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Rotational perturbations in Neveu-Schwarz-Neveu-Schwarz string cosmology
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First order rotational perturbations of the flat Friedmann-Robertson-Walker metric are considered in the
framework of four dimensional Neveu-Schwarz—Neveu-Schwarz string cosmological models coupled with
dilaton and axion fields. For the field we use the solitonic ansatz, assuming that it is a function of time only.
The decay rate of rotation depends mainly upon the dilaton field potéhtieie equation for rotation imposes
strong limitations upon the functional form &f, restricting the allowed potentials to two: the trivial case
=0 and a generalized exponential type potential. In these two models the metric rotation function can be
obtained in an exact analytic form in both Einstein and string frames. In the potential-free case the decay of
rotational perturbations is governed by an arbitrary function of time while in the presence of a potential the
rotation tends rapidly to zero in both Einstein and string frames.
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I. INTRODUCTION The investigation of rotating and rotating-expanding Uni-
verses generated a large amount of literature in the field of
On an astronomical scale, rotation is a basic property ofieneral relativity, the combination of rotation with expansion
cosmic objects. The rotation of planets, stars, and galaxieig realistic cosmological models being one of the most diffi-
inspired Gamow to suggest that the Universe is rotating andult tasks in cosmologysee Ref[9] for a recent review of
the angular momentum of stars and galaxies could be a resuhe expansion-rotation problem in general relativitgdence
of the cosmic vorticity[1]. But even though observational rotating solutions of the gravitational field equations cannot
evidence of cosmological rotation has been repdr@edd], it  be excludedh priori. But this raises the question of why the
is still a subject of controversy. From the analysis of micro-Universe rotates so slowly. This problem can also be natu-
wave background anisotropy Collins and Hawkif&] and  rally solved in the framework of the inflationary model. Ellis
Barrow, Juszkiewicz, and Sonoia] have found some very and Olive[10] and Grm and Solend11] pointed out that if
tight limits on the cosmological vorticityT,,e>3X 10°T,;,  the Universe came into being as a miniuniverse of Planck
whereT s is the actual rotation period of our Universe and dimensions and went directly into an inflationary epoch
Tu=(1~2)x10% yr is the Hubble time. Therefore our driven by a scalar field with a flat potential, due to the non-
present day Universe is rotating very slowly, if at all. rotation of the false vacuum and the exponential expansion
From a theoretical point of view in 1949 @el [8] gave  during inflation the cosmic vorticity has decayed by a factor
his famous example of a rotating cosmological solution toof about 10 **°. The most important diluting effect of the
the Einstein gravitational field equations. Thédabmetric,  order of 10 '€ is due to the relative density of the rotating
describing a dust Universe with energy dengitin the pres-  fluid compared to the nonrotating decay products of the false

ence of a negative cosmological constants vacuum[11]. Inflationary cosmology also ruled out the pos-
sibility that the vorticity of galaxies and stars are of cosmic

1 2 ) , 1 origin.
dg:ﬂ —(dt+e'dz)?+dx®+dy*+ Je*dZ|. (1) While scalar field-driven inflationary models resolve

many problems of the conventional cosmology, inflationary

In this model the angular velocity of the cosmic rotation iscosmology is still facing the initial singularity problem. To
given byw?=4mp=— A. Godel also discussed the possibil- Solve it Gasperini and Veneziaria2] initiated a program,

ity of a cosmic explanation of the galactic rotatif8]. This ~ known as pre-big-bang cosmology, which is based on the
rotating solution has attracted considerable interest becaud@V-energy effective action resulting from string theory. At

the corresponding Universes possess the property of closé@e lowest order in the string frame the Neveu-Schwarz—
timelike curves. Neveu-Schwarz(NS-NS sector of the four-dimensional

string effective action is given by
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whereH ,,, = d,,B,,; is the antisymmetric tensor field, is ~ showed that in low-energy effective string theorieSdelo
the generalized dilaton coupling constamt=(4 for string space-times need not contain closed time-like curves. In the

o ) ) .~ absence of the axion field these solutions display a simple
theory) and U(¢) the dilaton potential. Under certain cir-

. . . relation between the angular velocity of the Galel Uni-
cumstances, this low-energy string action possesses a SyMarse and the inverse string tensiari of the form w?
metry property, called scale factor duality, which lets us ex-_ Ve
pect that the present phase of the Universe is preceded by an '
inflationary pre-big-bang phase.

