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Nonlinear transport theory for hybrid normal-superconducting devices
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We report a theory for analyzing nonlinear DC transport properties of mesoscopic or nanoscopic normal-
superconductingNS) systems. Special attention was paid such that our theory satisfies gauge invariance. At
the nonlinear regime, our theory allows the investigation of a number of important problems: for NS hybrid
systems we have derived the general nonlinear current-voltage characteristics in terms of the scattering Green’s
function, the second-order nonlinear conductance at the weakly nonlinear regime, and nonequilibrium charge
pileup in the device that defines the electrochemical capacitance coefficients.
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. INTRODUCTION For normal conductorsBlittiker and his co-workef$*?
developed an approach based on the scattering-matrix theory
The physics associated with quantum conduction in varito deal with the second-order nonlinear conductance coeffi-
ous low-dimensional hybrid superconducting systems hasients. This theory can also be extended to higher nonlinear
been a major focus of research at preseftDue to ad- order in DC situation$® On the other hand for a NS hybrid
vances in controlled crystal growth and lithographic tech-system, despite many theoretical investigations on its
niques, it is now possible to fabricate various submicron hy-gquantum-transport propert§,the important issue of gauge
brid superconducting structures where accurate experiment#ivariance has not been clearly addressed so far. In light of
measurements can be mad&n important theoretical task is this unsatisfactory situation, in this paper we report the de-
to be able to predict, for general mesoscopic or nanoscopi¢elopment of a proper nonlinear-transport theory that satis-
hybrid systems, transport properties such as the nonlinedies gauge invariance for mesoscopic or nanoscopic NS hy-
current-voltage characteristics and the nonequilibrium chargerid device systems. Our theoretical formulation is based on
distribution inside the system as a function of the appliednonequilibrium Green's function approach where the
bias voltage. Our theoretical understanding of quantunfluantum-transport problem is solved in a self-consistent
transport in these very small normal superconductiNg) manner. We have formulated a gauge-invariant theory for the
hybrid systems has been achieved by scattering-matrigeneral I-V characteristics including the subgap behavior of
theory” and by non-equilibrium Green’s functiotNEGP the NS device in terms of Green’s functions that are numeri-
theory®-1° cally calculable. In the weakly nonlinear regime we further
To analyze nonlinear transport coefficients, i.e., coeffi-derived the second order nonlinear coefficient by solving the
cients that appear in front of nonlinear powers of bias volt-Characteristic potential. Since our theory can deal with
age, in principle one must make sure gauge invariance of theharge polarization in the presence of transpottwe have
theory. This means that theoretical results should not chang@so derived the linear and second-order nonlinear charge
when bias voltage applied at all the device leads is changedistributions that define the electrochemical capacitance of
by the same amount. This is a necessary condition for anthe system.
transport theory and has been recognized in the literature.  The rest of the paper is organized as follows. Section I
Consider a device that is connected to the outside world bpresents the gauge-invariant nonlinear-transport theory for
several leadsr where bias voltag®/,, is applied. Wherv,  the NS system and Sec. Il provides applications of our
—V,+v wherev is a constant, the calculated resuésich  theory. Section IV is a short summary of this work.
as current will not change if the electrostatic potentibl
inside the device is also changed by the same amount
HoweverU=U(r) which is the Hartree potential, can only
be obtained by solving a self-consistent problem. In other |n this section we formulate the gauge-invariant
words, to satisfy gauge invariance one necessarily requires {gonlinear-transport theory based on NEGF for NS hybrid
consider Coulomb interactions at least at the Hartree leveljevice systems. To be specific, the NS system we consider is
Furthermore, in general when external bias voltage is appliegl quantum well connected to a normal metal lead and a su-
to a device, the flow of charge carriers through the devicgerconducting lead. The current flowing through the normal
could polarize the system due to long-range Coulomb intertead i (e=#%=1),
actions. For a macroscopic metallic conductor, the polariza-
tion can be safely neglected since interaction is well
screened. However for mesoscopic scale and nanoscale con- I=Tat1y, @
ductors the polarization could be very important. This also
requires self-consistent analysis. with

Il. GAUGE-INVARIANT THEORY
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where G;; and G, are the matrix elements of thex2
Nambu representation. Here

WE)=[E-HgtU—vg—3,- 3 A7 (4
and
Ar:[E+H§+UR_U_2r22]_1. (5)

Once the electron and hole Green’s functidd§, and A’
were obtained(, is calculated by

1= G 21A, (6)

whereX' is the self-energy.
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and the coupling matrif' using tight-binding model® and
the Poisson equation can be efficiently solved in real space
by powerful numerical techniqué§.

