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It is well known that the particles in a beam of bosons obeying Bose-Einstein statistics tend to cluster
(bunching effedt while the particles in a degenerate beam of fermions obeying Fermi-Dirac statistics expel
each other(antibunching effegt Here we investigate the statistical correlation effect for a three-terminal
normal-metal—superconductor—superconductor hybrid mesoscopic system. By using a nonequilibrium Green'’s-
function technique, we obtain a positive cross correlation when the external voltage is smaller than the gap
energy, which demonstrates bosonic behavior. In the larger voltage limit, the cross correlation becomes nega-
tive due to the contribution of the quasiparticles. At large voltages, the oscillation between fermionic and
bosonic behavior of cross correlation is also observed in the strong-coupling regime as one changes the
position of the resonant levels.
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I. INTRODUCTION ducting leads. A quantum dot, connected by these three ter-
minals, acts as a splitter. Suppose that the chemical potentials
There are two kinds of quantum statistics in nature. Allug for both superconducting reservoirs are set to zero, and
particles have either half-integral or integral spimunits of ~ the chemical potential for the normal is above zero, e/,
the Planck constarit) and they obey Fermi-Dirac or Bose- >0, which guarantees the electron current passing from the
Einstein statistics, respectively. It is also ndtéat there is normal lead to both superconducting leads. We further as-
an effective attraction between the bosons and an effectivdume the temperature is very low. If the external voltaye
repulsion between the fermions. These are the well-knowt$ Smaller than the gap energy of the superconducting
statistical correlation effecfswhich are purely quantum ef- leads, the single-quasiparticle current is forbidden. In this
fects. The experiments examining the quantum statisticaf2S€. We only have a two-electron current due to the presence
properties date back to the pioneering work by Hanburff .the Andreev reflectlo_n process, i.e., incoming electrons
Brown and TwisgHBT).2 They used photon intensity inter- being Andreev reflected into outgoing holes with the transfer

ferometry to probe the intensity correlation information be-Of a Cooper pair into the superconductor. This means that an

. . electron(with energye above the Fermi level and spir) in
tween two partial beams, which was generated by a bear'[TF1e normal lead has to combine with another elec{with

splitter. Due to the bosonic property of photons, the positive nergy —e, below the Fermi level and spir o) to pass
intensity correlation was observed, indicating an enhance rough th’e normal-metal—superconductor interface. Does
probability for the simultaneous detection of two photons,iq alectron pair look like a boson? O rather, can we obtain
one in _each partial beam. This means that photons tend tQ positive cross correlation functiai| ,Al ;) with a# g)
bunch in clusters. Several theoretical works have suggestéghnyeen two superconducting leads? The purpose of this pa-
the different analogies of this experiment with electrons inper is to answer this question. We note that due to the current
mesoscopic systems. The fermionic analog of HBT experizonservation the cross correlation function of a two-lead sys-
ments, one by Henngt al* and the other by Oliveet al.”  tem must be negative regardless of normal or superconduct-
showed the expected negative intensity correlation and oling leads. Instead of considering the fluctuation in a single
servgd the antibunching effect. On the theoretical side, wheglectron beam through the two-lead system, the HBT experi-
Torries and Martifi investigated a three-terminal normal- ment considered here focuses on the cross correlation of two
metal—superconductor—supercondud§¢N-S) mesoscopic  peams from the beam splitter. Hence we expect positive
system, both positive and negative correlations were found igross correlation at small voltages which is indeed what we
the Andreev regime. Very recently, Samuelsson aittilr’  found in this work. WhereV=>A, the quasiparticles will also
studied the same structure and found the positive correlatioparticipate in the transport. Due to the fermionic nature of
for a wide range of junction parameters which survives everyuasiparticles, it will partially cancel the positive contribu-
in the absence of the proximity effect. The statistics oftion of the electron pair to the cross correlation. The compe-
charge transport of a three-terminal N-N-S beam splitter hagition of these two contributions from the electron pair and
also been investigatBdand positive cross correlation is quasiparticles can lead to either positive or negative cross
found between the currents in two normal leads for a widesorrelation, depending on which contribution dominates.
parameter range. Instead of the structures of Refs. 6-8, here
we consider a three-terminal mesoscopic N-S-S hybrid sys-
tem. This structure is a direct photon analogy of the HBT
interferometer which has a normal lead and two supercon- We begin with the following model Hamiltonian:

