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Nonlinear transport theory for hybrid normal-superconducting devices
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We report a theory for analyzing nonlinear DC transport properties of mesoscopic or nanoscopic normal-
superconducting~NS! systems. Special attention was paid such that our theory satisfies gauge invariance. At
the nonlinear regime, our theory allows the investigation of a number of important problems: for NS hybrid
systems we have derived the general nonlinear current-voltage characteristics in terms of the scattering Green’s
function, the second-order nonlinear conductance at the weakly nonlinear regime, and nonequilibrium charge
pileup in the device that defines the electrochemical capacitance coefficients.
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I. INTRODUCTION

The physics associated with quantum conduction in v
ous low-dimensional hybrid superconducting systems
been a major focus of research at present.1–4 Due to ad-
vances in controlled crystal growth and lithographic tec
niques, it is now possible to fabricate various submicron
brid superconducting structures where accurate experime
measurements can be made.5 An important theoretical task is
to be able to predict, for general mesoscopic or nanosc
hybrid systems, transport properties such as the nonlin
current-voltage characteristics and the nonequilibrium cha
distribution inside the system as a function of the appl
bias voltage. Our theoretical understanding of quant
transport in these very small normal superconducting~NS!
hybrid systems has been achieved by scattering-ma
theory2,4 and by non-equilibrium Green’s function~NEGF!
theory.6–10

To analyze nonlinear transport coefficients, i.e., coe
cients that appear in front of nonlinear powers of bias vo
age, in principle one must make sure gauge invariance of
theory. This means that theoretical results should not cha
when bias voltage applied at all the device leads is chan
by the same amount. This is a necessary condition for
transport theory and has been recognized in the literatu11

Consider a device that is connected to the outside world
several leadsa where bias voltageVa is applied. WhenVa
→Va1v wherev is a constant, the calculated results~such
as current! will not change if the electrostatic potentialU
inside the device is also changed by the same amounv.
HoweverU5U(r ) which is the Hartree potential, can on
be obtained by solving a self-consistent problem. In ot
words, to satisfy gauge invariance one necessarily require
consider Coulomb interactions at least at the Hartree le
Furthermore, in general when external bias voltage is app
to a device, the flow of charge carriers through the dev
could polarize the system due to long-range Coulomb in
actions. For a macroscopic metallic conductor, the polar
tion can be safely neglected since interaction is w
screened. However for mesoscopic scale and nanoscale
ductors the polarization could be very important. This a
requires self-consistent analysis.
0163-1829/2001/64~10!/104508~5!/$20.00 64 1045
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For normal conductors, Büttiker and his co-workers11,12

developed an approach based on the scattering-matrix th
to deal with the second-order nonlinear conductance co
cients. This theory can also be extended to higher nonlin
order in DC situations.13 On the other hand for a NS hybri
system, despite many theoretical investigations on
quantum-transport property,14 the important issue of gaug
invariance has not been clearly addressed so far. In ligh
this unsatisfactory situation, in this paper we report the
velopment of a proper nonlinear-transport theory that sa
fies gauge invariance for mesoscopic or nanoscopic NS
brid device systems. Our theoretical formulation is based
nonequilibrium Green’s function approach where t
quantum-transport problem is solved in a self-consist
manner. We have formulated a gauge-invariant theory for
general I-V characteristics including the subgap behavio
the NS device in terms of Green’s functions that are num
cally calculable. In the weakly nonlinear regime we furth
derived the second order nonlinear coefficient by solving
characteristic potential. Since our theory can deal w
charge polarization in the presence of transport,15,16 we have
also derived the linear and second-order nonlinear cha
distributions that define the electrochemical capacitance
the system.

The rest of the paper is organized as follows. Section
presents the gauge-invariant nonlinear-transport theory
the NS system and Sec. III provides applications of o
theory. Section IV is a short summary of this work.

II. GAUGE-INVARIANT THEORY

In this section we formulate the gauge-invaria
nonlinear-transport theory based on NEGF for NS hyb
device systems. To be specific, the NS system we consid
a quantum well connected to a normal metal lead and a
perconducting lead. The current flowing through the norm
lead is9 (e5\51),

I 5I A1I 1 , ~1!

with
©2001 The American Physical Society08-1
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I A52E dE

2p
Tr@GLG12

r GLG12
a #@ f L~E1vL2vR!

2 f L~E2vL1vR!#, ~2!

