encoded quantum registers and henc.e are liable to error {8 5 share the almost perfectly encoded stdt¢ between

the presence of cheaters. An alternayve method to perforrany two pairs of players so that they can teleport quantum
the required measurement is to assign once and for all &ates in a fault-tolerant manner from one to another at a later
randomly chosen player for each of the O(log(1%€)) SUP-  time in step(4). Step(5) makes sure that every player fol-

posedly identical signal states. Whenever it comes to a meggys step(4) to distribute his or her private input as well as

surement, players teleport their states to be measured to ﬂtﬁe preset quantum registers using the QEQC;sand &
l.

corresponding assigned player who then makes the NECESSNe actual computation is carried out in st€p, and finally

measurement and publicly announces the measurement ou- . ; i .
come P Y Yhe computational result is varified and measured in €lgp

(7) In order to make sure that the players indeed follow ) )
the distributed FTQC in stef§) honestly, they carry out the A. Private inputs of an honest player are secure up to ste|b)
random parity verification tesD(log(1k)) times on their of the quantum scheme
final state using the same method as described in (&ep | have two cases to consider in order to show thatdhe
Finally, to obtain the value of=f(x4,X,, ... X,), then =[(d—1)/2] cheaters obtain no information on the private
players separately measure their share of quantum registerguts of the honest players up to the random parity verifi-
that encode the value afalong the commonly agreed com- cation in step(5) of the quantum scheme. The first case is
putational basis, and then publicly announce their measurevhen the proving playerin step(5) is honest. In this case,
ment outcomes. They then infer the valuezaising standard the encoded stateb) sharing scheme in stef) between the
classical Reed-Solomon code error correction. proving playeri and all other honest players is a straightfor-
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ward generalization of the quantum key distribution protocolclassical verification test is no greater thag'lWwherer is

of Lo and Chau in Ref[4]. More important, as stated in the number of independent rounds of tests performed. Con-
Appendix B, the random parity test in stép) maps the basis sequently, by repeating the quantum random parity test
B={Z{"jog Kk k+ a>/\/a}a,beurq to basisB up to a global  |og (1/e) times, the probability that playércheats and yet he
phase. Therefore the proof of Lo and Chau in Réf.ap- or she passes the quantum verification test in §5¢ps at
plies. In particular, they have already proved that the fidelitymost e. Once the quantum verification test is passed, the
of every encoded staf@) shared between any two honest fidelity of the remaining untested quantum states as being a
players is at least* e even in the presence of eavesdroppersvalid input|x;) is equal to - /e for some constant’ inde-

and cheater$4]. Then in stepqg4) and (5), eavesdroppers pendent ohh ande. Thus, the entropy of each of the untested
and cheaters can access only the public classical commumjuantum states is equal to lgg-/e. Hence, the cheaters
cations between the honest players. Fortunately, these clasave an exponentially small amount information about the
sical messages contain no information about the teleportegrivate inputs of every honest playgt]. Using a similar
quantum statg21]. Hence, no one apart from the sender andargument, | know that the fidelity of the distributed preset
the receiver knows the teleported state. Thus, tifeskeat- quantum registerf0), and|0); is also equal to +/e.

ers have access to at most their sharé gliantum registers Therefore, | conclude that if there are at méstheaters

of the distributed encoded states),. Since C; is a  and they choose to perform measurements individually, then
[[n,1d]]q QECC, knowledge of thé quantum registers in the probability that these cheaters can obtain partial informa-
the hands of the cheaters contains no information on th&on on the private inputs of the honest players is bounded

private inputx; at all. from above by/e for some fixed constant>0 up to step
The second case is that the proving player dishonest. (5) of the quantum scheme.
Clearly, the job of the dishonest playieis to somehow mis- In the event that the players choose to teleport their ran-

lead the other players into believing that he or she is honestlom parity state to the verifier who then makes the necessary
More precisely, player tries to devise a methogossibly  measurement, the proof of security up to stBpis similar.