The possibility of constructing dual solutions is related to
the admission of axion fields in the physical model. For spa
tially homogeneous string cosmologies in
(3+1)-dimensional low-energy bosonic string theory the
most general form of the antisymmetrit-field tensor de-
rived from a purely time-dependent potential was derived b

It is the purpose of the present paper to investigate, in the
framework of the low energy string effective actio®,(3),
the rotational perturbations of FRW type cosmological mod-
els in both Einstein and string frames and to find to what
extent the possibility of a rotating and expanding Universe
can be incorporated to these types of models. As a general
Xr,esult we find that for a dilaton and axion fields filled Uni-
erse the rotational perturbations always decay due to the
Barrow and Kunze{13]. Thg homogeneous three-fort nPresence of a dilatonpfield potential. Fo?/a poteztial-free di-
with a homogenequs po_tentlal can have at most three COM3ton field the long-time behavior of rotation is governed by
ponents. The manifestation of duality and asymptotic behavén arbitrary function of time, whose explicit mathematical
lor of the solutions in exact inhomogeneous and aniSOtrOpi‘form cannot be determined i|,1 the framework of the first or-
solutions of low-energy string theory with dilaton and axion der perturbation theory
fields was considered in Refl14]. In general the axion- )

dilat ¢ is d led f th itational back The present paper is organized as follows. In Sec. Il we
laton 'system IS decoupied Trom the gravitational Dacksopiain the pasic equations describing rotational perturbations
ground due to cylindrical symmetry. The impact of duality

of string cosmologies in a flat FRW background. The evolu-

logical dels. b fth finh 9%6n of rotational perturbations in Einstein frames is consid-
mological moaels, because ol the presence of INNOMOGeN@gaq i Sec. 111, The rotation in the string frame is analyzed
ities. For a homogeneous rotating @b-type space-time the in Sec. IV. In Sec. V we conclude our results

axion cannot be introduced in the Einstein frame but plays a

crucial role in the string framgl5]. Explicit dual solutions

can be constructed for each Bianchi space-time, except Bi- Il. GEOMETRY, FIELD EQUATIONS

anchi class A types VIII and IX mode[46]. Duality trans- AND CONSEQUENCES

formations for backgrounds with non-Abelian isometries | foyr dimensions, every three-form field can be dualized
were obtained, by using either a Lagrangian or a Hamily, 5 pseudoscalar. Thus, an appropriate @rfsa theH field
tonian approach, in Refl17]. Non-Abelian dualities are of is H“V"=(1/J—_g)e4¢e‘”"”ﬁph, where eHPNP

great interest in physical cosmology since some of the most 5t 8v8hs% and h=h(t) is the Kalb-Ramond axion
; ; ; _ ; - [0910203] - -

Interesting cqsmologlcal_ models have non-Abelian rathe?ield. The gravitational field equations derived from the ac-
than Abelian isometries, important problems such as the flat,[—ion 3) are
ness cannot even be addressed without considering cosmolo-

gies with non-Abelian isometrie®ianchi types V and IX

R 1 1
By means of the conformal rescaligg,=e ?%g,,,, the  R,,—«d,$d,$— Ee“‘baﬂhayh— 59U($)=0, (4)
action(2) can be transformed to the so-called Einstein frame
as
2 1 46 2 1
. V2p-_e*(oh)’= —a,U(4)=0, (5
S= f d“x\/—g‘ R—k(V¢)?— 15e *"Hy— U(¢)},
3 ,( V—ge*?9#h)=0. (6)
wherex=6—«, U(¢)=e2*0(¢) andH[23] is the square of In the Einstein frame the rotationally perturbed metric can

the antisymmetric field with respect to the metgjg, . The be expressed in terms of the usual coordinates in the form

H field satisfies the integrability conditiof ,H,) ,;=0. Ge- [19]
nerically, in these types of models the dynamics of the Uni-
verse is dominated by massless bosonic fields.

Starting from the action§2),(3) cosmological models in
which the Universe starts out in a cold dilaton-dominated
contracting phase, goes through a bounce and then emerges —2Q(t,r)a%(t)r?sirfgdtde, (7)
as an expanding Friedmann-Robertson-WallgeRW) Uni-
verse have been explicitly constructéfidr a recent and ex- where Q(t,r) is the metric rotation function. Althougf)
tensive review of pre-big-bang cosmology see RéB]). plays a role in the “dragging” of local inertial frames, it is
Exact solutions for the Giel metric in string theory for the not the angular velocity of these frames, except for the spe-
full O(a') action including both dilaton and axion fields cial case when it coincides with the angular velocity of the
have been obtained by Barrow and Dabrowdl§] who also ~ matter fields.

2

ds’=—dt?*+a?(t) +r2(d#?+sinfode?)

1—kr?
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We assume that rotation is sufficiently slow so that deviadn the present paper we are primarily interested in the evo-
tions from spherical symmetry can be neglected. For the sakietion of the metric rotation functiof)(t,r). Equation(12)
of mathematical simplicity and physical clarity we considercan be integrated to obtain
only the case of the flat geometry correspondingkte0.
Then to first order inf) the gravitational and field equations Q(t,r)=F(ra 3t)+G(t), (19

become . . . .
with G(t) an arbitrary function of time. Therefore from Eqs.