In the simplest approximation, the gauge-invariant condi-
tion can be satisfied by putting a gate voltaggas was done
in Ref. 9 so that one treats the system as a three-probe con-
ductor with external voltage¥, , Vg, andV, applied at the
probes. In general, the internal potential is a nonlinear func-
tion of V, (see Sec. IV for detaijsbut as a first approxima-
tion one expands it in terms &f,, in the small voltage limit,

U:uLVL+uRVR+ ung (9)

whereu,(r) is the characteristic potential that satisfies the
sum ruleX ,u,=1. If one make$a further approximation by
assumingu, =ug=0, the sum rule givesigz=1 and U
=V, i.e., U is just a constant-potential shift under these
approximations.

In distinct contrast to the constatt model, the theory
presented in this section is a microscopic gauge-invariant
theory. Furthermore, in order to discuss charge polarization
and electrochemical capacitance in the presence of transport,
one has to include the self-consistent Hartree field rather than
just include a constant gate voltage: one can easily confirm
that the constantU model corresponds to the local-charge-
neutrality approximation, it will therefore not give rise to any

We emphasize that the crucial step in developing thé&harge polarization.

gauge-invariant nonlinear DC theory is to include theer-
nal potential landscapé&J(r) into the Green’s functions
self-consistently” In this work we deal with it at the Hartree
level, henceU(r) is determined by the self-consistent Pois-

son equation

V2U(X)=—4mi (G(E,U))yy (7)

where G7; is the electron lesser Green’s function in real
space and labels the three-dimensional position. From Ref.

9 we have
< . dE r a
Gyi=i E[GllFLGllfL(E"_UL_UR)
+ G GHf L (E—v tvR)]

11l RGI1+ Gl 'RGY;
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Ill. APPLICATIONS

In this section we present detailed analysis of situations
where analytical expressions can be obtained in closed form.
These are the second-order weakly nonlinear conductance
and the nonequilibrium charge distribution.

A. Weakly nonlinear regime

For weak nonlinearity we can expand all quantities in
terms of the external bias voltadend obtain results order-
by-order. Such an expansion makes sense when bias is finite
but small. This approach was adapted in SKREef. 11 and
response theoty for analyzing normal mesoscopic conduc-
tors. For the NS system we will derive formula for the local
density of statesLDOS) and the second-order weakly non-
linear DC conductance. These are the interesting quantities
for weakly nonlinear regime.

In both SMT(Ref. 11) and response theotyLDOS plays
a very important role. From our NEGF theory LDOS can be
easily derived from the right-hand side of E), which is
the charge density, with the help of E@). Here we shall

Equations(2), (3), and(7) completely determine the non- present the explicit expression at the lowest-oftlexpan-
linear |-V characteristics of the NS hybrid system: they formsion in external bias. Hence we seek the solutioi 0f) in
the basic equations of the gauge-invariant nonlinear theorghe following form,

The self-consistent nature of the problem is clear: one must
solve the quantum-scattering problefthe Green’s func-
tions) in conjunction with the Poisson equation. It is easy to
prove that the current expression E¢®. and (3) are gauge
invariant. Equations2), (3), and(7) also form the basis for where u,(r) and u,z; (r) are the characteristic
numerical analysis of 1-V curves for the NS system. Forpotentials:*®It can be shown that the characteristic poten-
instance one can compute the various Green's funct®ns tial satisfies many sum rulé§® = u,=1 and= . gU,(g,

1
uzg uava+§aEﬁ Ungl ol gt - - (10)
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=0, where the subscrig{8}, is a short notation of indices 1

Y, 5,1;;, cee Expandinngl_of Eqg. (7) in power serigs_of I1= TR

v,., - we can derive equations for all the characteristic po-

tentials. In particular the expansions are facilitated by iteratWhere we have set the quantum-well leigl=0. Hence the

ing the following Dyson equation to the appropriate order Lindhard funcfuon is a smooth function increasing with en-
ergy monotonically.