I 152E dE

2p
rR~E!TrFGLG11

r GRG11
a 1GLG12

r GRG12
a

2
D

uEu ~GLG11
r GRG12

a 1GLG12
r GRG11

a !G
3@ f L~E1vL2vR!2 f R~E!#, ~3!

where G11 and G12 are the matrix elements of the 232
Nambu representation. Here

G11
r ~E!5@E2Hd1U2vR2S11

r 2S12
r ArS21

r #21 ~4!

and

Ar5@E1Hd* 1vR2U2S22
r #21. ~5!

Once the electron and hole Green’s functionsG11
r and Ar

were obtained,G12
r is calculated by

G12
r 5G11

r S12
r Ar , ~6!

whereSr is the self-energy.
We emphasize that the crucial step in developing

gauge-invariant nonlinear DC theory is to include theinter-
nal potential landscapeU(r ) into the Green’s functions
self-consistently.17 In this work we deal with it at the Hartre
level, henceU(r ) is determined by the self-consistent Po
son equation

“

2U~x!524p i „G11
, ~E,U !…xx ~7!

where G11
, is the electron lesser Green’s function in re

space andx labels the three-dimensional position. From R
9 we have

G11
, 5 i E dE

2p
@G11

r GLG11
a f L~E1vL2vR!

1G12
r GLG21

a f L~E2vL1vR!#

1E dE

2p
rR~E! f R~E!FG11

r GRG11
a 1G12

r GRG21
a

2
D

uEu ~G11
r GRG21

a 1G12
r GRG11

a !G . ~8!

Equations~2!, ~3!, and~7! completely determine the non
linear I-V characteristics of the NS hybrid system: they fo
the basic equations of the gauge-invariant nonlinear the
The self-consistent nature of the problem is clear: one m
solve the quantum-scattering problem~the Green’s func-
tions! in conjunction with the Poisson equation. It is easy
prove that the current expression Eqs.~2! and ~3! are gauge
invariant. Equations~2!, ~3!, and~7! also form the basis for
numerical analysis of I-V curves for the NS system. F
instance one can compute the various Green’s functionG
10450
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and the coupling matrixG using tight-binding models,8 and
the Poisson equation can be efficiently solved in real sp
by powerful numerical techniques.16

In the simplest approximation, the gauge-invariant con
tion can be satisfied by putting a gate voltageVg as was done
in Ref. 9 so that one treats the system as a three-probe
ductor with external voltagesVL , VR , andVg applied at the
probes. In general, the internal potential is a nonlinear fu
tion of Va ~see Sec. IV for details!, but as a first approxima
tion one expands it in terms ofVa in the small voltage limit,

U5uLVL1uRVR1ugVg ~9!

whereua(r ) is the characteristic potential that satisfies t
sum rule(aua51. If one makes9 a further approximation by
assuminguL5uR50, the sum rule givesug51 and U
5Vg , i.e., U is just a constant-potential shift under the
approximations.

In distinct contrast to the constantU model, the theory
presented in this section is a microscopic gauge-invar
theory. Furthermore, in order to discuss charge polariza
and electrochemical capacitance in the presence of trans
one has to include the self-consistent Hartree field rather t
just include a constant gate voltage: one can easily con
that the constantU model corresponds to the local-charg
neutrality approximation, it will therefore not give rise to an
charge polarization.

III. APPLICATIONS

In this section we present detailed analysis of situatio
where analytical expressions can be obtained in closed fo
These are the second-order weakly nonlinear conducta
and the nonequilibrium charge distribution.

A. Weakly nonlinear regime

For weak nonlinearity we can expand all quantities
terms of the external bias voltage11 and obtain results order
by-order. Such an expansion makes sense when bias is
but small. This approach was adapted in SMT~Ref. 11! and
response theory13 for analyzing normal mesoscopic condu
tors. For the NS system we will derive formula for the loc
density of states~LDOS! and the second-order weakly non
linear DC conductance. These are the interesting quant
for weakly nonlinear regime.