(13) and(9) it follows that the functiorF(r) must obey the

a . .
65+2K¢2+e4‘/’h2—U(¢)=0, (8)  equation
a_ al PO L 29RO i g)F ) + G0a1)]=0
- -a r a’(t)]=0.
2-+4=5-U($)=0, (@  adrz r dr ¢
a (20
. a¢p 1 soiz, 1 In order to find the physical interpretation Gf(t), we
¢+3-— &+ 59, U(4)=0, (100 consider the dynamics of a test particle in the perturbed met-

ric (7). The equations of motion amu®/ds+ Fzyu“uyzo,
o ah whereu* is the four velocity of test particle andy, is the
h+4h¢+3—=0, (11 Christoffel symbol of the metric. To simplify the calculations
a we consider only the first order corrections to the metriQin
and assume that test particles have small velocities, thus re-

a . . . . .
32 9,Q(t,r) +d,0,Q(t,r) =0, 12 taining qnly terms which are linear in velocity. Consequently
a we obtain
2O (t +4aQt Q(t,r)(2aa+4a?=0 (13 0=1 o' 2, dv_ 2a,
(L) ror (t,r)—Q(t,r)(2aa+4a°)=0. R e TRl
The axion and dilaton field equations are unperturbed to dud 2a . 2a
the first order inQ). This justifies the assumption of homo- —=—0+0-——ud. (21
geneity in the rotation to first order. Equatiofi€) and (13) dt a a
foIIow. from the{13}.and {03} components of the Einstein By integrating Eq.21) we find
equation(4), respectively.
Equation(11) can be integrated to give
auationtty aediog L e W W FO
. o Ur=—-—, uU'=—-—, Uu=——+-——+G(),
h=Ce *%a 3, (14) a’(t) a’(t) a’(t) ad(1)

(22)
with C=0 an arbitrary constant of integration. Using Eq. )
(14) the evolution equation of the dilaton fie{d0) becomes ~ With up,i=1,2,3 constants of integration. In the limit of
. . large t, a(t)—o and we haveu'—0, u?—0, andu?®
_ - Cde U(¢) =G(t). ThereforeG(t) represents the azimuthal velocity of
2xa 3ﬁ(a3¢)—2C2e att do =0. (19 a test particle as measured in the limit of large tithg an
observer at an infinite distance in timét the timet=t, the
Multiplication of Eq. (15) with a®¢ leads to the following test particle will have shifted in azimuth byA)parice
first integral of the dilaton field equation: =fto°cG(t)dt, having an angular velocity wparicie
= (A @) pariicie/ At=G(t..). Thus G(t) describes the large-
2Ka6¢2+C2e‘4¢+2f abU(t)dt=2k o, (16) time deV|at|or_15 fro_m the radial path due_to_ rotation. Present_—
day observations impose a strong restriction on the numeri-
_ ) _ o cal value of the angular velocity of the Universe of the form
with ¢o a constant of integration. The elimination of the G(t,)<107% yr=* [7]. Hence in realistic cosmological
term 6a/a between the field equatiori8) and (9) gives modelsG must tend to zero in the large time limit.

4.2 642 2,—4 6 _
12a%a®—2ka’p*—C% **~2a°U(¢4)=0. (170 | EVOLUTION OF ROTATIONAL PERTURBATIONS IN

THE EINSTEIN FRAME
Therefore from Eqs(16) and(17) we obtain the follow-

ing consistency condition relating the scale fa¢r) to the The behavior of the rotational perturbations of the isotro-
dilaton field potential: pic flat FRW cosmological models essentially depends upon
the dilaton potential and the functid@a(t). The form of Eq.
452 6 6 (20) governing the spatial part of the metric rotation function
6a’a +J' UM dt=a"U(¢)+ «o- (18 imposes strong constraints on the functional formJdgip).
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There arewo and only twdorms of the dilaton field poten-  G(t), lim,_.Q(t,r)=lim,_..G(t). In order to fix our
tial which make the rotation equatioi20) mathematically  original assumption of small rotation, we would expect that

consistent. the functionG(t) has the faster or at least equal fall off.1/
A. Case I: U(¢)=0 B. Case II: U(¢p)=U3a"2(t)
ForU(¢)=0, Eq.(20) can be immediately integrated to  The second case in which the rotation equaii2® can
give be integrated is for a dilaton field potential satisfying the
F(r)=Fy—For 2, 29) condition
U(¢)=Uga (1), (30)

with Fg,F, arbitrary constants of integration. From the field

equation(9) we obtain the scale facta(t) in the form with constantU,. Then Eq.(20) fixes the arbitrary function

a(t) — aotlls, (24) G(t) as
5 _112 3 — 2
where ay is an arbitrary constant of integration. For this G(HU(P)a>(t)=UsG(t)a*(t)=GeUsg, (31)

model the deceleration parameter, defined as with Gy an arbitrary constant. ConsequentlB(t)

