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Exact analytical solution of a polariton model: Undetermined coefficient approach
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Using a concise approach with undetermined coefficients, instead of the conventional diagonalization
method, we obtain rigorously the energies and analytical wave functions of the ground state and excited states
of a polariton model. The results indicate that our method is not only equivalent to the conventional one, but
also has its own advantage. We also study several interesting properties of the polariton ground state.
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Polaritons@1# are collective excitations~phonons, exci-
tons, magnons, etc.! of a crystal generated from a cohere
linear interaction between a polar material mode and
electromagnetic field. Since several pieces of pionee
work published half a century ago@2–4#, polaritons have
been extensively studied both theoretically and experim
tally for the bulk, layer, as well as interface systems. Arto
and Birman @5# developed a quantum-mechanical Ham
tonian formulation to treat the exciton polariton in the fram
work of quantum optics. They studied the convention
Hopfield Hamiltonian and a more general one, demonstra
that the polaritons are squeezed with respect to states o
intrinsic, nonpolaritonic, mixed photon-exciton boso
Ghoshal and Chatterjee@6,7# discussed two quantum
mechanical models of phonon polaritons. Their resu
showed that both the photon and phonon subsystems
exhibit nonclassical behaviors. In these investigations the
nonical Bogoliubov transformation is used to diagonalize
definite positive Hamiltonian with the creation and annihi
tion operators in bilinear form@8–10#, where the correspond
ing eigenstates are the general multimode squeezed s
related to the original free states by a unitary operator@10–
12#.

On the other hand, Wanget al. @13# solved the model in
Ref. @7# by a concise approach, where the wave function
the ground state isa priori taken as a squeezed form. Th
ground energy and the parameters of the squeezed form
be solved by comparing the coefficients of each independ
term of both sides of the Schro¨dinger equation. We refer to
this concise approach as the undetermined coefficient
proach~UCA!.

In the framework of the conventional diagonalizatio
method ~CDM!, the canonical transformation between t
new and old operators is first solved as the eigenvector
the Hamiltonian matrix, and the polariton energies are j
the corresponding eigenvalues. Then the polariton w
functions are derived using the theory of multimo
squeezed states@5,10#. In this Brief Report, we solve a po
lariton model using the UCA. We first obtain the energy a
wave function of the ground state, based on which we de
the canonical transformation, and consequently the ener
and wave functions of the excited states. As a compari
with the results in Refs.@5–7#, we also study several inter
esting properties of the ground state.
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The polariton model has been reviewed in several te
books, such as in Ref.@14#. When only linear effects are
taken into account for the dielectric medium interacting w
a photon field, the Hamiltonian of the system reads@15#

Ĥ5(
ka

FE1kS c1ka
† c1ka1

1

2D1E2kS c2ka
† c2ka1

1

2D
1E3k~c1ka

† c2ka2c1kac2ka
† 2c1kac22ka

1c12ka
† c2ka

† !G , ~1!

where c1ka (c1ka
† ) is the annihilation~creation! operator

for a photon with wave vector k and polariza-
tion a, c2ka (c2ka

† ) represents the corresponding opera
for a polarization quantum, and E1k5\ck, E2k

5A«\v0 , E3k5 i\@(«21)ckv0/4A«#1/2, with k5uku, c
the light speed,\ the reduced Plank constant,« the dielectric
constant, andv0 the eigenfrequency of the free oscillato
standing for the medium. For simplicity, we shall use t
indexk for the combination of the summation indices. Phy
cally, the first and second terms represent the energy spe
of the free photon field and the free polarization field, resp
tively, and the third term describes the interaction betwe
the two fields.

Since coupling exists only between a photon and po
ization quantum with the same or opposite wave vector
the same polarization, we shall pay attention only to the
lariton states with specific6k. Correspondingly, the simpli-
fied Hamiltonian is

Ĥ5 (
i 51,2

@Ei~ci 1
† ci 11ci 2

† ci 211!#

1E3@~c11
† 2c12!~c22

† 1c21!