II. THEORETICAL FORMULATION
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~TouTa0 G 1 (2D G 41 (1,2)

+% [T1pCipods+ c.c.]+%r [ThkCr kods+c.Cl, ~ T35, Tak G (DG (1,21, 2
1) where we have used the abbreviati@(t,,t,) = G(1,2) and
we have usedt andk’ to label, respectively, the second and

. Lo }hird superconducting leads. The Green’s functi@is" =~
where the first term denotes the Hamiltonian of the normal =" 5 5 Nambu  representation take the followin
lead. The second ternm& 2,3) describes the Hamiltonian of P 9

forms10-12
two BCS superconducting leads. Hd@ka is the creation
operator of electrons in the normal lead aﬁﬁ ks 1S the Gyp(ty,tp)
corresponding creation operator in the superconducting lead.
The third term is the Hamiltonian for a quantum dot, which =Fi0(xt71p)

is used to mimic a tunable beam splitter. Here we have ap-
plied a gate voltage which can control the level of the dot so
that ep= €§”+evy. Without loss of generality, we sef” <{X (1), Y (1)) (X5 (1), Y (12)})
=0. The other terms in Eq1) are Hamiltonians describing

the couplings between the quantum dot and leads. To sim- (t t,)= <Y,8T(t2)xa1(t1)> (Yp,(t2) X41(ta))
plify the discussion, we have assumed that two supercon- 102 <Ym X5 (1)) (Yg (t)XE (1))’
ducting leads have the same gap enefgyWe have also
neglected the supercurrent between two superconducting (XaT(t Ym(tz)> (Xa1 (1) Yg (L))
lead$ and assumed that the hopping matrix elements areG,4(t1,tz)=— X y X v

independent of the spin index. < a(t)Ypi (1) (Xay(t)Yp,(ta)) )

In the following, we will calculate the cross correlation whereX andY stand for the annihilation operators, such as
between two partial beams through two superconducting€, ;, C,, andd. These Green’s functions satisfy the gen-
leads. The current operator for the superconducting lead 2 @ral relation G"=G<+G'—G?. Using the Keldysh
3is equatior®

<{Xm(t1) Ym(tz)}> ({Xap(t), Ym(tz)}>)

Z=(1+G'Y)G; "~ (1+ 322G + G'3<G?

To=T(0)+i 4t _ .
=l M+ 1ay(t) we have the following relations:

with
Gati (t1,t2) =T§,kf dt[ Gy gy (t1, ) Gy (t.t2)

ao

=ie| > C!.Cuko H|=i€> [TaCl d,—c.Cl, +Ggyar (t1,D) G (t,t2)
k ' ' k '

+G<rﬂd¢(t1,t)gk<jk>¢(t,t2)
where a=2,3. Due to the electron-hole symmetry of the +G;’(ﬁ(tlyt)gﬁw(t,tz)], &)

system, we havéaT(t)=Tal(t). Hence the current operator

can be rewritten as - -
Gy (t1,t2) =Toy | dilgii (t1,1)Ggpar(t,tp)

T()=2ie> [TuClydi—c.cl. + 0k (11,1 Gy (tt2)
- ,
+ 0k (11,1 G 4 (4, t2)
The cross correlation between two superconducting leads is ,
defined as P J +grkaL(t1’t)GdeT(t t2)] 4)
R Gy (tit) =T} J At Gl (11,0 o (L,2)
Pag=(Al5(t1)Als(t)y=([To(t) — ][ T5(t2) ~ 15]) K o KK