=dH Ydt—1,H=ala, is given byg=2. The sign of the =Goa‘3(t). With this choice Eq(20) becomes
deceleration parameter shows that the cosmological model
inflates or not—negative sign for the inflationary evolution d?F(r) 4 dF(r)
while a positive sign corresponds to standard decelerating —
expansion. Therefore in the absence of a dilaton potential the
cosmological evolution of the axion and dilaton fields filled
slowly rotating Universe is noninflationary.
With a vanishing dilaton potential the first integfab) of

the dilaton field equation leads to the following general rep-

oz T ar —UZF(r)=GoU3. (32)

Therefore the spatial part of the rotation function is given by

F(r)=r3[Ujr(Ae"o" +Be Yo') —Uy(Ae’o —Be Vo)]

resentation of the conformal transformation factor: ~ Gy, (33)
/ C? dt where A and B are arbitrary constants of integration. This
2¢(t) — _
€ 2Kk g cos)‘( 2‘/9?0[ as) ' (29 solution is not regular in the origin=0.
The evolution of the scale factor of the Universe can be

With the use of Eq(24) we find obtained from Eq(9), which with the potentia{30) becomes
c? 2aa+4a’=U3, 34
2=/ (t7+179), (26) ° 39

8K¢O

and has the general solution
whereo=2/¢ya, 3. For the Kalb-Ramond field we obtain 2
a’da
t—ty= | —r,
2kdy 1 7 0 K+UZa%4
C 241

(35

with K an arbitrary constant of integration. Substitution in
Equation(18) gives the following consistency condition for Ed.(18) gives the consistency condition
the integration constants:

6K=kdy. (36
3
ag=§,<¢o. (28 The behavior of the dilaton field is described, as a
function of the parametea, by the equation
With the use of Eq(28) we can express as o= \/8/3k. U2 do) 2

For string theoryx=2 ando= y4/3. For an arbitrary posi- 2xa2l K+ —2a4 a¢ +C2e 4~ U2a%=2k ¢y,

tive k in the rangex € (0,°) we haveo e («,0). Therefore 4 da

the time evolution of the dilaton and axion fields is entirely (37

determined by the string coupling constant

The metric rotation function behaves as which follows from Eq.(16). The potential cannot be ex-

pressed as a function of the dilaton field in terms of elemen-
Q(t,r)=ay% YF—For 3)+G(1). (29  tary functions. In the small-time limia—0 the dilaton field
obeys the equation
In the large time limit the behavior of the rotational pertur-
bations of the axion and dilaton fields filled Universe is gov-

2
erned in the Einstein frame by the arbitrary function 21Ka

d 2
d—ﬁ) =2k ¢po— C?e 4%, (38

104013-4
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with the general solution

2 2
e2¢—= /C_(az\/_/_qso Kig—2/é/K Ky~ + / c a—2Vbo K
8k g 8k o

(39

The solution of Eq(35) can be represented in terms of
elliptical functions, but in order to have a better physical

insight we consider only the solution corresponding to the

large time behavior of the model, when the condition
U§a4/4>K holds with a very good approximation. This is
equivalent to taking the arbitrary integration constint 0.
Consequently from Eq36) we also havep,=0. Therefore
in this limit the Einstein frame time evolution of the scale
factor of the rotationally perturbed flat FRW model is given

by
Uo
a(t)= 7t. (40

In this case the deceleration parameter is giveqsy. The

evolution of the Universe is at the exact limit separating

inflationary and noninflationary phases.
The dilaton field equatiofl6) can be written in the form
kUSt8 2 +32C%e 44— 2U5t*=0. (41)

By introducing a new variablg=e~ %, Eq. (41) becomes

|

With the substitutiory=ut the general solution of Ed42)
is given by

6 2

32c?

kUS

2

K

y

t

y

t

e+

0.

(42

t=t [Aw—1]" k%2, (43
TA(U)— Vr21P[A(U)+ 1] ’
B (A(u)—l)l’8 1
t—to m ex —m, K#Z,
(44)

where A(u)=1-16C%u%/US, o '=4(y2ik—-1), B~*
=2(2lk—1), y *=4(2/k+1), andt, is a constant of in-
tegration.

Therefore the evolution of the dilaton field, dilaton poten-

tial and axion field can be represented in the following exact

parametric form:

e??’=u"?t"2, U(¢)=4t"2 (45)
and
hu) \/Esmgf u3[A(u)—1]%*du
=1\ :
2 U3 J [A(u)— a2 A(u)+ 112

2, (46)

K
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FIG. 1. Einstein frame time evolution of the conformal transfor-
mation factore?® (in units of 1¢) in the case of nonvanishing
potential dilaton field for different values of the parameter=1
(solid curve, k=3/2 (dotted curve, k=2 (short-dashed curye
and «=3 (long-dashed curye We have used the normalizations
16C2/U§=1 andt,=1.