with the help of the othed— 1 cheaters in the systerso as  Note that if the verifier is honest, then the above proof ap-

to pass the verification test in stép) with a probability  plies. On the other hand, if the verifier cheats, two things

greater than ¥ /e for some fixed positive constart Note may happen_ First, the verifier may Wrong|y announce an

that measuring every quantum register of an arbitrary quannconsistent result. This leads to an immediate abortion of

tum codeword of th¢[n,1d]]q random polynomial QECC  the scheme; hence, he or she cannot obtain any extra infor-
C, along the commonly agreed computational basis gives ,ation on the private input of an honest player. Second, the

classicaln,d,n—d+ 1], Reed-Solomon codeword. In addi- \erifier may turn a blind eye to a measurement result that is
tion, if the C; encoded quantum staf’) containss erro-  jnconsistent with the no cheater or eavesdropper assumption.

neous quantum registers, then after measuring along thgince 5/n<1/6, a nonzero fraction of the verifiers are hon-
computational basis, we end up getting a classical Reeds

) : . 3st. So, afte©(log(l/ke)) rounds of random parity tests, the
gzlo?;ogggdev.\]/cord with at mo:ter:rorlﬁogsb retc_:lk:steré. Since probability that the private input of an honest player leaks
n/4[25,28, if an error can be handled by the QEQ, ¢ is |ess than’e for some fixed constant>0 up to step

the corresponding error after measurement can be handled

: i of the quantum scheme.
the corresponding classical Reed-Solomon code. Moreover, 14s | conclude that if there are at masicheaters and

a coarse-grained measurement, that is, the process of m&ga piavers choose to teleport the particles encoding the ran-
suring each quantum register along the computational basig,m parities to the verifiers before making measurements,

together with the inference of the quantum state from thepan the probability that cheaters obtain partial information
Reed-Solomon code, can be regarded as a projective Meg the private input of an honest player is less thanfor
surement along th€, encoded computational basis on the some fixed constant=>0.

guantum state. In the verification stéf), all then— 6 hon-

est players indeed measure the quantum states along the
commonly agreed computational basis. The random parity
check does not alter the state of the unmeasured quantum Now | proceed to show that thegecheaters cannot alter
particles. Therefore, the coarse-grained measurements pdéhe outcome of the function evaluatidrwith a probability
formed by the honest players commute with each other; andreater thare in steps(6) and(7) of the quantum scheme.
hence each coarse-grained measurement result will in no wégyince one may regard any illegal quantum manipulation by
change the outcome of all subsequent measurenidits the § cheaters as decoherence acting on up tquantum
Thus, theoretically, the honest players may push their coarsgegisters in the QECC,, the theory of FTQC implies that
grained measurement forward to the time when the quanturany quantummanipulation by these cheaters cannot alter the
states are just prepared. Consequently, the probability thdinal outcome of the functiof. Nevertheless, the theory of
cheating playeii will pass the quantum verification test in FTQC assumes that all measurements of the encoded quan-
step(5) cannot exceed the probability of passing a classicatum state and manipulation of classical data are error-free. So
random parity verification test in which playkeis allowed to it remains for me to show that measurement and classical
prepare only a classical mixture of stafgd. Clearly, the data manipulation by cheaters also cannot alter the outcome
probability that playei cheats and yet he or she passes theof the functionf.

B. Cheater cannot alter the computation result
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Because of the choice @&, andC,, there are two pos- cheating assigned player. Nonetheless, by looking into the
sible operations in the scheme that require measurement gynthesis scheme of the ancillary stE&],lzda,b,ab)L used
classical message communication, namely, the verificatioin step(6), we see that the cheating assigned player can only
test and the generalized Toffoli gate. As | have discussedlter the third encoded quantum register of this ancillary
previously, incorrect measurement or classical messagstate. In other words, the cheating assigned player can only,
broadcasting in a verification test results in the immediateafter error correction, alter the state of the last quantum reg-
abortion of the scheme. Hence it cannot alter the final outpuister in Eq.(2). Right after all players teleported their corre-
of the functionf. So it remains for me to consider the case ofsponding quantum registers to the cheating assigned player,
a generalized Toffoli gate. Recall that the generalized Toffolithe 5 cheaters would control the first three encoded quantum
gate is collectively synthesized by theplayers from the registers together with shares of the distributed encoded
verified distributed encoded stai8); in step (6). Fortu-  fourth, fifth, and sixth registers. Consequently, the reduced
nately, if the players choose to perform their measurementdensity matrix of the quantum registers controlled by the
individually, then all measurement results in st@pare in  cheating assigned players is independentxpf, and z
either the [n,d,n—d+1], or the [n,n—d,d]; Reed- Hence it is impossible for thé cheaters to obtain partial
Solomon code forms. Hence tl#&cheaters cannot alter the information on the private input of an honest player.
measurement outcome and the valuez.of In summary, using the results in Secs. lll A-IIl C, | con-