Hh | T . deT(tl:t)glele(t ty)
with I ,=(l,). Here( ...) denotes both the statistical aver-

age and quantum average on the nonequilibrium state. Using +ka(tl,t)gk,’lm(t,tz)
the expression of the current operator, the cross correlation
between two superconducting leads is +Gyig, (11, o (412)], 5
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whereGy; 4, is given by r i 1 0| i ((E) (E A

G| ty,t,)=T fdt v t,,1)G/ t,t
krdo(t:12) =Tax [Girir (12,0 Ggpao(tit2) The lesser Green’s function can be obtained from the

Keldysh equatiorG==G"Y~G?. Here the lesser self-energy

+ Gk (11,0 Gy go(tt2)]. (6) is given by
Substituting the above relations into Edj) and taking the f(E+eV) 0
Fourier transfornj P,5= [dt;dt,Po(t;,t5)], we obtain <(E)=i
M Pos=fdtydt,Pog(ty,t5) ] 3=(E)=il'y 0 f(E—eV))
dE
P,g=—4eT,I" f— G'g"+G ¢ (G'g"+G ¢ I,+T E A
23 2l 3 277(( g g9)1(G'g 911 Lif(E)O(|E| - A) 2Tl Z(E) .
<Ga I'G<) >Ga I’G> E _A A E
+ + +
(@ g 19 9 )n Let us first consider the case in which external voltage is
—G{(gG'g) 11+ [(gG?+g'G™) g4} smaller than the gap energy and consider zero-temperature
e o a e a behavior so that there are no quasiparticles participating in
—Gn{(d'G'g) 1+ (g7 G+ g G7)g]uab), (") the transport. In this case, only a two-electron current exists,

i.e., the currents from incoming electrons and the Andreev-

= 2 i = i 1 -
wherel", =272 py,| Tl With a=2,3 the linewidth func _reflected hole, and we hagé=g? andg~~ =0, using the

tions. Herepy, 3 are the normal density of states of the su

perconducting leads 2 and 3. We have used the wide-banffi‘Ct that

limit** and thus the linewidth function is independent of the f.0
energy.G"® =~ =Gy %=~ are the full Green’s functions for G<=irlGr< )Ga )
the quantum dot in the presence of the leads, wifife~~ 0 f-

are the exact Green’s functions for the BCS superconductagng

in the absence of the coupling between the leads and quan-

tum dot. Equation(7) is the central result of this paper. It el 0 A

describes the cross correlation for a three-terminal hybrid G =ilG 0 f_1 G*. ©)
N-S-S system and is at any temperature and finite voltage, -

i.e., valid for botheV=A andeV<A. In order to calculate Equation(7) can be further simplified as

this correlation, one must know all the Green’s functions.

The exact Green’s functiorgs'® = for the isolated supercon- dE f_(1—f.)
ducting leads aré® Poa=eT'aT ,I'3A2 -7 = X |G},G5,— G,.G3|?
™ A“-E
iJ(E E A
gr(E):_L< ):[ga(E)]Jr, B 4e’T,I'; [ dE
2JEZ-AZ\A E = Torro?) 2a - TAE-TAE)], 10
2Tls
(E) [E A where TA(E)=T"%G,G3, is the Andreev-reflection coeffi-
< H .
g~ (E)=if(E)(|E|-A) ——— , cient andf . (E)=f(E*=eV). Just as we expected, EG.0)
JEZ—AZ2\A E

is a positive quantity. To get more physical insight, we will
wheref(E) = 1/{exd BE—Eq)]+1} is the well-known Fermi assume tha¢V are small enough and we will keep only the
distribution function, 8(x) is the step function, ang(E) first order inV in Eq. (10). We have