_8Ct3 JAU)—1]7%
h(u)= U3 fu [A(u)+1]H
1
Xex[{_—Z[A(u)—l] du, k=2, (47

respectively. The dilaton and the axion fields are defined
only for values of the parameter so thatu<3U3%C 2
Therefore during the cosmological evolution the dilaton field
satisfies the conditior?=2C¥2U,*%~1. For the dilaton
potential we obtaird (¢)<U3C1e?’.

The time evolution of the dilaton and Kalb-Ramond axion
fields are represented in Figs. 1 and 2, respectively. The dy-
namics of these fields essentially depend on the string cou-
pling constantc. For k<2 the dilaton field tends to infinity
in the small time limit and for largeé decreases rapidly to
zero. Fork=2, however, the dilaton field is zero &tt,
=0 and is a monotonically increasing function of time. The
time variation of the axion shows an opposite dynamics. For
k<2 the axion field is zero at the initial stages of the evo-

h(t)

FIG. 2. Einstein frame dynamics of the axion fiéldin units of
10°) for the nonvanishing dilaton potential for different values of
the string coupling constant «=1 (solid curve, «=3/2 (dotted
curve, k=2 (short-dashed curyeand k=3 (long-dashed curye
We have used the normalizationsG®US=1 andt,=1/2.
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lution of the Universe and then it rapidly increases in time.mological time in the string frame is proportional to the cos-

For k=2 the axion field tends to infinity far=t;=0 butin  mological time in the Einstein frame. The conformal

the large time limith—0. transformation factor, also describing the dilaton field evolu-
The dilaton field potential can be expressed as a functiofion, becomeg?~ (C?/8x ¢o) Y4(t/1,) " +2). For the string

of the dilaton field¢ in the formU(¢)=4u?e??. Generally  frame scale factor we find

the dilaton field potential can be represented in the form

U(¢)=g(¢)e??, with g(¢) a function which does not have,

in the present case, an analytical representation. For intervals

of time whenu can be considered a constant or a slowlywhere ay,=aq(C%8k$,)Y*. The metric tensor component

varying function of time, the potential-dilaton field depen- g . can be represented as

dence is of pure exponential type.

é('{)Néo(f/fo)(3o'+2)/(30'+6), (51)

The rotation function is . 2\ —1/4 . i\ Br=2/Go+6)
903”_2<—) 8| = (Fi=For )
Q(t,r)=8U, %t 3r [Ugr(Ae o' + Be Vo) 8x o to
- ~\ (30+4)/(3c+6)
—(AeYo'—Be Vo). (48) t . _
a3l = G(1) [r?sire. (52
The time decay of the rotation is inverse proportional to the to

third power of the time. In the large time limit we have The string frame decay of the rotational perturbations is
lim,_..Q(t,r)=0. Therefore in the Einstein frame in the ) 9 y P

presence of an exponential type dilaton field potential ther@d@in governed by the arbitrary functi@{t), describing in

is a rapid decay of the rotational perturbations of the Frwihe string frame the large-time deviation of the trajectory of a

Universe. test particle from the radial path. The Kalb-Ramond field is
For C=0, that is, for a constant axion field, which can be h(t)~hg approaching to a constant.

chosen, without any loss of generality, to be zero, @d) The second situation for which the rotation equation de-

gives scribing the string frame evolution of the slowly rotating
‘ Universe has a solution corresponds to the exponential type
ez‘f’(‘):(pgt“‘m, (49 dilaton potential. We restrict again our analysis to tke

. _ o . ~ =0 case only. Then defining the cosmological string frame
@o= const. In this case in the large time limit the dilaton field ;o ast=1,+ fe®dt,{,=const and introducing a new vari-

is an increasing function of time. able p=+2/kA(u), 0= =< +/2/k, the general solution of the

It is interesting to note that if the dilaton potential is a .. : : :
. . field equations can be represented in the following exact
nonzero constant)(¢)=A, then the rotation equatiof20) eparamgtric form: P g

implies a=const. In this case the field equations becom

inconsistent unlesA =0. Therefore the first order rotational P \/E 7dn

perturbations of the FRW cosmological models does not sup-  t(7)=t,+ 7 T (53
port the existence of a cosmological constant in the Einstein 2Ug%) (1= 9)(1—«n/2)
frame. .
a(7)=\ClUy(1— k5?2)~ Y4, (54)
IV. ROTATIONAL PERTURBATIONS IN THE STRING
FRAME oim_ 2C YA
. . . . e (1= k7
We consider now the evolution of the rotational metric toUp
function in the string frame. In this frame the components of
the metric tensor are given ly,,=e?*g . If we define Xexr{ _ ff 7d7 , (55)
a new time variableé by means of the transformatiosht 4) (1-n)(1-«7?/2)
=e?Mdt, then in the string frame the line element of the .
i icis ai . U
rotationally perturbed metric is given by O(n)= Eo(l_ kn?2) V2, (56)
ds?=—dt?+a%(t) dr” +r2(d6?+sirPd p?)
1—kr? nexr{ff ndn
X s - . taus 2) (1-9)(1-«kn?2
—20(1,na%(t)e *Or2sigdide, h(p)= -2 Of S UGl LA
8C 1-79
(57)

wherea?(t) =e2¢Ma2(i).

