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Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems
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We propose an experimentally feasible scheme to achieve quantum computation based on a pair of orthogo-
nal cyclic states. In this scheme, quantum gates can be implemented based on the total phase accumulated in
cyclic evolutions. In particular, geometric quantum computation may be achieved by eliminating the dynamic
phase accumulated in the whole evolution. Therefore, both dynamic and geometric operations for quantum
computation are workable in the present theory. Physical implementation of this set of gates is designed for
NMR systems. Also interestingly, we show that a set of universal geometric quantum gates in NMR systems
may be realized in one cycle by simply choosing specific parameters of the external rotating magnetic fields.
In addition, we demonstrate explicitly a multiloop method to remove the dynamic phase in geometric quantum
gates.
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[. INTRODUCTION of the system must not drive the state out of the decoherence-
free space. So far, all of these strategies require extra-
Building a practical quantum computer with a large num-physical resources, such as additional manipulations or en-
ber of qubits has recently attracted much attention. For reakoding one logical qubit by several ancillary physical qubits.
ization of a universal quantum computer, there are certain Another attractive strategy for fault-tolerant quantum
minimum requirements: the storage of quantum informatiorcomputation is based on a topological idd&|, where gate
in a set of two-level system@@ubits, the processing of this operations depend only on global features of the control pro-
information using quantum gates, and a mean of final readeess, and are therefore largely insensitive to local inaccura-
out [1]. So far, a number of systems has been proposed ades and fluctuations. A significant advance in this direction
potentially viable quantum computer models, includingis made by the so-called geometric quantum computation
trapped ions[2], cavity quantum electrodynamic§3],  [16]. In this kind of scheme, a universal set of quantum gates
nuclear magnetic resond®MR) [4], and low-capacitance may be realized by pure geometric phases, which depend
Josephson juction$-8§|, etc. only on the geometry of the path executgt/—19, and
An essential requirement in quantum computation is tatherefore provides a possibility to perform quantum gate op-
maintain quantum coherence in a computing system, sincerations by an intrinsically fault-tolerant w4$6,20,21.
the coherent interference pattern between the multitude of Several basic ideas of adiabatic geometric quantum com-
superpositions is necessary for taking advantage of quantuputation by using NMR20], superconducting nanocircuits
parallelism. However, the coupling of a quantum system td8], trapped iong21], or semiconductor nanostructurex?]
its environment leads to the so-called decoherence processere proposed. However, the adiabatic evolution appears to
in which encoded quantum information is lost to the envi-be quite special, and thus the nonadiabatic correction on the
ronment. The error rates of the individual gate operationghase shift may need to be considered in some realistic sys-
should be less than 10 to assure that the quantum com- tems as it may play a significant role in a whole process
puter works fault tolerantly9]. To accomplish the required [18,23. A serious disadvantange of the adiabatic approach is
precision, the decoherence time of the system has to be muthat the evolution time must be much longer than the typical
longer than the operation time required for computing. Howoperation timer, of the qubit system, while the evolution
to suppress the infamous decoherence effects is one mainust be completed within the decoherence time, which leads
task for quantum computing. to an intrinsical time limitation on the operation of quantum
One of schemes to correct the errors caused by decohegate. Therefore, a generalization to nonadiabatic cases is
ence is quantum error-correcting codg0-12, through valuable and important in controlling quantum gates.
which originally encoded information can be recovered by Recently, nonadiabatic geometric quantum computation
suitable encondings and measurements of qubits. An altern&as been proposed theoreticdl4,25, and detection of the
tive approach to avoid decoherence has been proposed ¢gonditional nonadiabatic geometric phase shifts for quantum
Refs.[13,14], where decoherence-free states have been useghtes using NMR is also experimentally reporf2d]. Nev-
as qubits. The decoherence-free space is a subspace whicleisheless a systematic study of this topic, especially the ap-
inherently immune to unwanted noise. In addition, evolutionpication to NMR systems, is still highly desirable. In this
paper, we propose an experimentally feasible nonadiabatic
scheme to achieve a universal set of quantum gg2&$
*Email address: szhu@hkucc.hku.hk based on a pair of orthogonal cyclic states. In this scheme,
"Email address: zwang@hkucc.hku.hk quantum gates may be implemented based on either the total