In both SMT~Ref. 11! and response theory,13 LDOS plays
a very important role. From our NEGF theory LDOS can
easily derived from the right-hand side of Eq.~7!, which is
the charge density, with the help of Eq.~8!. Here we shall
present the explicit expression at the lowest-order13 expan-
sion in external bias. Hence we seek the solution ofU(r ) in
the following form,

U5(
a

uava1
1

2 (
ab

uabvavb1••• ~10!

where ua(r ) and uab . . . (r ) are the characteristic
potentials.11,13 It can be shown that the characteristic pote
tial satisfies many sum rules,11,13 (aua51 and(gPbua$b% l
8-2
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50, where the subscript$b% l is a short notation ofl indices
g,d,h, . . . . ExpandingG11

, of Eq. ~7! in power series of
va ,18 we can derive equations for all the characteristic p
tentials. In particular the expansions are facilitated by ite
ing the following Dyson equation to the appropriate orde

Ar5A0
r 2Ar~vR2U !A0

r

and

G11
r 5G11,0

r 2G11
r ~U2vR!G11,0

r 1G11
r S12

r ~Ar2A0
r !S21

r G11,0
r ,
~11!

where A0
r and G11,0

r are equilibrium hole and electro
Green’s functions. The expansion ofG12

r can be made simi-
larly. At the lowest order, we thus obtain the local char
density in the presence of transport,19

r~x!5 i ~G11
, 2G11,0

, !xx5r in j1r ind , ~12!

where

r in j5~dne /dE2dnh /dE!~vL2vR!2~1/2!~d2ne /dE2

1d2nh /dE2!~vL2vR!2 ~13!

is the injected charge from the normal lead.dne /dE is the
injectivity of electron, i.e., the DOS for an electron comin
from left lead and exiting the system as an electron,

dne~x!/dE5E ~dE/2p!~2]E f L!~G11,0
r GLG11,0

a !xx .

~14!

In additiondnh /dE is the injectivity of a hole, i.e., the DOS
for a hole coming from left lead and exiting the system as
electron,

dnh~x!/dE5E ~dE/2p!~2]E f L!~G12,0
r GLG12,0

a !xx .

~15!

Finally d2n/dE2 is the derivative ofdn/dE with respect to
energy. Note that Eqs.~14! and ~15! are the same as tha
defined in the scattering approach of Gramespacher
Büttiker.20

In Eq. ~12! the induced charge due to long-range Co
lomb interactions is derived to be given by

r ind~x!52E ~dE/p! f L

3Im@G11,0
r ~uL2S12

r A0
r uLA0

r S21
r !G11,0

r #xx

~vL2vR!

[2(
x8

Pxx8uL~x8! ~vL2vR!, ~16!

whereP is the generalized Lindhard function that reduces
the Lindhard function of normal conductor21,11,13in the limit
D→0. For example, using the wide bandwidth limit22 ex-
pressions for the Green’s functionG11

r at small Fermi energy
we can calculate the Lindhard functionP exactly at zero
temperature from its definition above:
10450
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P5
1

pGR
Fp

2
2arctan

2E22~GR
22GL

2!/2

GLGR
G , ~17!

where we have set the quantum-well levelEo50. Hence the
Lindhard function is a smooth function increasing with e
ergy monotonically.

With these quantities the Poisson equation becomes,

2“

2uL~x!14p(
x8

Pxx8uL~x8!54pS dne~x!

dE
2

dnh~x!

dE D
~18!

2“

2uLL~x!14p(
x8

Pxx8uLL~x8!

54pS dñe~x!

dE
2

dñh~x!

dE
D , ~19!

where dñe /dE and dñh /dE are the second-orde
injectivities.13,23 These partial-differential equations can
least be solved numerically. However to avoid numerics o
may apply the quasineutrality approximation12 by neglecting
the spatial derivative in Eq.~18!. This way the characteristic
potential is obtained as24,25

uL5S dne

dE
2

dnh

dE D /P. ~20!

In terms of the characteristic potential we now derive t
second-order nonlinear conductance due to Andreev re
tion. In the weakly nonlinear regime, only the Andreev cu
rent I A is relevant that can be expanded in terms of exter
bias voltage differencev[vL2vR ,

I A5G11v1G111v
21••• .

From this definition of conductance coefficientsG11 and
G111, we expand Eq.~2! in terms ofv to obtain,

G1154E ~dE/2p!~2]E f L!TA

and

G111524E dE

2p
~2]E f L!TrFdGA

dU
uLG ~21!

whereGA[GLG12
r GLG12

a and dGA /dU is easily calculable
using Eq.~11! and the relation in Ref. 19. To compare wi
the second-order conductance of normal conductorG111

N , we
note thatG111

N has two contributions.12,17One of them comes
from Coulomb interaction,

G111
N 5E ~dE/2p!Tr@G0

a~GLG0
r uL1uLG0

aGL21/2GLG0
r

21/2G0
aGL!G0

r GR#]E f . ~22!