=1 whenE>—A, otherwise{(E)=—1. We will choose

the Fermi energy of the normal lead in line with the chemical F§F2F3e3v

potential us of the superconducting condensate which is set Py3= T2 (,+T)2°

to zero, i.e.Er=pu=0. The retarded Green’s function for {52+ Ly (I2#T9)”
the quantum dot can be calculated using the Dyson equation 0 4 4

4

[ T2+ (Ip+T5)?]  [Ti—(T,+T3)?)?
X1 €9t + :

N NIt ? w0
° (11)
with ForeV>A, we have to calculat®,; numerically, which is
presented in the next section.
Go(E)= £ )
( €0 IIl. RESULTS AND DISCUSSION
0 E+e
0 We first use Eq(10) to calculate the cross correlation at

and finite voltage while keepinggV<A. In the following, we
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FIG. 1. The cross correlatioR,; versus gate voltage for external bias and different coupling paramétersV=0.6. Solid line:T"
=I";=T',=0.1, dotted lineI'=0.2, dot-dashed lind: =0.4, and dashed lind:=0.8. (b) eV=0.4. Other symbols are the same(aks (c)
eV=0.2. Other symbols are the same @ (d) Solid line: I';=0.8, I',=0.1, andeV=0.6. Dotted line:I';=0.1, I',=0.8, andeV
=0.6. Dot-dashed linet’;=0.8, I',=0.1, andeV=0.2. Dashed linel';=0.1,I',=0.8, andeV=0.2.

will use A as the unit of energy and study the symmetric case¢han that ofF; asuv is increased, resulting a double-peak
wherel',=TI";. In Fig. 1 we show the cross correlation ver- structure forF,—F, (see Fig. 2 Since the linewidth of
sus the gate voltage at fixed external keas=0.6, 0.4, and cross correlation is determined By which in turn is deter-
0.2. Four different sets of coupling constahtsare chosen: mined byT’, it is thus understandable that the larger the
(i)r=r,=I,=0.8, 0.4, 0.2, and 0.1. FA*=0.8, it repre- the wider the double-peak structure. Now we gradually de-
sents the strong coupling between leads and the quantuorease the external bias &/=0.4. We see from Fig. (b)
dot’ For eV=0.6[Fig. 1(a)], the cross correlatiofdashed

line) displays two broad peaks located symmetrically at 0.04 '
evy=*0.6. (ii). For the weak-coupling casE=0.1, the

cross correlation(solid line) has two sharp peaks close to 0031 F iy
vy=0.08 and decays quickly away from (tii) I'=0.2 and 002 - :.-" ]
0.4 (dotted line and dot-dashed linerepresent the

intermediate-coupling regime for the external bé&g=0.6. 0.01 | 1

We see that the position of the peaks shift towards the origin
as one decreasds The general feature of the double-peak 0.00F
structure can be understood as follows. We notice that twc

termsF, = [dE TA(E) andF,=[dE T2(E) in Eq.(10)tend  *%'[ I

to cancel each other. Note that hérgis proportional to the 40| ]

current. The shape df; andF, are dominated by the line

shape ofT, sinceT,ﬁ decays much faster thah,. As the  -0.03'— * * * * ' * * * ' *
4.0 -08 -0.6 -04 -02 00 02 04 06 08

result of different linewidths foF, andF,, we thus have the 10

double-peak structure shown in Figal This is illustrated
in Fig. 2 for['=0.1. In the weak-coupling regime, the inte-  FIG. 2. The contribution of; (dotted lin@ andF, (dot-dashed
gralsF, andF, give comparable contributions with a single line) to the cross correlatioR 5 (solid line) versus gate voltage at
peak atvy=0. However, the integraF, decreases faster ev=0.6. Herel';=T",=0.1.