1050-2947/2003/62)/0223199)/$20.00 67 022319-1 ©2003 The American Physical Society



S.-L. ZHU AND Z. D. WANG PHYSICAL REVIEW A67, 022319 (2003

phase accumulated in the cyclic evolution or the geometric We first focus on the cyclic evolution in a qubit system.
Aharonov-AnandanfAA) phase shiff 18] after eliminating At this stage, only one term
the dynamic phase. Therefore, quantum computation imple- R
mented by dynamic and geometric operations can be unified H=—uB-g/2 2
in the present theory. In addition, physical implementation of
this set of gates is designed in detail for NMR systems, ifeeds to be considered. HeBedenotes the total magnetic
which the qubits considered are spin-1/2 particles in the predield felt by the qubit, which may include a real external field
ence of a magnetic field rotating uniformly around a fixed@s well as an effective magnetic field induced by the interac-
axis. Although the Schdinger equation of this system was tion between different qubits. The Hamiltoni&his chosen
solved exactly long time agf28], and the AA phase was to go through a cyclic evolution with periodin the param-
previously obtained explicitly in Ref$23,29, we here de- eter spac€B}.
rive all phase shifts explicitly and show that they may be We here present how to calculate all kinds of phase shifts.
applicable in achieving a universal set of logical gatesThe dynamic phase may be directly calculated from its defi-
Moreover, the nonadiabatic geometric computation may beaition given by
experimentally achieved just by simply choosing specific
controllable parameters, with the cyclic states as a pair of 1(- -
Gark stated24] Y P o= fo< (O Ap(D)dt, 3

The paper is organized as follows. In Sec. Il, we discuss
general aspects of the geometric phase and cyclic evolutioivhile the geometric part is not easy to derive. We first ad-
and then present a theory applicable for achieving a universalress a method to calculate adiabatic Berry's phase. By adia-
set of quantum gates based on a pair of orthogonal cycligiically changingd around a circuit in{B}, the eigenstate

states. In Sec. lll, the theory is appligd to a viable NMR\..i1' accumulate an adiabatic Berry's phasg= T QJ2,
quantum computer. The paper ends with a brief summary. \ypere the signst depend on whether the system is in the

eigenstate aligned with or against the field, aid is the

II. IMPLEMENTATION OF QUANTUM GATES WITH A solid angle subtended by the magnetic field at the degeneracy
PAIR OF ORTHOGONAL CYCLIC STATES B=0 [17] QS can be derived as

For universal qguantum computation, we need to achieve
two kinds of noncommutable single-qubit gates and one non-
trivial two-qubit gate[27]. Thus we here consider only two-

qubit systems. A general Hamiltonian for two qubits may be - )
expressed as under the condition of a closed trajectory wiir) =B(0)

[25].
R 3 Since the requirement of the adiabatic evolution could be
H=— E’uz [cWBD (1) + @B (1) + Ji(1) e MNP, stringent, a generalization to nonadiabatic case is more de-
=1 sirable. The generalization of adiabatic Berry’s phase to a
@) nonadiabatic cyclic evolution was introduced in REf8],

where ¢® (k=1,2) are the Pauli operators for quiit ~ Where a general geometric phagg=y— yq is defined as
B (t) are local(real or fictitiou3 magnetic fields acting on . P

kth qubit, andJ; represents the strength of the interaction 'ygzif <~lﬁ(t)‘5‘z/(t)>- (5)
between two qubits. 0

B,d;B,— B, ;B
s=f T SIi @

o [B[(B,+[B])

Here [(t))=e " TO|y(t)) with f(7)—f(0)=1, leading to

. . %(7))=|9(0)). The AA phase can be regarded as a geo-
I|3efore tthe (;Ietﬁlgn ofl_quant:JrP gates, webptrese?t fwsi Y€ hetric phase associated with a closed curve in the projective

elfa aspleg S Ol efcyc (|jctevo utlr?ntl?ha q:’ tl s;;s;m. tcy'HiIbert space, and approaches Berry’s phase in the adiabatic

clic evolution 1s reterred 1o as that the state of the SySteny.,i; the AA formulation applies regardless of the Hamil-

returns to its original state after evolution. Mathematically, a

normalized statéy(t)) is cyclic in the interval 0,7] if and tonign H being cyclic or adiabgtic; it depends only on the
only if cyclic evolution of the system itself.

