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Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise
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We study numerically nonlinear responses of a periodically forced Hodgkin-Huxley neuron. The coherence
of the system in the absence of external noise, namely, the “intrinsic stochastic resonance,” is evidenced by the
multimodal aperiodic firing pattern, a bell-shaped curve in the signal-to-noise ratio, and the statistical features
of the mean firing rate. The subthreshold intrinsic oscillations enhance the signal transduction in a manner
different from that in models studied previously.
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One major motivation to study stochastic resona(&® SNR, maximum Lyapunov exponents, the ISIH, and the
is its application in biology, and particularly in neuroscience.mean firing ratd5,6]. Indeed, ISR was observed in an ex-
SR is a process that consists of a noise-induced enhanceméx&fiment on a giant squid q>.<CEI4].
of the response of a nonlinear system to a weak, external, Biologically, the excitability of neural systems plays a
time-periodic modulation in the presence of backgroundundamental rC_)Ie in neur'al information processing. The ro!e
noise. The Signa]-to_noise rat@NR) is maximized by a of external noise in excitable neural models has been dis-
nonzero value of the applied noise. Neurons are inherentigussed in recent yeai®,11-13. On the other hand, the
stochastic devices for information processing and are effi€xcitability of neurons can lead to intrinsic sub- and supra-
cient in detecting a weak signal. It has been shown botfhreshold oscillations as well as deterministic chaos, which
experimentally and theoretically that noise can enhance we pear to have mtr Insic stogha_sthlty n neure_ll systé]y_@
signal transduction in sensory neurons via[3R In addition nlike external noise, such intrinsic stochastic behawor can
to direct evidence, when a bell-shaped SNR curve is clearlge tuned by the neural system itself through physiochemical

seen by tuning external noise, another kind of experimenta hange;, €.g., through the effect of ”eWOmofj“'atOfS- Re-
indication for SR is that, in a system of periodically forced cently, it was claimed that neuromodulation is important in

sensory neurond situ where the external noise cannot be underst.anding' Sig’?a' tranS(_:iuction, pattern formatiqn, and
tuned or even identifief2], a multimodal interspike interval event_hlgzgr Iblt?tlr?_glcal functlonf,dsulcéhRas _me’;aleaHrn:jngk_and
histogram(ISIH) (in which the time intervals between suc- emotion[15]. In this paper, we study using the Hodgkin-

cessive spikes are assembled into a histogrerhibits a Huxley (HH) neural model, which serves as a paradigm for

remarkable resemblance to the residence-time distribution dpodellng spiking neuroril6]. We show how a weak signal

bistable systems driven by a weak periodic signal in the pre s enhanced by tuning the subthreshold intrinsic oscillation.

ence of external noigeg]. Recently, it was found that, in the c:f!fs aIS(t)flndlc%te;j. thﬁt ;he IdSR In tlhe presen}l F,:H mogell IS
absence of noise, such a multimodal ISIH can still be ob2!Merentirom thatin high-order noniinéar osciiator modets,

tained if the excitability of the neuron is taken into account® their patterns of intrinsic oscillation are different. More

[4-6]. It is the subthreshold intrinsic oscillation, instead Oflmportaptly, since the HH mpdel is biologically reallstlc,_we
external noise, that enhances signal transduction, and the fay attribute th? ISR to the inherent membrane properties of
regularity residing in the spike train can be attributed to deNEUrons, enal:l;llmg us to understand relevant experiments
terministic chaos. Also, a honzero SNR has been reported iWO_Ir_?1 re:;ona dy.l hich is based on th i q
several experiments when the external noise is switched o € Hi model, which IS based on [he honiinear conduc-
[7-9], which is assumed to stem from the existence of in- ance of ion channels, is described by a set of four time-
trinsic or internal noise. Such nonlinear features of excitabledependent variables/(m,n,h) [16]

oscillators may be viewed as a kind of “intrinsic stochastic

» : : dv )
resonance”(ISR), namely, stochastic resonance in the ab- —=f(V,m,n,h)+1y+1,sin(27ft), )
sence of external noise. The ISR has been demonstrated by a dt
bell-shaped SNR curve in the absence of external noise if the
bistable discrete map falls into the chaotic regjaf]. The dm_m.(V)-m 2
multimodal ISIH in the absence of external noise was ad- dt (V)
dressed in Ref[4] by using the FitzHugh-Nagum@HN)
model. Recently, ISR near a period doubling bifurcation was dn n.(V)—n
analyzed in the Hindermarsh-Ro4¢R) model, by using the PRI (©)
n
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with the spike train in Fig. (b). The peaks of the ISIH are roughly
multiples of the forcing period, and the envelope of the ISIH
F(V,m,n,h) = = gnam®h(V = Vi) = gen* (V= Vi) decays exponentially except for the first few peaks. Such
—gL(V—V,), (5) stochastic coherent characteristics are also seen in the power