gate voltage
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that for the strong-coupling cadée=0.8 and 0.6, the cross oosf T ' ]
correlations in the strong-coupling case still show a double-
peak structure but with smaller amplitude. We also find that  gg4|
the peak positions are shifted towards the origin. For the
weak-coupling casd'=0.2 and 0.1, however, both the

lation

0.03 | .
height and position of the peaks are roughly unchanged. As%
we decreaseV further to 0.2[see Fig. 1c)], the general g ool i
behavior of the cross correlation is similar to that of Figh)l 5

except that fol’=0.2 the peak height decreases. These be- g4 |-
haviors can again be understood from the domination of the

linewidth of T, in the cross correlation. For=0.1, the 000 | ,
linewidth of T, is about 0.16. This means that only electrons 00 01 02 03 04 05 06 07 08 08 10
with energy below 0.2 contribute to the cross correlation. external voltage

Hence the cross correlation versus gate voltagd'fe0.1 is

the same foreV=0.2, 0.4, and 0.6. FoI'=0.2, the line- 0.08 1

width of T, is about 0.32. As a result, the cross correlation 47
remains unchanged farVV=0.4 and 0.6. Obviously, if we
examine the cross correlation fbr=0.1 at an even smaller
external bias, e.geV=0.1, it will be different from that of
eV=0.2. Of course, in this casE=0.1 cannot be defined as
the weak-coupling limit. From the above analysis, we con-
clude that the position of the peaks is influenced by the in-
terplay between the external bias and the contact strdngth
In the strong-coupling case, the position of the peak is con- 001
trolled by the external bias. In the weak-coupling case, itis  ggqq
controlled by coupling strengtli’. Next we consider the 00 o1 02 08 04 05 06 07 08 09 10
asymmetric case wheh; is not equal tol',. Two sets of external voltage

coupling constants are chosdn. I';=0.8 andl',=0.1. In

this case, the normal lead couples strongly with the quantum FIG. 3. (&) The cross correlation versus external voltageat
dot while the superconducting leads couple weakly. Figure™ 0.0. (b) The differential cross cprrglation versus external yoltage
1(d) shows the cross correlatigsolid line foreV=0.6 and &t €=0.0. The symbols are solid ling’,=1',=0.8; dotted line:
dot-dashed line foeV=0.2) which exhibits a single peak at 11=0:8.I'>=0.1; dot-dashed linel’;=0.1, I';=0.8; and dashed
vg=0. (i) ';=0.1 andl',=0.8. This is the reverse of case line: '1=0.1,I';=0.1.

(i) and we see that forVV=0.6 (dotted ling it shows a flat

region neamw,=0. We notice that the cross correlation de- To study the effect of quasiparticles whe'vV>A, we
creases as we decrease the external bias. For the asymmetridculate the cross correlation using Ed). Figure 4 shows
case, the transmission coefficiefy is much smaller than 1 the cross correlation versus external voltagegat 0.0. We
even at resonance. Therefore the contribution frieémis see that once the voltage is larger than the gap enkrdiie
much smaller than that ¥, resulting with just one peak for cross correlation decreases quickly, indicating fermionic con-
P,z in contrast to the symmetric case. Now we examine theributions. For the strong coupling ca$g=I,=0.8, Py,
cross correlation versus external bias at fixed energy levelsecomes negative in the laryelimit while it remains posi-
and concentrate on the following four sets of coupling con+ive for the other coupling strength. This can be understood
stantsI';=I",=0.8 and 0.11';=0.8 andl',=0.1;T';=0.1  as follows. WhereV> A, electrons with energy less thav
andI',=0.8. Figure 8a) displays the cross correlatid?,;  will all participate in transport. In particular, for incoming
versus external voltage whegy=0. We see that, except for electrons with energy inside the superconducting gap, only
I'y=0.8 andl',=0.1, P,5 increases monotonically, ari?b;  the two-electron current is allowed and hence the contribu-
develops a plateau region for the other three sets of couplingon to the cross correlation should be positive as we just
parameters. These plateau regions are due to the resonaliécussed above. However, when the energy of incoming
tunneling which can be seen from FighBwhere the differ-  electrons is outside of the gap the current comes from of four
ential cross correlation P,3/dV versus external voltage is processed®!® (i) Andreev reflection ii) the conventional
depicted. Here we see typical behavior of the shot nBige: electron tunneling through the systefiii,) a “branch cross-
minimum separated by two peaks. The minimum is due tdng” process® in which an electron incident from the normal
the resonant Andreev reflection sino@P,;/dV~T,(1 lead converts into a hole such as in the superconducting
—Ta). As one increases the energy leveh€0.3), the dip leads, andiv) an electron(or a hole incident from the nor-
between two peaks can no longer reach zero, indicating thamal lead tunnels into the superconducting lead, picks up a
the maximum Andreev-reflection coefficieff is much less  quasiparticle(or a quasiholgin the superconducting lead,
than 1. We also note that fét;=0.1 andl’,=0.8, only one and creategor annihilatesa Cooper pair. In these processes,
peak is left and the resonant feature has disappeared. the latter three give negative contributions to the cross cor-