1~c12
† 2c11!~c21

† 1c22!#. ~2!

Also, for simplicity, we here use the index1 (2) to denote
the indexk (2k).

Assuming the polariton ground state to take the form

u0&p5Nc exp@r1c11
† c12

† 1r2c21
† c22

†

1r3~c11
† c22

† 1c12
† c21

† !#u0&, ~3!
©2002 The American Physical Society04-1
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whereu0& is the vacuum state for the free photon and pol
ization field, andNc is the normalization constant, we ca
prove that~see the Appendix!

uNcu25~12ur1u22ur3u2!~12ur2u22ur3u2!

2ur1r3* 1r2* r3u2, ~4!

where ther i ’s are constrained by the following relations:

26~r12r2!.0, 16~r12r2!2r1r21r3
2.0. ~5!

Substituting Eqs.~2! and ~3! into the Schro¨dinger equa-
tion for the ground state

Ĥu0&p5Eu0&p , ~6!

and reducing it by the identity c11u0&p5r1c12
†

1r3c22
† u0&p , c21u0&p5r2c22

† 1r3c12
† u0&p , we obtain an

expanded form of Eq.~6!. Then by comparing the coeffi
cients of the termsu0&p , c11

† c12
† u0&p , c21

† c22
† u0&p , and

(c11
† c22

† 1c12
† c21

† )u0&p of the two sides of this equation, w
have

E11E222E3r35E, ~7!

E1r11E3r3~12r1!50, ~8!

E2r22E3r3~11r2!50, ~9!

~E11E2!r31E3@~12r1!~11r2!2r3
2#50. ~10!

The solutions of Eqs.~7!–~10! are

E56AE1
21E2

262AE1
2E2

214E1E2E3
2, ~11!

r15
E11E22E

E22E12E
, r25

E11E22E

E22E11E
, r35

E11E22E

2E3
.

~12!

We can prove that only the largest value ofE in Eq. ~11!
satisfies the constraint~5!. As a result, the polariton groun
state energy is

E5AE1
21E2

212AE1
2E2

214E1E2E3
2, ~13!

and the corresponding wave function is given by Eqs.~3! and
~12!.

Having obtained the wave function of the polarito
ground state, we are able to find the canonical transforma
from the free photon operators and polarization quantum
erators to the polariton operators. The Hamiltonian in
polariton operators is a diagonalized one:

Ĥ5 (
i 51,2

V i~gi
†gi1gi 2

† gi 211!, ~14!
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where V is the quantized energy for the upper or low
branch polariton, andg (g†) are the annihilation~creation!
operators for the polariton. The indices 1 and 2 corresp
to the upper and the lower branch polariton, respective
while the indices1 and2 represent different combination
of the 6k photons and the6k polarization quanta, which
can be seen clearly from the transformation in a matrix fo
as

Fg1

g2
† G5F u v

v* u* GFc1

c2
† G , ~15!

where c1 (c2
† ) is short for @c11 c21#T(@c12

† c22
† #T),

g1 (g2
† ) for @g12 g22#T(@g12

† g22
† #T). Here, bothu andv

are 232 matrices, and the indicesT and* denote the trans-
pose and the complex conjugate of a matrix, respectively

From the well-known commutation rules@gi 1 ,gj 1
† #

5d i j ,@gi 1 ,gj 2#50, i , j 51,2, we have

uu†2vv†51, uvT5vuT. ~16!

The inverse form of the transformation is then found to b

Fc1

c2
† G5F u† 2vT

2v† uT GFg1

g2
† G . ~17!

For the polariton ground stateu0&p ,

g11u0&p5g21u0&p50. ~18!

Substituting Eqs.~3! and ~15! into Eq. ~18!, it is found that

v52ur, ~19!

where r5Fr1 r3

r3 r2
G . ~20!