However, for NS system, if the Coulomb interaction is n
important ~when uL50), we would haveG11150. For ex-
ample, for an ideal ballistic wire, or for a symmetric qua
8-3
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tum well at a resonant tunneling point, every incident cha
is perfectly Andreev reflected. Therefore, for these examp
no charge accumulation is possible. From Eqs.~14! and~15!,
we can easily verify thatdne /dE5dnh /dE near a resonan
point for a symmetric system and hence a vanishingG111

sinceuL50 from Eq.~20!. In contrast, whenuL50, G111
N is

nonzero from Eq.~22!.

B. Electrochemical capacitance

Using the NEGF theory one can also investigate the n
equilibrium charge distribution inside the NS system. F
this purpose we divide the system into two regions: in reg
I the charge is positive and in region II it is negative. T
total charge in region I can be calculated using Eq.~12!:
QI5* Ir(x)dx. ExpandingQI in powers ofv in the follow-
ing form13,23

QI5C11v1
1

2
C111v

21•••[C~v !v

this defines the electrochemical capacitance coefficientsC11,
C111, and the general voltage dependent electrochem
capacitance26 C(v). It is not difficult to confirm that the first
two coefficients are

C115E
I
dxS dne

dE
2

dnh

dE D2E
I
dx dx8 P~x,x8!uL~x8!

~23!

C1115E
I
dxS dñe

dE
2

dñh

dE
D 2E

I
dx dx8 P~x,x8!uLL~x8!.

~24!

To get some physical insight into these coefficients
consider the discrete potential model.15 In addition, we pa-
rametrize the characteristic potentials by the geometric
pacitanceC0, in terms of which the Poisson equation b
comes

C0~uI2uII !5~DI
e2DI

h!v2P IuI5C11v, ~25!

2C0~uI2uII !5~DII
e 2DII

h !v2P II uII , ~26!

where we have set De5* I dx(dne /dE), Dh

5* I dx(dnh /dE), P I5* I dx P(x,x) and small bias limit
is assumed. We solve the characteristic potentialsuL anduLL
through these two equations in terms ofC0. This leads to the
following expression for the electrochemical capacitance
efficient C11 for a NS system:

C115
~DI

e2DI
h!/P I2~DII

e 2DII
h !/P II

C0
211P I

211P II
21

. ~27!
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In particular, in the limit of gapD→0, from Eqs.~14!, ~15!,
and ~16! we obtainDh50, P5dn/dE, and De5dnL /dE
wherednL /dE is the injectivity of left lead. In this situation
Eq. ~27! reduces to the expression of the electrochem
capacitance for a normal conductor.23 Let us consider a
symmetric-tunneling NS system. At the resonant point,
electron will be reflected as the hole due to the Andre
reflection. As a result, the capacitanceC11 vanishes since
De5Dh and there is no charge accumulation.

IV. SUMMARY

In this work we have developed a gauge-invariant NE
theory for hybrid NS systems. This theory explicitly tak
into account the long-range Coulomb interaction in the n
mal region. Because of gauge invariance, our theory is
plicable for nonlinear regime for which we have derived
explicit expression for nonlinear current-voltage characte
tics for NS devices. This result can be further simplified
the weakly nonlinear regime, for which we have analyzed
second-order nonlinear conductance and the genera
Lindhard function. It is interesting the see that for NS sy
tems the concept of injectivity is naturally extended to
clude the injectivity of holes: these quantities automatica
appear in our formalism. Our theory included charg
polarization effect hence can be applied to analyze the e
trochemical capacitance coefficients at the linear and non
ear orders in bias. In particular we have derived an anal
expression of the linear electrochemical capacitance of
system within the discrete potential model.

While this paper concentrated on the development o
theoretical formalism in terms of the Green’s functions, it
obvious that numerical computations can be carried out
plying the analytical expressions derived here. This way o
can avoid the various approximations used here in orde
obtain closed form results. Of particular interests are the
vestigation of nonlinear I-V curves without the wide
bandwidth approximation; the calculation of nonlinear co
ductance coefficients without the quasineutral
approximation; and the study of nonequilibrium charge d
tribution without the discrete potential approximation. The
however, will be the subject of a future report.
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