T 2E2—(TE3-T?)2
E—arctan T Tq , (17

A'=Aj—A"(vg—U)AG With these quantities the Poisson equation becomes,
and dng(x)  dny(x
r r r r r r r r r r —V2UL(X)+47T2 HXX,UL(X,):47T( de(E ) B dh(E ))
17 Gll,O_ Giy(U~— UR)611,0+ Gllle(A - AO)221G11,01 x!
(1) (18)
where Ay and G, , are equilibrium hole and electron ,
Green’s functions. The expansion @, can be made simi- -V ULL(X)+47TZ M up(x")
larly. At the lowest order, we thus obtain the local charge X
density in the presence of transpbtt, dne(x)  dnp(x)
(G- G= "M TdE T TdE ) 19
p(X)=1(G11— G171 0xx= Pinj t Pind s (12
where where dn,/dE and dn,/dE are the second-order

B ) , injectivities!*?® These partial-differential equations can at
pinj=(dne/dE—dn,/dE) (v, —vr) — (1/2)(dne/dE least be solved numerically. However to avoid numerics one
+d2n, /dE?) (v, —vR)? (13) may app_ly the.qugsin'eutrality app_roximat’t&by neglecti_ng
the spatial derivative in Eq18). This way the characteristic
is the injected charge from the normal lealh,/dE is the  potential is obtained 4$%°
injectivity of electron, i.e., the DOS for an electron coming
from left lead and exiting the system as an electron,

u = (20)

dn, dn,
dE dE)
dn x/dEzf dER27)(— de T )(G] G} .

(X) ( )= T(Grd LGird In terms of the characteristic potential we now derive the
(14) second-order nonlinear conductance due to Andreev reflec-
In additiondn,,/dE is the injectivity of a hole, i.e., the DOS tion. In the weakly nonlinear regime, only the Andreev cur-
for a hole coming from left lead and exiting the system as arfentl  is relevant that can be expanded in terms of external
electron, bias voltage difference=v, —vg,

[,=Gp+Gyp2+--- .
dnh(x)/dE:f (dE2m) (= dg fL) (Gl ' LGz 0xx - ' . .A. 10 1w N
(15) From this definition of conductance coefficien®,;; and

G111, We expand Eq(2) in terms ofv to obtain,
Finally dn/dE? is the derivative ofdn/dE with respect to

energy. Note that Eq914) and (15) are the same as that
defined in the scattering approach of Gramespacher and
Bittiker.2

In Eq. (12) the induced charge due to long-range Cou-2"
lomb interactions is derived to be given by

G11:4J (d E/27T)(_(?E fL)TA

d

(21)

dE dG,
Gi11= _4f E(_O"EfL)Tr qu Y

pind(X)=— [ (dE/m)f_
where Go,=T", G,I", G}, anddG,/dU is easily calculable

XIM[GYy duL—ZA0ULAGES) Gl olx using Eq.(11) and the relation in Ref. 19. To compare with
the second-order conductance of normal conduégyy, we
(vL—vR) note thatG}}; has two contribution&2'’ One of them comes

from Coulomb interaction,
== Mt (x) (vi—ve),  (16)
x' N a r a r
, i , i G =f (dE27)Tr[G(I' Gpu +u, GgI' —1/2I"' G
wherell is the generalized Lindhard fung:lcnsthat reducesto v LEOTL LR Loo
the Lindhard function of normal conductor—-°in the limit a r
. : . 5. —1/2G{I' )Gl e f. 22
A—0. For example, using the wide bandwidth lifAiex- ol')Gol w1 % (22
pressions for the Green’s functi@,; at small Fermi energy However, for NS system, if the Coulomb interaction is not
we can calculate the Lindhard functidih exactly at zero important(whenu_=0), we would haveG,;,=0. For ex-
temperature from its definition above: ample, for an ideal ballistic wire, or for a symmetric quan-
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tum well at a resonant tunneling point, every incident chargén patrticular, in the limit of gap\ —0, from Eqs.(14), (15),