Normally, Eq. (5) is not directly used to calculate the
lg(7))=€"74(0)), geometric phase accumulated in a cyclic evolution. We here
present an alternative method to calculate the nonadiabatic
with y being a real number. The total phagacquired in the geometric phases. This approach is more convenient for qu-
evolution would contain both geometric and dynamic com-bit systems discussed in this paper. For a spin-1/2 particle in
ponents, denoted ag, andy4, respectively. Usually, not all the presence of an arbitrary magnetic field, the nonadiabatic
states take cyclic evolutions. A sufficient but not necessargyclic AA phase is just the solid angle determined by the
condition for cyclic evolution is that the initial state is a evolution curve in the projective Hilbert space—a unit
nondegenerate energy eigenstate of a cyclic Hamiltoniasphere S?. Any two-component “spin” state |)
which changes adiabatically. =[e " '¢"2cos@2),e'*?sin(8/2)]" may be mapped into a unit

A. Cyclic evolution and geometric phases

022319-2



UNIVERSAL QUANTUM GATES BASED ON APAIR CF. .. PHYSICAL REVIEW A 67, 022319 (2003

vectorn= (sin #cose,sindsin¢,cosd) in the projective Hil- 1. Quantum logical gates
bert space via the relation=(|7|¢), whereT represents A quantum logical gate is a unitary operatdracting on
the transposition of matrix. By changing the magnetic fieldthe states of a certain set of qubits, thatisnay be referred
the AA phase is given by to as a quantum gate [ift, )= U| ¢in) with |4i,) being the
1 input state andly,,,) being the output state. The space of all
yg:_EJ (1—cosf)de, (6)  the possible input and output states makes up the Hilbert
C space of states for the quantum computef{Ifs the Hilbert

space of a single qubit, ang;) is a given basis state for the
ith qubit, then a basis vectdy) for the states of the quan-
tum register is a tensor product of qubit stateés=|y,)
_ R|Yy® - ®| i) e HE". Uy is an N-qubit gate when
an(t)=—uBUXn(t)/#. @ |¢|in)éH®N. l\llev>ertheless, we need not to implementlll
This y, phase recovers Berry's phase in adiabatic evolutiof1=<I=<N), but only a universal set of gatds,. A set of
[23]. The cyclic evolution implies than(t) undergoes a gatesU, is called universal if any unitary actiod, can be
closed path in the projective Hilbert space. decomposed into a product of successive gatdd jn It is
We consider a process, in which a pair of orthogonalshown that two noncommutable one-quit&ingle-qubi
states|¢..) can evolve cyclically starting frofy..(0)). A gates and one nontrivial two-qubit gate consist of a universal

pair of orthogonal state may be parametrized as sgt of _gate$27]. This universality is very useful in practice,_
since it allows us to focus only on how to construct a uni-

where C is along the actual evolution curve @&, and is
determined by the equation

0 ier versal set of gates.
cos;e We first construct the single-qubit gates by assuming that
|y )= (8)  a pair of orthogonal statdss.) can evolve cyclically. We
Sin-el®/2 write an arbitrary input state asy,)=a. |y )+a_|y)
2 with a.. = (.| ), and express the two cyclic initial states as
q |, )=cosx/2|0)+sinx/2|1) and |¢_)=—sinx/2|0)
an +cosy/2|1), where|0) and|1) constitute the computational
0 basis for the qubit. Using Eq10), the output state at time
—sinze*"”2 is found to be 25]
)= . 9
|w > 0 iol2 © |¢out>:USq(X17)|¢in>i
co%e ®
where
Denoting n..(t) = (. (t)|a| ¥ (t), it is straightforward to USY y, )
find thatn,(t)=—n_(t) by using Egs.(8) and (9). For a '
cyclic evolution, | (7))=¢€'7*|¢.(0)). Besides, we have i X o X ,
an important relationzy, = —y_. This is because the dy- e 700§5+e ‘/sm?-z I siny siny
namic phase =
1 [ 1 (s i sinysiny e‘ysinz)z—(+e*iycos°-§
Yd+ = — %f E (t)dt=— %f —E_(H)dt=—yq-
0 0 (11)
with For this gate, there exists a relation
E.(O)=(¢=(O)[H|p)=—un.(1)-B(1), [USYx, M1 =[US% x, — )],