Therefore onlyu is the independent matrix to be determine
Substituting Eq. ~15! into the commutation relation

@gi 1 ,Ĥ#5V igi 1 , and then comparing the coefficients
termsc11 andc21 as well as eliminatingv by Eq. ~19!, we
obtain the secular equation

F E12r3E3 2~11r2!E3

~12r1!E3 E22r3E3
GuT5uTFV1 0

0 V2
G . ~21!

From Eq.~21!, we find

V1,25FE1
21E2

26A~E1
22E2

2!2216E1E2E3
2

2 G1/2

, ~22!

which is the same as the result obtained by the CDM@14#.
Moreover, combining Eq.~19! and the first equation of~16!,
we obtain
u5A 2E3
2

V1
22V2

2F AE2~V11E1!

V1~V12E1!
iAE1~V11E2!

V1~V12E2!

iAE2~V21E1!

V2~E12V2!
AE1~V21E2!

V2~E22V2!

G , ~23!
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v5A 2E3
2

V1
22V2

2F 2AE2~V12E1!

V1~V11E1!
iAE1~V12E2!

V1~V11E2!

iAE2~E12V2!

V2~V21E1!
2AE1~E22V2!

V2~V21E2!

G . ~24!
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It is straightforward to check that the original Hamiltonia
~2! is simplified to the diagonalized form~14! if we substi-
tute Eqs.~17!, ~23!, and~24! into it. Furthermore, from Eqs
~14! and ~22!, the polariton ground energy is

Ep~0!5V11V2

5AE1
21E2

212AE1
2E2

214E1E2E3
2, ~25!

recovering Eq.~13! and implying self-consistency of ou
method.

We also checked that all the above results can be retrie
by using the CMD, so the UCA and the CMD are actua
equivalent. The advantages of our approach appear to
that, on one hand, we can obtain the energy and wave f
tion of the ground state without the knowledge of the cano
cal transformation; on the other hand, the derivation of
o
to

ur

ys
it
tu
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canonical transformation is actually an eigenvalue probl
of a 232 matrix, much simpler than the eigenvalue proble
of a 434 matrix obtained by using the CMD~for ann-mode
polariton system, the eigenvalue problems solved by
UCA and the CDM are connected ton3n and 2n32n ma-
trices, respectively!.

The energy of the excited state is

Ep~n11 ,n21 ,n12 ,n22!

5~n111n1211!V11~n211n2211!V2

~26!

from Eq. ~14!, wheren16 (n26) is the quantum number o
the upper ~lower! branch polariton corresponding t
g16 (g26). The corresponding wave function can be d
rived as@10#
un11 ,n21 ,n12 ,n22&p

5
~g11

† !n11

An11!

~g21
† !n21

An21!

~g12
† !n12

An12!

~g22
† !n22

An22!
u0&p

5 )
i 51,2

dni 11ni 2

dpi
ni 1dqi

ni 2

epTv* u21q1pTu2Tc1
†

1qTu2Tc2
†

Ani 1!ni 2!
U

pi5qi50

u0&p . ~27!
-

ion
d to
For example, u0,1,0,0&p5(u2Tc1
† )2u0&p , and u0,2,0,1&p

5(1/A2)@(u2Tc1
† )2

2(u2Tc2
† )212(v*u21)22(u2Tc1

† )2#u0&p .
Now we pay more attention to the properties of the p

lariton ground state. We introduce the quadrature opera
@16# Xi5(ci 11ci 21ci 1

† 1ci 2
† )/2A2, Yi5(ci 11ci 22ci 1

†

2ci 2
† )/2A2i . For the polariton ground stateu0&p , the uncer-

tainties of the photon coordinate and momentum quadrat
are given by

DX1
25

x11

4Ax212x1«
,

1

4
, ~28!

DY1
25

x1«

4Ax212x1«
.

1

4
, ~29!

wherex5ck/v0. Clearly the polariton ground state is alwa
squeezed in the photon coordinate quadrature. In fact,
also squeezed in the polarization quantum momen
quadrature for
-
rs

es

is
m

DX2
25A«DX1

2.
1

4
, DY2

25
1

A«
DY1

2,
1

4
. ~30!