spectrum densityPSD) of the spike traifFig. 1(c)]. A main
whereV is the membrane potentiai) and h the activation peak located at the forcing frequency and several other peaks
and inactivation variables of the sodium current, anthe  located at multiples of the forcing frequency indicate that the
activation variable of the potassium current. The parametersput signal is included in the output spike trains. A nonzero
Ona» 9k, andg, are the maximum conductances per surfaceSNR, which is calculated from the ratio of the height of the
unit for the sodium, potassium, and leak currents, ¥Rdl, main peak to its nearby background in the PSD, is seen
Vi, and V_ are the corresponding reversal potentials.clearly even in the absence of external noise. Due to the
m..,h..,n,, andr,, 7, , 7, represent the saturation values anddeterministic features of the chaotic firing, there are several
the relaxation times of the gating variables. Detailed valuesmall peaks af’=f/n (with n=2,3,4) which represent the
of the parameters can be found in REf6]. The system is spikes with intervals off’ =nT (T is the period of the ex-
subject to two external currenits andl ; sin(27rft). Because ternal forcing. These small peaks are reduced if a weak
I is independent of time, changing it is equivalent to chang-external noise is applied. Both the ISIH and PSD obtained
ing the reversal potential of leakage chanviglin Eq.(1). In here are almost the same as those of SR in noisy bistable
the following simulation, we tune intrinsic oscillations by model, although the dynamics is deterministic here.

changingly. 1, sin(27ft) is a weak periodic signal with; We plot the firing rate as a function b§ andf for a weak
andf being the amplitude and frequency of the signal, re-periodic input signal I;=1.02) in Fig. 2, which shows the
spectively. dynamic behavior near the threshold. When the frequency of

Let us see first how the subthreshold intrinsic oscillationthe signal ranges from 45 to 65 Hz, the system first experi-
enhances signal transductidRig. 1). We choosel;=1.02  ences chaotic firing als, increases to cross the threshold. It
andf=60 Hz. This signal is too weak to excite a neuthbe s in this frequency region that ISR is present. This feature is
threshold isl;=1.5). If a constant bias is applied to the quite different from the usual SR, due to the fact that the HH
system, the additive constant bias is still unable to excite thenodel has specific frequency of intrinsic oscillation which
neuron ifl, is small. In this case, the neuron experiences glays a crucial role in ISR.
subthreshold oscillation. As the constant bias increases, the The dynamical features of the ISR can be seen in Fig. 3,
subthreshold oscillation becomes stronger and strongewhere we plot the maximum Lyapunov exponexishe pro-
When the bias exceeds the threshdlg=2.75), the neuron jection of the membrane potential, and the interspike inter-
is excited to output the spike trajiirig. 1(a)]. The neuron vals. Beyond the threshold, regions with positiighaotic
does not fire in each period cycle of the external signal, wittregiong and negative (mode-locked regions maximum
several cycles being skipped. Importantly, such skipping idyapunov exponents appear alternatelyl @increasegFig.
irregular and the spike train is stochastic. We plot the ISIH of3(a)], until a steady state is reachgt7]. In the chaotic re-
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stant bias on a periodically forced HH neuron.

As shown in Fig. 3, ISR in the HH model behaves in
some manner differently from that in second order nonlinear
oscillation models. In the FHN and HR modé¢ls—6], there
exists a large region of subthreshold bifurcation where the
period doubling bifurcation is obvious; while subthreshold
period doubling is hardly observed for the HH model. In
addition, different intrinsic patterns in the HH model lead to
different phase diagrams and dynamical features from those
in other models. For example, intrinsic oscillations can be
chaotic when tuning, in the HR model[5], while such
chaotic intrinsic oscillations cannot be found in the absence

Frequency (Hz) of periodic forcing in the HH model.
. _ In realistic neural systems, external noises cannot be com-
FIG. 2. The mean firing rate for the parameter regiohoisf, 104 switched off, and thus a mixed effect of external fluc-

with 1,=1.5. The mean firing rate is calculated by dividing the . e

number of output spikes in 1500 signal periods by 1500. The IabelEuatIQnS and determlnls'tlc chaos would be expected. We now
. ) consider a system subject to an external noj$g, which
ing m:n on some flat surfaces shows where there are on average tisfi

spikes perm signal periods, which is the reciprocal of the firing satisties

rate.