and the geometric phasgy(—n(0))=—y,(n(0)) at any
time if the two initial states correspond ton(0) [23]. By
taking into account the cyclic condition fog..), we finally
have

where the adjoint operation T corresponds to transposition
and complex conjugation of matrix. Thus the important T
operator for a unitary operatiod may be experimentally
achieved by the operatiodd with the inverse sign of the
U(P) ) =exn +i Y 10 phase factor.
(Dly=) S (10 It is straightforward to verify that two operations
whereU(7) is the evolution operator. Hereafter we denoteU®(x1,v1) andU®(x,,v,) are noncommutable as long as
,Yq, andyy as the phases f for brevity. . i )
77 7d P ao) Y siny;Siny,sin(x>— x1) # 0. (12

B. Quantum computation Since two kinds of noncommutable operations constitute a

We now show how to realize a universal set of quantununiversal set of single-qubit gates, we achieve the universal
gates based on either the total phases or the geometric Agingle-qubit gates by choosing,+ x,+j# for any non-
phases accumulated in cyclic evolutions. trivial phasesy; and vy, (y.,#jm), wherej is an integer.
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For example, the phase-flip gat§%(y;) = exp(—2iy|1)(1)) 2. Geometric quantum gates

(up to an irrelevant overall phasés accomplished ay The quantum gated described in Eqg11), (13) [or (16)]

=0; the gateU3%y,)=exp(y.o,) is obtained aty= /2, may be divided into two categories: one is referred to as a

which produces a spin flignoT-operation when y,=7/2  geometric gate if the phase lth is a pure geometric evolu-

and an equal-weight superposition of spin states whgn tion operator ¢4=0) [30], and the other is referred to as a

=/4. Ui?z are two well-known single-qubit gates. dynamic gate as long as there exists a nonzero phase induced
In terms of the computational bagi®0),|01),|10),|11)},  from dynamic origin(i.e., y4#0). Geometric quantum com-

where the first(second number represent the state in the putation demands that logical gates in computing are realized

controlled(targel qubit, the unitary operator to describe the by using geometric phase shifts, so that it may have the

two-qubit gate is given by8,25] built-in fault-tolerant advantage due to the fact that the geo-
metric phases depend only on some global geometric fea-
th=diagU(onXo) ,U(yl’Xl)), (13) tures.

A key point in geometric quantum computation is to re-
. L move the dynamic phase. We here address two methods
under the condltlon_t_hat the control nglt is far away from 8,20,21,24,2% A simpler and also practical one is to choose
the resonance condition for the operation of the target qubilyme gpecific external parameters such that the dynamic
Here y° (x°) represents the total phasthe cyclic initial  phases of the pair of cyclic states accumulated in the whole
statg of the target qubit when the control qubit is in state o\,0|,tion may be eliminated. Interestingly, with this method
6(=0,1). Following Ref[27], we find that “n't"’_‘“l’ opgrator the corresponding cyclic states in NMR systems are dark
(13) is a nontrivial two-qubit gate if and only #°#y” or  gtateg(the eigenstate with the zero-energy eigenvalaed

x'#x° (mod 2m). For example, thus no dynamic phase is involved. The dark state method
was proposed for geometric quantum computation with
UEC;O yl)zdiag(e‘ P e i g7t emivhy, (14)  trapped iong21], and then described in NMR systeffigst].