0.06
0.05
0.04
0.03

0.02

differential cross correlation
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FIG. 4. The cross correlation versus external voltageeat FIG. 5. The cross correlation versus external voltageeat

=0.0. The coupling parameters and corresponding symbols are the2 0. The coupling parameters and corresponding symbols are the
same as in Fig. 3. same as in Fig. 3. For illustration purposes, we have multiplied the

cross correlation by a factor of 10 for the dotted line, 5 for the
relation. Competition between the Andreev-reflection pro-dot-dashed line, and 50 for the dashed line.
cess and the rest of three processes gives rise either to posi-
tive or negative cross correlation depending on which pro
cess dominatesee Fig. 4. Typically, near the resonance the
Breit-Wigner form for the Andreev-reflection coefficient

versusvy at eV=4. We see that at large voltages, all the
cross correlation functions become negative. For the strong-
coupling case, we observe oscillations Bb; between

read$®-2 b : L : L
osonic and fermionic behaviors due to the competition be-
tween the current due to Andreev reflection and that of the
Fil‘% quasiparticles. This can be easily checked experimentally by
Ta (120 changing the gate voltage.

2 2 2 212 2 2

HE =g+ Dol 14"+ 15+ (I + o1') In summary, we have proposed a HBT-type experiment by
and the transmission coefficient for the normal tunnelingusing the three-terminal N-S-S hybrid mesoscopic system.
process is When the external voltage is less than the gap energy, only a
two-electron current is present. The cross correlation is
r'.r found to be positive, which demonstrates bosonic behavior.
- 1z (13 However, when the external voltage is larger than the gap

(E—eo)2+1“2/4’ energy the quasiparticle will participate in the transport

which gives the fermionic contribution to the cross correla-

whereI'=I',+T'; and oI'=I', =T'>. We see that the An- o0 " ag the result of competition between the Andreev-

dreev reflection is suppressed when off resonance. I:urthelréflection process and the other tunneling process involving

tmhore, at :ﬁrgzr?dxrtercarl ?|Iastilfr:hie Lersoganltl energ;; IS Oléts'iﬁuasiparticles, the cross correlation can be either positive or
€ 9ap, the eev refiection 1S drastically Suppressed a egative depending on which one dominates. For the strong-

normal tunnelmg_ is allowed at a certain energy. There.fore(:oupling case and at large external voltage, the cross corre-
we expect negative cross correlation in this case. In Fig. 5,

we depictP,; versusV at ;= 2.0. Since the resonant level is
outside the gap, the plateau region Ry; wheneV is inside
the gap disappears. We see that, except for the ca$q of o~
=0.8 andI',=0.1, P,; becomes negative at large voltages. 001 | TN 1
Our numerical result shows that at even larggrthe trans-
port of quasiparticles dominates and Bl are negative at
large external voltage. Note that for Fig. 4, the resonant en-£
ergy of the dot is chosen at the superconducting condensat,,
us=0 whereas in Fig. 5 the resonant energy is chosen suclg
that it is above the superconducting gap energy. Hence, if we
are in the resonant tunneling regini@eak-coupling case -0.02
then the quasiparticle current will be very smd#r off the
resonancefor Fig. 4 and much largefon resonancgein Fig. -0.03 L~ ' ‘ ‘
5 since quasiparticle current can exist only Eor A. Look- 00 05 10 18 20 25
ing at Fig. 4, only largd"=0.8 (solid line) corresponds to gate voltage