SinceDXi
2DYi

2.1/16 (i 51,2), it is never the minimum un
certainty state.

The uncertainty relations of the photon and polarizat
quantum numbers for the polariton ground state are foun
be

DN1
25

~«21!~4x1«21!

16~x212x1«!
.^N1&, ~31!

DN2
25

~«21!x@~«21!x14«#

16«~x212x1«!
.^N2&, ~32!

where^N1& (^N2&) is the average number of photons~polar-
ization quanta! in the ground state,

^N1&5
2x1«11

4Ax212x1«
2

1

2
, ~33!
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^N2&5
~«11!x12«

4A«Ax212x1«
2

1

2
. ~34!

Therefore both photon and polarization quantum subsyst
of the ground state exhibit super-Poissonian statistics.

All the above statistical properties are qualitatively co
sistent with the results presented in Refs.@5–7#.

It is interesting to compare the energy of the polarit
vacuum with that of the free vacuum. From Eq.~25!,
Ep(0),E11E25E(0), whereE(0) is the energy of the free
vacuum. Thus the energy of the polariton vacuum is alw
lower than that of the corresponding free vacuum, as
pected, which was also discussed in Refs.@10,13#. Hence it is
the polariton vacuum rather than the free vacuum that ex
in the dielectric, even if there is no photon at all.

To conclude, we have rigorously derived analytical en
gies and wave functions of the ground state and exc
states for a simple polariton model using an undetermi
coefficient approach instead of the conventional diagonal
tion method. Our method is not only equivalent to the co
ventional one, but also has its own advantages in obtain
the energy and wave function of the ground state and solv
the eigenvalue problem to get the canonical transformat
We proved that the polariton ground state is always squee
in the photon coordinate quadratures and polarization qu
tum momentum quadratures. We also found that both
photon and polarization quantum subsystems of the gro
state always exhibit super-Poissonian statistics. Finally,
indicate that the polariton vacuum is stable in the dielect

We are grateful to Professor S. L. Wan for useful disc
sions. The work was in part supported by a CRCG gran
the University of Hong Kong.

APPENDIX: NORMALIZATION AND CONSTRAINT ON
COEFFICIENTS OF THE POLARITON

GROUND STATE

Inserting the overcompleteness relation of the cohe
state
s
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i 51,2

E da i 1 da i 1*

2p i

da i 2 da i 2*

2p i
ua i 1 ,a i 2&^a i 1 ,a2 i u51

~A1!

between the bra and the ket of the normalization relat
p^0u0&p51 for the polariton ground state~3!, and with the
help of the relationci 6ua i 1 ,a i 2&5a i 6ua i 1 ,a i 2&, we have

uNcu225 )
i 51,2

E da i 1 da i 1*

2p i

da i 2 da i 2*

2p i
e2VTAV/25uAu21/2,

~A2!

whereV5@a11* a21* a12* a22* a11 a21 a12 a22#T, and

A5F I 2 0 0 r

0 I 2 r 0

0 r* I 2 0

r* 0 0 I 2

G . ~A3!

Equation~A2! can be simplified to

uNcu25uI 22r* ru. ~A4!

Substituting Eq.~20! into Eq. ~A4!, we obtain Eq.~4!.
The constraint on the coefficients stems from the conv

gence of the integral expression~A2!, which requires all the
real parts of the eigenvalues of the 838 matrix A to be
positive. An eigenvaluel satisfies the determinant equatio
uA2lu50, i.e., u(I 22l)22r* ru50, which is simplified to
be

~12l!42~ ur1u21ur2u212ur3u2!~12l!2

1ur1r22r3
2u250 ~A5!

by substituting Eq.~20! into it. From Eq.~12!, we know that
r1,2 is real andr3 is purely imaginary, so Eq.~A5! is reduced
to

l22@26~r12r2!#l116~r12r2!

2r1r21r3
250, ~A6!

from which the constraint~5! is necessary to ensure that th
real part ofl is positive.
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