In the case of the potential free dilaton field the string The spatial distribution of the rotation function is de-
scribed by EQ.(33). The temporal behavior of the string

frame metric tensor componemjy; is governed by the
function

frame cosmological timet is defined according tot
=(C?/8k o) Y[ Jt7+t 7dt. In the large time limit we ob-

taint~1t,t(7 22 with to=2(C?%/8k o) ¥ (o+2). The cos-
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1.3
1.25
1.2

1.1
1.05

FIG. 3. String frame time evolution of the scale factom the FIG. 5. Variation of the dilaton fieldp as a function of the

case of nonvanishing potential dilaton field for different values ofstring frame cosmological timein the case of nonvanishing dila-
the parametek: x=1 (solid curve, x=3/2 (dotted curvg k=2  ton potential for different values of the parameterx=1 (solid
(short-dashed curyeand« =3 (long-dashed curyeWe have used  curve, x=3/2 (dotted curve k=2 (short-dashed curyeand x
the normalizations\/C/2U3?=1 and JC/U,=1, leading toC =3 (long-dashed curye We have used the normalizatiots=1
=Up=1/2. and /C/2U3?=1.

factora(t) = Uyt/2 removed by the conformal transformation
e?a=1/u. The dynamics of the dilaton field potential, pre-
(58  sented in Fig. 4, shows a monotonically decrease ahd in
the large time limitU—0. In Fig. 5 we represented the dy-
In the limit of smallp, »—0(u—1), from Eq.(53) we  npamics of the dilaton fields. Independently of the values of
obtain k7?/2~2U3?C~ V4. Therefore in the small time the string coupling constant, in the large time limit we
limit the scale factor behaves as(t)~\C/Uy(1 havep—0. Hence at the end of the cosmological evolution
—2U%%CY2) =14 |n the string frame and in the presence both the dilaton field and dilaton field potential vanish. But
of the exponential type dilaton potential the slowly rotatingthe axion field time variation, presented in Fig. 6, shows a
Universe starts its evolution from a nonsingular state withapid time increase dfi, with h—-cc in the large time limit.
a(0)=\/C/U4#0. For the dilaton and axion fields we obtain Therefore in this model in the large time limit the dynamics

oD —o I3 T N B of the Universe is governed by the Kalb-Ramond axion field.
€ 2C/Ugexp(= VU,/Ct2) and h(t)~ho In the string frame the time behavior of the rotational

6+2 3 H
+.(U.0t0/32C)exp(V. Uo/CH), r(.aspecnvely.. At the garly be- perturbations, presented in Fig. 7 is similar to that in the
ginning of the Universe the time behavior @ is given by  Ejnstein frame, in the large time |i”@os—>0- If in the Ein-

X d#n
F()~ (1— kp?l2) V4 —ff 7
(7)~(1—«n/2) ex;{ 2) = —xrl2)

f(t)~exp(-2\UZICY). stein frame the time decay of the rotation is given by a power
The time evolutions of the scale factar dilaton field¢,  law, being proportional ta ™2, in the string frame the first

dilaton potentialJ, axion fieldh, andgos as functions of the ~Order rotational perturbations decay exponentially.

string frame cosmological time are represented in Figs. 3—7. The string frame deceleration parameteis given, as a
The scale factor is represented in Fig. 3 for differenin the  function of », by

string frame the evolution of the Universe starts from a non-
singular state, with the Einstein frame singularity of the scale

200
150
<

100
50

0

40
£ FIG. 6. Time evolution of the axion fielth as a function of

string frame cosmological time in the case of nonvanishing poten-
FIG. 4. String frame time dynamics of the dilaton field potential tial dilaton field for different values of the parameierk=1 (solid
O for different values of the parametar «=1 (solid curve, curve), k=3/2 (dotted curvg «=2 (short-dashed curyeand «
=3/2 (dotted curve, k=2 (short-dashed curyeand «=3 (long- =3 (long-dashed curye We have used the normalizationg
dashed curye We have used the normalizatiafg/C=1/4. =42 and\C/l2u?=1.
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3 \\ §03~f("m‘1)/("m+1)[u(2)r(AeU0r+Be‘UO’)—UO(AeUOr
2.5
) AN —Be Yo" r 1sirfe, (61
\
\
\
@ 1.5 Yo may decay >2), increase £<2), or be independentx(
‘\ N . B ~
S N =2) with respect to the timé.
0.5
V. DISCUSSIONS AND FINAL REMARKS