the nonresonant tunneling case, hence has a larger quasipar-FIG. 6. The cross correlation versus gate voltage &t 4.0.

ticle current, and dominates at large voltage resulting in ahe coupling parameters and corresponding symbols are the same
negative cross correlation. Finally, we plot in Fig. 6 fhg;  as in Fig. 3.

0.02 T

lation

0.00 |-

orre

-0.01 -

014509-6



STATISTICAL CORRELATION FOR A THREE-TERMINA . .. PHYSICAL REVIEW B 67, 014509 (2003

lation function changes sign as one varies the gate voltage ACKNOWLEDGMENTS

which controls the position of the resonant level. Finally it

would be nice to consider the effect of the phase difference We gratefully acknowledge support by a RGC grant from
between the two superconducting leads which would enablthe SAR Government of Hong Kong under Grant No. HKU

one to predict what happens when the proximity effect is7T091/01P and a CRCG grant from the University of Hong
“turned off.” Kong.

*Email address: jianwang@hkusub.hku.hk 133. Rammer and H. Smith, Rev. Mod. Phg8, 323 (1986.
1. D. Landau and E. M. LifshitzStatistical Physic§Pergamon,  *A. P. Jauhcet al, Phys. Rev. B50, 5528(1994).

Oxford, 1980. 153. Wang, Y. D. Wei, H. Guo, Q. F. Sun, and T. H. Lin, Phys. Rev.
2Ya. M. Blanter and M. Buttiker, Phys. ReB36, 2 (2000. B 64, 104508(2002).

*R. Hanbury Brown and R. Q. Twiss, Natufeondon 177, 27 16{ere the density of states in the Green’s function has been ab-

(1956. sorbed in the linewidth functiol.

4 .
SM- Hennyet al, Science284, 296 (1999. "Here the strong-coupling case is defined wHereV and I'
W. D. Oliver et al, Science284, 299 (1999. <eV corresponds to the weak-coupling case.

6 N .

J. Torries and Th. Matrtin, Eur. Phys. J. B2, 319(1999. 18 .

, in, y (1999 Y. D. Wei, B. G. Wang, J. Wang, and H. Guo, Phys. Re\6®
P. Samuelsson and M. Biker, Phys. Rev. B39, 046601(2002. 16 900(1999

83. Borlin, W. Belzig, and C. Bruder, Phys. Rev. L&8, 197001 196 E. Blonder. M. Tinkham. and T. M. Klapwik, Phys. Rev2B
9K(2202|Agaev Phys. Rev. B4, 081304(2001) 4515(1982.

- E. ) : - B4, : 20
103, C. Cuevas, A. Martin-Rodero, and A. Levy Yeyati, Phys. Rev. C. W. J. Beenakker, Rev. Mod. Phyi9, 731(1997.

B 54, 7366(1996 2IN. R. Claughton, M. Leadheater, and C. J. Lambert, J. Phys.:
Q. F. Sun, J. Wang, and T. H. Lin, Phys. Rev5 3831(1999. Condens. Matte7, 8757 (1995.
. 22y, D. Wei, J. Wang, H. Guo, H. Meh d C. Roland, Ph
2Q. F. Sun, B. G. Wang, J. Wang, and T. H. Lin, Phys. Re61B - D. Vvel, J. Wang, R. Guo, H. Mehrez, and C. Roland, Pnys.
4754(2000. Rev. B63, 195412(2001).

014509-7