Firing Rate

dn(t) (1) &

gions, the ratio of the number of output spikes to the number e n + n (6)
of signal periods is irrational. We can also examine this case ¢ ¢
by the projection of membrane potentials at times separated
by the signal period, as plotted in Figib. Chaotic regions yith
are those with many projection points and are characterized
by multimodal ISI's[Fig. 3(c)]. These results show that cha-
otic firing behaviors can be obtained by changing the con- (m(t) p(t+7))=(Dlt)exp — 7/tc), (7)
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FIG. 4. The output signal-to-noise ratio for different constant
bias 1, with 1,=1.02, f=60 Hz, with OU noise ofD=0.01 and oo et
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0.1.
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where&(t) is the Gaussian white noise with variarideand I
t. (=0.1 mg is the correlation time. Equatidi$) describes a 0.45 | |

]

N—

zero-mean Ornstein-Uhlenbe@®U) stochastic proce4438]. 52 ]
One feature of SR is to enhance the ability to transmit or 0.40

encode signals in the system, which can be measured fror

the signal-to-noise ratio. When there is no ndiset shown 0.35

iring

here, the peak-to-base ratio of the power spectrum reache{L, 1
maxima for all mode-locked regions. When a weak OU noise 0.30 |
is applied, the output SNR first increases to a maximum anc :

then decreases &g increasegFig. 4). Not all combinations 0.95 [

of parameterslg,l,,f) give this bell-shaped curve, but once
the suitable parameters are chosen, the bell-shaped curve ci
be obtained for any value of noise intensidyprovided that D
D is not too large. IfD is very large, the curve becomes N .
flattened. We may split the bell-shaped SNR curve into three FIG-5.11=1.2 andf =60 Hz. The mean firing rate is calculated
regions: the rising region, the top plateau region, and thay the meﬁhod d_escrlbed in Fig. @) The mean firing rate vs the
falling region. In the absence of noise, multimodal firing constant bia, with D=0 (dotted ling and(scattered squargand
patterns and mode-locked patterns occur alternately in thiS fitting by Ea.(1D) (solid ling). (b) The mean firing rate vs the
rising region; in the presence of noise, the mode—Iocketf.t)?emE1I ré)lselgltensll_gt)l_wnh lo=1.58 (scattered circlgsand its
states are destroyed so that almost only multimodal state§ 9 %Y a. (10) (solid line).
appear. The chaoticity is like an extra noise that decreasgs=5 in Fig. 5a). In the absence of external noise, there are
the SNR. The falling region is another chaotic firing state:some mode-locked states where the firing rate is unchanged
the intrinsic bursting. The output spikes are not related to th¢“steps”) as well as chaotic regions between the flat “steps”
signal but to the excitability of the system. The present bell{the dotted line in Fig. &]. The whole structure of the
shaped SNR curve may be compared with the effect of SR istaircase is complicated, but the upward trend is clear. For
various experimentg7—9]. comparison, we also plot the mean firing rate versus the

From the SNR, we find that the signal enhancement effedfoise intensityD in Fig. 5b), wherel, is chosen such that
is independent of chaotic noise strengtbntrolled by deter-  the neuron exhibits multimodal firings f@=0.
ministic inpud, and the stochasticity is generated by the in-  To understand better as well as to compare the data in
trinsic dynamical property of the excitable system. We carf-igs. 3a) and 3b), it is helpful to employ a Kramer-type
compare this with conventional SR. For conventional SRformula for the probability rate of state switching in multi-
similar bell-shaped curves are obsery&d]. We note that,  Stable systems when the system is periodically fof€etd):
gﬁy&agémilar role td, although they are obviously differ- R(t)=exp{(— U/Dyo)[1—acog 27ft)]}, ®)