In this paper we have analyzed rotational perturbations of
t homogeneous flat isotropic FRW in NS-NS string cosmol-
ogy. To first order in the metric rotation function the field
equations reduce to the unperturbed field equations in addi-
‘tion to two equations determining the rotation function
Q(t,r). The decay of the rotation is basically determined by
the dilaton field potential. The field equations impose strong

FIG. 7. Time decay of the rotational perturbatidnas a func-
tion of the string frame cosmological time in the case of nonvan
ishing potential dilaton field for different values of the paramater
k=1 (solid curvg, k=3/2 (dotted curvg «=2 (short-dashed
curve, and k=3 (long-dashed curye We have used the normal-

P 32_ constraints upon the functional form Bf( ¢), and except the
ization VC/2Ug*=1. trivial form U(#) =0 only one other form is allowed by the
41— kP2 mathematical structure of the theory. In the Einstein frame
a(n)=———. (59) the rotation function can be generally represented as a prod-
x 7(1=7) uct of two independent functions, one depending on time and

The time evolution of the deceleration parameter is repreJEhe other o, plus a functionG(t) depending on the cos-

o T } mological time only. From a physical point of vie®(t)
sented in Fig. 8. The dynamics gfis dependent of the string epresents the azimuthal velocity of a test particle as mea-
coupling constant. For k<2, since values ofp>1 are

c ) . Oy~ ] sured by an observer in the infinite future.
allowed the Universe ends in the large time limitin aninfla-  |f the dilaton field potential is zero, the large-time evolu-

tionary phase. Fok=2 generallyg>0 and hence the string tion of the rotational perturbations is determined by the ar-
frame evolution is noninflationary. In this case in the largebitrary function of timeG(t) in both Einstein and string
time limit a_>0 and therefore the Universe ends at the exacframes. Therefore in this case the initial rotation of the Uni-
limit separating inflationary and noninflationary phases. ~ verse may not decay to zero in the large time limit and thus
For a vanishing axion field the general solution in thethe possibility of a global rotation in the present day Uni-
string frame can be obtained in an exact form. The string/erse is not excluded in this model. On the other hand the
frame cosmological timé is related to the Einstein frame a/Pitrary character of the functid@(t) and the absence of a

. . L~ physical mechanism excluding in a natural way rapid late-
Cosmoflggﬁal timet by means of the rEIatlon_[‘PO/(‘/m . time rotation of the Universe raises the question if a dilaton
+1)]t7 % The scale factor has the same behavior as in,qentia| free pre-big-bang type cosmological model can lead
the Einstein frame, being given by to a correct description of the dynamics of our Universe.
This situation is somehow similar to the behavior of the an-
isotropy in the Bianchi type | space-times in pre-big-bang
cosmological models. In the absence of the dilaton field po-
tential a Bianchi type | space-time does not isotropize, the
geometry being of Kasner type for all timg20,21]. There-
fore in standard pre-big-bang cosmological models with pure
dilaton and axion fields neither the initial rotation nor the
initial anisotropies can be washed out as a result of the ex-
pansionary evolution of the Universe. Of course this conclu-
sion is model and parameters dependent. In the present pa-
per, and also in Ref[21], a particular model of the
pseudoscalar axion field, the so-called solitonic an$atz
=h(t), has been used.

It is possible to consider more general situations with the
axion field having a spatial dependendesh(t,x) [22].
Four-dimensional FRW and Bianchi type | models for this
case have been obtained by Copeland, Lahiri, and Wands

FIG. 8. String frame evolution of the deceleration paramgter [22], by assuming that thiel-field energy-momentum tensor
for different values of the string coupling constantx=1 (solid IS homogeneous and isotropic on average. In a flat space-
curve, k=3/2 (dotted curvg, k=2 (short-dashed curyeand «  time the axion field can be decomposed into Fourier modes
=3 (long-dashed curye We have used the normalization h=24hy(7)exp(qx) (7is the FRW conformal time coordi-
JCroude=1. nate, with g; a spatial comoving three-vector. The solitonic

a(t)=apt, (60)

with 50=U0(\/2/K+ 1)/2. For this model in the string frame
the rotational perturbations
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ansatz corresponds tF==;q°—0. The equation of motion In the presence of the dilaton field potential there is a
for axion can also be solved in the cage— (the elemen- rapid decay of the rotational perturbations. The rotation
tary ansatz With this choice theH field is decoupled from €quation(20) fixes not only the form of the potential but also
the dilaton which appears, in the Einstein frame, as a minidetermines the mathematical form of the functiGt),
mally coupled scalar field. The energy-momentum of the axwhich in the Einstein frame is inversely proportional to the
ion field is trace-fredof radiation type, given by —((MT9) third power of the scale factor. Hence in an expanding Uni-
=Ma (1), <(h)T/’j>=3Ma’4(t), M=const. The energy- verse the rotational perturbations decrease rapidly, the long-