On the other hand, if they choose to teleport their states telude that the quantum secure multiparty computation
their corresponding randomly assigned player, then in ordescheme in Sec. Il is secure provided that no more than
to pass the final random parity test in stép with a prob-  players cheat. Moreover, the security is unconditional for it
ability greater thare, the cheaters must arrange the state ofdoes not rely on any computational assumption.
the final outcomez=f(xy,Xs, ... X,) for each of ther In the alternative scheme that the players teleport their
=0(log(1/e)) copies of quantum particles to be almost iden-quantum states to some randomly chosen players and let
tical. This is possible only when all therandomly assigned these assigned players make the measurement, the proof is
players who are responsible for measurement cheat, since tsémilar that thes cheaters cannot alter the final outcome
probability that all randomly assigned players cheat is equaind that they cannot obtain extra information on the private
to (8/n)"=0(e). Consequently, the probability that the  input of an honest player.
cheaters can alter the final value ofvithout being detected
is equal to/e for some fixed positive constant. IV. COMPLEXITY AND SECURITY TRADEOFF

BETWEEN THE QUANTUM AND CLASSICAL SCHEMES
C. Cheater cannot obtain partial information during

distributed computing of the function f Clearly, the above quantum secure multiparty computa-

tion scheme require®(n) quantum channels, a public clas-
Although cheaters cannot alter the final outcome of thesical unjamable broadcasting channel, @h?k log(1/e))
computation with a probability greater thafie for some  bits of quantum and classical communication in order to dis-
fixed positive constant’, readers may ask if these cheaterstribute and compute the classical functifrwherek is the
can obtain partial information on the private input of an hon-length of each private input. Distributed FTQC of register-
est player in step$6) and (7). Now, | show that this is not wise addition, registerwise multiplication, and generalized
possible. Using the same argument as in Sec. Il B togethetnoT gate do not require any communication. Distributed
with the choice of[[n,1d]], codesC, and C,, the only  FTQC of a generalized Toffoli gate requir€snklog(1/k))
possible place for information leakage is the measuremerlits of classical message broadcast, or equivalently,
performed by the players during the implementation of aO(n?k log(1/e)) bits of classical communication between the
generalized Toffoli gate. As | have discussed in Sec. lll B, ifplayers if they choose to perform their measurements indi-
the players choose to measure individually, thendfobeat-  vidually. Distributed FTQC of a generalized Toffoli gate re-
ers cannot alter the joint measurement result that is requireguires O(nklog(lk)) bits of classical communication
during the collective and distributive synthesis of the ancil-should the choose to teleport the states and measure them
lary StateEgLiola,b,abh/q as well as during the imple- collectively by the randomly assigned players. Moreover, if
mentation of the generalized Toffoli gate. Moreover, theclassically nondistributed computirfgrequiresT time steps
theory of QECC tells us that the value of these measureandSspace, then the distributed quantum computing scheme
ments contains no information on the distributed encodedh step (6) above requiresO(nT'"€) time steps and
state|x,y,z), . Recall that thes cheaters have access only to O(nSlogT) space for any>0 [27]. Hence, the amount of
their shares of the entangled quantum state together with trebmmunication required for distributed FTQC of a classical
classical information on the measurement results on théunction f is bounded from above bP(n?kT**<loglke))
fault-tolerant generalized Toffoli gate. Sinc€, is an  should players use the alternative teleportation plus measure-
[[n,1d]]q QECC, this information alone is not enough for ment method. In contrast, the best classical secure multiparty
the cheaters to obtain any information jony,z), and hence computation scheme known to date requiresmi¥)(commu-
the private inputs of an honest player. nication channels an@(nkT) bits of communication. Thus
On the other hand, if the players choose to teleport theithe quantum secure multiparty computation scheme requires
corresponding states to the randomly assigned players befofewer channels and less computation or communication than
making measurements, then we cannot control the action ofthe best known classical algorithm to date.
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Nevertheless, the improvement of the quantum schemters. ConsequenthG is a QECC correcting up té errors
over the classical one comes with a price tag. Recall that thg24,25. In particular, conditior(2) is valid.
maximum number of cheaters tolerated by this quantum
scheme is related to the maximum possible distahcé a
QECC that maps ongary quantum register to gary quan- VI. OUTLOOK
tum registers. Since | am using then,1d]]; QECC with
3d<n+2, my scheme can tolerate only asymptotically up to  In summary, | have reported and proved the security of a
strictly fewer than 1/6 cheaters. On the other hand, the besfuantum secure multiparty scheme to compute classical
known classical scheme is unconditionally secure providedunctions. The scheme makes essential use of fault-tolerant
that strictly more than one-half of the players are honest. Iqquantum computation and a specially designed quantum er-
other words, the quantum scheme reported here trades sego+ correcting code. While the quantum scheme tolerates