To see and to analyze the rolelgfin the parameter range whereU is an effective barrier heighD,,; is the effective
of ISR, we plot the mean firing rat@éwumber of spikes per total noise intensity, and is a constant. The mean firing rate
number of signal periodsversusl, for a moderate noise can be obtained as
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whereBy is the zeroth order modified Bessel function. From
Eq. (9), we are motivated to fit Fig.(5) with

R=(R(t))=exp[(—U/Dio) |Bo(aU/Dyp)

R(D)=A(D+Dg)Eexd —B/(D+Dy)] (10

whereA=0.461,B=0.0745,D,=0.270, ande=0.180. We
find thatD is nonzero, which implies the existence of back-
ground chaos that produces the multimodal firing wiien

PHYSICAL REVIEW B4 021913

duction of deterministic input via the mechanism of SR. As a
result, there exists a stochastic resonance without ripése
ISR) in excitable systems.

In conventional SR, the noise and the signal can be dis-
tinguished as two different inputs. However, we cannot sepa-
rate the subthreshold chaos from the signal in our case. If
there is onlyl, or the signal, we can observe either a con-
stant or a periodically oscillating subthreshold membrane po-
tential. The chaos comes from the mixed effectl gf the

=0. ForD>0, the chaos acts like an extra noise. Since it issignal, and the excitability,, is merely a parameter used for

expected that the effect of changihgwill be similar to that

observing the ISR in our simulation. We can vdgyto ob-

of changing the noise intensity in some sense, we may try teerve a similar effect. However, the necessity of the signal

fit Fig. 5(a) by

R=A1(1o)" exp(— By /1o 1,) (11)

where A;=14.2, B;=11.8, Iz=—-2.72, andE;=—0.751.

The fitting appears to be acceptable and the similarity b
tween changind, andD can be seen from the fittings Eqs.
(10) and(11). In fact, |5, together with the sinusoidal signal,

drives the system into the chaotic regime. The mixed effec

of the total inputl and the excitability produces a subthresh-

old chaos that plays the role of noise and enhances the sign
detection through a mechanism like SR, so that an undetec

able weak signal may become detectafaleleast partially.
In addition, comparing Eq11) with Eg. (9), one can see that
increasingl o has a similar effect as decreasibg and the
effect is nonlinear and very complicated.

The noise, signal, and barrier are three elements of SR. |
bi- or multistable systems, since the constant bias affects t
barrier height linearly, no chaotic background can be pro
duced. Therefore external noise is necessary for SR in the
systems. In excitable systems, howevgichanges the effec-
tive barrier height in a nonlinear way, which explains why
there exists the effect of SR even when the external noise
switched off. Certainly, the excitability is a key element in

this effect. In excitable systems like the HH neuronal system
the effective barrier height is not merely a fixed threshold but
dependent on the recovery, as the system cannot give fuﬁ

responses during this stage. The recovery rate is not u
changed after each discharge of the membrane potenti

rather it is dependent on the phase of the input current WheB

firing happens. For certain parameter value$qofl 1, andf,

e

he

S

implies a kind of self-organization in neuronal systems. The
input signal, together with the constant bias, produces a
chaos that enhances the detection of the signal itself. Al-
though a random number of cycles are skipped, the timing of
the spike trains is still dependent on the signal period, and
thus the precise timing of the stimulation is remembered.
Recently, it was indicated that some sensory information is

ncoded in time, rather than firing rd@0], so that multimo-

al firing patterns can carry information as usefully as phase-
Iolcked ones. For a certain weak sinusoidal signal, we may

aonsiderlo as the control parameter, which, biologically,

ould be either a constant part of the internal noise or an
intrinsic electrical property of the neuron. In the former case,
the internal noise is mainly the stimulus from other neurons
in the network, causing a subthreshold fluctuation in the
F]nembrane potentigl21]. In the latter case, the electrical

roperties including the constant bias of neurons can be

Modulated by a stimulus from the environmé@®]. This

tuning effect is easily found in sensory neurons, and based
3h it the organism can adapt to its environment.
In summary, we have found that excitability is important

iin detecting weak signals in the HH model, via the mecha-

Rism of ISR. This interesting phenomenon is absent in the
usual bi- or multistable systems. The resonant oscillation be-
tween the output and weak external forcing in the absence of
xternal noise is enhanced by subthreshold intrinsic oscilla-
ons and is demonstrated in a multimodal ISIH, the SNR,

gjnd the statistics of the mean firing rate. Rather than relying

hly on the external noise, a neural system may tune itself to
e chaotic to encode weak signals.
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