is perfectly Andreev reflected. Therefore, for these exampleand (16) we obtainD"=0, II=dn/dE, and D®=dn_/dE

no charge accumulation is possible. From Eqd) and(15), wheredn, /dE is the injectivity of left lead. In this situation
we can easily verify thatin,/dE=dn,/dE near a resonant Eq. (27) reduces to the expression of the electrochemical
point for a symmetric system and hence a vanishihg, capacitance for a normal conductdrLet us consider a
sinceu,. =0 from Eq.(20). In contrast, whem; =0, GTllis symmetric-tunneling NS system. At the resonant point, the

nonzero from Eq(22). electron will be reflected as the hole due to the Andreev
reflection. As a result, the capacitan€g; vanishes since
B. Electrochemical capacitance D®=D" and there is no charge accumulation.

Using the NEGF theory one can also investigate the non-
equilibrium charge distribution inside the NS system. For IV. SUMMARY
this purpose we divide the system into two regions: in region
| the charge is positive and in region Il it is negative. The
total charge in region | can be calculated using E):
Q,=[,p(x)dx. ExpandingQ, in powers ofv in the follow-
ing form*>

In this work we have developed a gauge-invariant NEGF
theory for hybrid NS systems. This theory explicitly takes
into account the long-range Coulomb interaction in the nor-
mal region. Because of gauge invariance, our theory is ap-
plicable for nonlinear regime for which we have derived an
1 explicit expression for nonlinear current-voltage characteris-
Q=Cyw+ Ecmszr ~-=C(v)v tics for NS devices. This result can be further simplified in
the weakly nonlinear regime, for which we have analyzed the
this defines the electrochemical capacitance coeffic@pts  second-order nonlinear conductance and the generalized
Ci11, and the general voltage dependent electrochemicdlindhard function. It is interesting the see that for NS sys-
capacitanc® C(v). It is not difficult to confirm that the first tems the concept of injectivity is naturally extended to in-
two coefficients are clude the injectivity of holes: these quantities automatically
appear in our formalism. Our theory included charge-
polarization effect hence can be applied to analyze the elec-
trochemical capacitance coefficients at the linear and nonlin-
(23)  ear orders in bias. In particular we have derived an analytic
expression of the linear electrochemical capacitance of NS
system within the discrete potential model.
ClllzJ’ldX TE T aE _J|dx dx TI(x,x")up (X"). While this paper concentrated on the development of a
theoretical formalism in terms of the Green’s functions, it is
(29 X . . ;
obvious that numerical computations can be carried out ap-
To get some physical insight into these coefficients wePlying the analytical expressions derived here. This way one
consider the discrete potential modeln addition, we pa- can avoid the various approximations used here in order to
rametrize the characteristic potentials by the geometric capbtain closed form results. Of particular interests are the in-
pacitanceC,, in terms of which the Poisson equation be- Vestigation of nonlinear |-V curves without the wide-

Cn:fldx ———)—fldx dx II(x,x")u(x")

comes bandwidth approximation; the calculation of nonlinear con-
ductance coefficients  without the quasineutrality
Co(u—uy)=(DE=DMNv—TII,u;=Cyp, (25  approximation; and the study of nonequilibrium charge dis-
tribution without the discrete potential approximation. These,
—Co(u—uy)=(Dj — D,h,)v—H”u,, , (26) however, will be the subject of a future report.
where we have set D®=[, dx(dn,/dE), D"
=[, dx(dn,/dE), II,= [, dx II(x,x) and small bias limit ACKNOWLEDGMENTS

is assumed. We solve the characteristic potentiglandu,
through these two equations in terms@y. This leads to the
following expression for the electrochemical capacitance co
efficient C,, for a NS system:
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