rity for communication complexity. only about one-third the number of cheaters as the best
known classical scheme to date, it requires an asymptotically

V. FULL-BLOWN QUANTUM CODE IS REQUIRED smaller amount of communication between the players.
IN THE QUANTUM SCHEME This scheme also tells us that higher dimensional Calder-

bank Shor Stean€CSS-like quantum error correcting codes
At this point, readers may question if a full-blown QECC with fault-tolerant implementation have far-reaching applica-
is required in this quantum scheme because phase errors gigns outside the context of quantum-mechanical computa-
not affect the final outcome. Rather surprisingly, the an- tjon. While quantum code is not the only possible way to
swer is yes. In fact, | shall show that @ is a linear map  protect quantum information during computati@8], cheat-
sending one quantum register toquantum registers, then ng players may do all the nasty things that only full-blown
any two of the three following conditions imply the third quantum code can handle. Hence quantum code is an essen-
one:(1) Cis a QECC correcting up té spin flip errors;(2)  tjal ingredient in this secure multiparty computation scheme.
Cis a QECC correcting up té phase shift errors(3) the  Moreover, no binanf[n,1d]], CSS code withd>n/7 is
partial trace over ang— & registers gives no information on known to date. Thus higher dimensional quantum da%
the initial unencoded wave function. appears to be an essential ingredient in causing my scheme
The theory of QECC implies that) and(2) = (3). Now  to tolerate strictly fewer than one-sixth of cheating players.
I shall show tha(1) and(3) = (2). The remaining case that Since fault-tolerant computation of a general non-CSS-like
(2) and(3) = (1) can be proven in a similar way. | divide the code requires collective measuremef8], it seems likely
n players into two groups. Groups A and B have § andé  that C, should be a CSS-like cod&0]. In addition, by re-
players, respectively. By Schmidt polar decomposition, thelacing the random polynomial cod€s and C, by corre-
encoded normalized stateS,e|k). can be written sponding continuous quantum codg8l] of the form
as p=3;wwaka VN i(KN(K)]ai(k)®|bi(k))(aj(k")|  |ag)—>[da;day---dag 1@ |ag+aryi+---
®(b;(k")|, where|a;(k)) and|b;(k)) are eigenvectors of the +a4_1y?"1), my scheme also works for continuous quan-
reduced density matrices as seen by groups A and B, respeieim variables.
tively. Hence, taking a partial trace over group A, condition Rains showed that no binarfn,1,26+1]], quantum
(3) above tells us that code exists fors>n+1 [32] and a simple modification of
the proof of the optimality of the five-quantum-register code
_ A (A A (L in Refs.[25] and[26] shows thaf[n,1,d]], codes must sat-
Tralp) i,j,zk,k’ aane (8)(K)[ai(k))|bi(k))(b; (K)] (3) isfy d/n<1/4. Thus, it may be possibleqto design a QECC
based secure multiparty computation scheme that tolerates
is independent oty . This is possible only ifb;(k))=|b;) up to one-quarter cheaters. It would be instructive to find
and \/)\i(k)xj(k’xaj(k’)|ai(k)> are independent d for all such scheme, if any.
i,j. Condition(1) implies that It is also natural to ask if it is possible to extend this
scheme to perform multiparty computation ofgaantum
— + , Py function That is, given a commonly agreed unitary operator
IEJ: Ni(kN (K")(bi]ST|by) @i (k)|S'[aj (k")) = i Ass U as well asn private quantum statds;), is it possible to
(4) computeU®;|x;)? Clearly, such a scheme exists if all the
players are honest. The players may simply modify the
whereSandS' are spin flip operators such that each acts orscheme in this paper a little by dropping all the verification
no more thand quantum registers, antlg 5 is independent  tests that check the identity of the private inputs, final output,
of k andk’ [24,25. Since|b;) is independent ok, Eq.(4)  and correct implementation of generalized Toffoli gates.
holds if one replace$ by a general quantum error operator Nevertheless, there is no obvious way to use the random
G which acts on no more thaé quantum registers. Since parity test to check the validity of a general quantum state.
groups A and B are arbitrarily chosen, E4) is valid if one  Moreover, a player may cheat by using delay measurement
replacesS’ by G. Once again, sinchb;) is independent ok,  tactics as in the proof of the impossibility of quantum bit
| conclude that Eq(4) is true even if one replaces the two commitmen{7]. It is, therefore, of great interest to know if it
spin flip operatorSandS’ by general quantum error opera- is possible to achieve quantum multiparty computation of a
tors G andG’ which act on no more thaé quantum regis- quantum function in the presence of cheaters.
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APPENDIX A: PROCEDURE FOR TELEPORTING A Ref. [4].