. \ . . time decay of the rotation being given by a power law in the
momentum tensor of the dilaton field behaves as a stiff ﬂu'dEinstein and by an exponential term in the string frame.

with —((IT)=({WT4)=Na"%(t), N=const. The physi- Therefore in the large time limit the azimuthal velocity of a
cal model generally corresponds to the evolution of two non+est particle is rigorously zero or very small.
interacting fluids. But as one can easily check, in this case |n the spatially isotropic and flat FRW Universe, the ef-
and in the absence of a dilaton field potential the rotationafective superstring action is invariant under the discigte
perturbation equationd ?) and(13) are mathematically con-  tansformatiora— a(® = 13, p— ¢ D= p—61Ina[12], that
sistent only fora= const. Therefore first order rotational per- jnyerts the cosmological scale factor and shifts the value of
turbations do not support the elementary ansatz for the pseghe dilaton field. This transformation maps an expanding cos-
doscalar axion field. mological solution onto a contracting one. But since the
For a nonzero dilaton potential the rotation equali?®  theory is also invariant under time reverdd=—1, the
and the field equations completely determine the form of th@gntracting solution may be mapped onto a new expanding

potential. Therefore neithéy(4) nor G(t) are arbitrary pa- olution. The Hubble expansion paramekérd In a/dt is

rameters of the theary. In the Einstein framg the d||§it0n f.'el nvariant under the simultaneous application of scale factor
potential, can be represented, as a function of time,

) ) N Juality and time reversal, but its first derivative changes sign.
parametric form, witha taken as parameter, as The new solution will represent a superinflationary cosmol-
ogy characterized by the condition of the positivity of the
first time derivative of the scale factor and of the Hubble
t—1p= f T U(a)=U%a % (62  parameter and of the second derivative of the scale factor.
K+Uga™/4 This is the feature that forms the basis of the pre-big-bang
scenario[12]. For the case of the vanishing axion field the
This mathematical form of the potential is the only one al-string frame scale factor of the Universe is given by &),
lowed by the mathematical structure of the field equations. Isatisfyingda/dt=a,=const-0 andd?a/dt?=0. The dual
the limit of smalla, a—0, the time dependence of the

L OF ST A © 4 Ce scale factor ia®=a, 't %, with the corresponding Hubble
potential is given byU(t)=Uy(3 JKt) 22 In the limit of

. . ) parameterd (@ = —1t=149. The Hubble parameter has
larget, corresponding to larga, we obtainU(t) =4/t~ h e F1(9/di>0 d A @/gH® hile the dual

In the small-time limit the scale factor behaves as the propertiesdH >0, H. ] tA(?)O’AW 'eA;[d)e A(l;?
=(3\/Rt)1’3 and the use of Eq(39) leads to a potential- scale factor obeys thg re_stncuomta /d§<0,d_a /dt
dilaton field dependence of the exponential form =>0. Therefore the axion-field free solution with the scale

factor linearly increasing in time cannot represent a superin-
flationary cosmological evolution.

The general physical requirement of the very sntal
zerog rotation of the late-time Universe also imposes, in the
where A=U2(8k¢o/C?)V?0/K2=const and y=\p,/K very early stages of cosmological evolution, the simulta-
= const. neous presence of both of the axion fiéle h(t) and of the

The exponential type potentials play an important role indilaton field potential (¢).
particle physics and cosmology. An exponential potential If the Kalb-Ramond fielch is zero, even in the presence
arises from compactification of the higher-dimensional su2f U(¢), the rotational perturbations in the string frame are
pergravity in the four-dimensional effective Kaluza-Klein 9overned by the numerical value of the string coupling con-
theories or from superstring theories. The moduli fields asstant«. In this case the Universe is not rotating for large
sociated with the geometry of the extra dimensions in stringgosmological times only ik>2. For string theory=2 and
or Kaluza-Klein theories may have effective exponentia| po_for a zeroh field the Corresponding dilatonic Universe rotates
tentials due to the curvature of the internal spaces or to théor all times.
interaction of the moduli with form fields on the internal ~ The observational evidence that our Universe is rotating
spaces. Exponential potentials can also arise due to the notery slowly or at all imposes a major constraint on realistic
perturbative effects such as gaugino condensdfimma dis-  cosmological models. The first order rotational perturbation
cussion of the role of exponential potentials in cosmologytheory analyzed in the present paper could be relevant for the
see Ref[20], and references thergirin the large time limit ~understanding of the transient period from a rotating initial
the potential 5} a generalized exponential one, of the fornftate of our Universe to an expansionary one.
U(p)=g(¢)e~?. The functiong(¢) cannot be expressed in
terms of elementary functions. In the string frame and in the ACKNOWLEDGMENTS

same limit the dilaton field potential can be represented as The work of C.M.C. is supported by the Taiwan CosPA
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U(p)=Ae>X?, (63
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