gARY STATE

The gary state quantum teleportation process goes as fol- APPENDIX C: ACTION OF §
lows: The sender and the receiver first share the $thje
—39-2|kk)/+/q before the sender makes a joint measure- Here | show thag|0) =={-5|k)i . The proof ofF|0)r
ment on the quantum staj@) to be teleported and his or =={_glk)_ is similar. Recall thafy denotes the collective

her share of the statgb) along the basi{={—jwga,a  action of|a,b>qumiab|a,b) by theith player on their share

+ k)/\/a}a,be]pq} where wg is a primitive qth root of unity.  of the encoded quantum registers, where: I, satisfies the

Then, the sender informs the receiver of the measuremesystem of equation&_;m=1 and Z_,myy; =S myy?

result. If the measurement outcome B{_iwaa  =---=Z{L;my] '=0. Thus,
+k)/ \Jq, then the receiver may reconstruct the quantum state
|¥) by applying the unitary transformatidm)»wg(x_aﬂx a0 a1
—a) to his or her share of the original stgte). Slag)L=
> 9 d > ap,ap, ..., agq_1.bg.bg, ... b,_1=0
APPENDIX B: PROCEDURE FOR THE RANDOM nod-in-1 .
Xw.2, 2 2 maibgyl ™
PARITY —HASHING TEST wqi:1 “h & iaj0Y;

Let us consider the basisB={S{_jwg"k k+a)/
\/a}a’beurq. Clearly, one may transform from one basis state
ket to another by local unitary operations alone. | denote the Summing overa, in Eq. (C1) givesb, ,=0; and then

set of all such transformations Ay Furthermore, the regis- . . _ .

terwise generalized C-NOT operation maps the basis statesﬁummIng overa, gives by,=0. '”dugﬂ}(’f'{’ | conclude
BoB={|A)®|B):|A),|B)e B} to BoB up to a global that EQ.(C1) becomesZy b, . p @ ®{1|botbuy,
phase. Therefore the random parity—hashing test goes as fot- - - +b,_qy[ %). Hence, by puttinga,=0, | obtain
lows: The two parties cooperate and randomly apply a transg|0), =>8-J|k)7, which is our required result.

®_q|bo+byyi+ - +b,_ iy H.  (CY
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