The other is referred to as a two-loop method: let the evolu-
tion be dragged byl along two closed loops, with one being

in te[0,7] and the other inte[r,7+7']. The dynamic
gPhases accumulated in the two loops may be canceled, while

the AA phases will add.

when x!=x%=0; this gate was proposed to be achieved in
the adiabatic case in the charge qui@f. Combining gate
(14) with single-qubit operations we are able to perform
gate described by

Ucn=II ®Usq(17/4,7'r/2)]UE%m,2)[l @USY m/4,m12)]" [ll. APPLICATION TO NMR SYSTEMS

—diagl,ioy) (15 _So far, we have proposed a general scheme to achieve a

XD universal set of quantum gates based on a pair of orthogonal
cyclic states. It is important to further consider implementing
with | as a 2<2 unit matrix. This gate is equivalent to the this scheme with real physical systems. Here, we illustrate
controlledNOT (c-NOT, which is defined agm)|n)—[m)|m  this implementation using NMR systerfi$,20]. Neverthe-
@n), where® denotes the addition modulg Bate up to an |ess, it is worth pointing out that, in principle, the above
overall phase factor for the target qubit. On the other handt,heory may be applicable to other systems which are poten-
Utg 1, become the controlled-phage-PHASE which is de- tially viable quantum computer models.

fined as |m)|n)—|m)expimne)n)] gate by removing a For NMR systems, the magnetic field in EG) or (2) in

overall phase for the target qubit. a rotating magnetic field is given by
An alternative practical method to achieve the controlled- )
two-qubit gate is also available under certain conditions. De- B(t)=(Bocoswt,Bsinwt,By), 17

noting the Hamiltonian of the target qubit &, we may
produceH;=0 by choosing certain parameters léf when
the controlled qubit is in the sta{®), while H, is able to
realize a required gate when the controlled qubit is in state

where By ; and o are constants. The qubit stafte(t)) is
described by the Schdinger equation

|1). Then the gate in this case is given by iﬁ%l,ﬁ(t)):Hl,r/,(t», (18)
Ut=diag(l,U(7.x)), (16 where the Hamiltonian for a single qubit is given by

wherevy is the total phase accumulated in the evolution when H— 1 t+ ot + 19

the controlled qubit is in statd). Gate(16) corresponds to = 5 (090, 0Swt+ wooySiNwi+ w,07) (19

gate(13) for 4°=0 andy,= /2. Ucy in Eq. (15 may be

directly derived wheny= y= /2. with w;=—guB; /% (i=0,1) andg being the gyromagnetic
So far, we have demonstrated that all elements of quarratio. The Schrdinger equation with Hamiltoniafl9) can

tum computation may be achievable by using a pair of orbe solved analytically23,2§. In terms of explicit form of

thogonal cyclic states. the solutionn(y, wt) represented in Ref23], it is found that
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a pair of orthogonal initial states|¢.) with x
=arctafwy/(w;— w)] take cyclic evolutions with the period

7=2mlw [24], and the evolution paths are the curves on a

Bloch sphere swept by unit vectorsn(y,wt). Therefore,
we may use this pair ofis..) to achieve single-qubit gates
described in Eq(11), where the corresponding phases for
one cycle are given by

(,()l_(x)
Yg —77(1— Q ), (20
+ w4( )
yo=— T wj);;l = 21)
y=—m(1+Q/lw), (22

with Q= \/w02+(wl—w)2. In the derivation of the dynamic
phase, E (t)=[w,cosy+wsinx]h/2 is used. We may
choose any two processes with different valfieg,w,,»}
satisfying Eq.(12) to accomplish two noncommutable qubit
gates.

A similar method may be employed to achieve the two-

qubit operation. The spin-spin interaction in NMR is very
well approximated by

H,=Jola?/2.

The state of control qubit isalmos) not affected by any
operation of the target qubit ib} of the target qubit is cho-
sen to be significantly different from$ of the control qubit.
We may prove that the initial statég.) described byy®
=arctarﬁw0/(w‘f—w)] are a pair of orthogonal cyclic states,

PHYSICAL REVIEW A 67, 022319 (2003
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FIG. 1. The geometric phasg, versus the ratiav, / w.
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w= .
w7

(26)

Thus the single-qubit gates with the parameters satisfying
Eq. (26) are geometric quantum gates with geometric phase
shift yg=—m(1+ wO/\/w02+ wzl). The geometric phaseg,
versus the ratiw, / wq are plotted in Fig. 1. It is seen that the
nontrivial phases required for two universal single-qubit
gates may be simply realized by any two processes with
different values ofw,/wq (except for zero or infinite

and may be used to achieve a two-qubit gate described by Besides, the geometric two-qubit gates are realized when-

Eq. (13). Herewl=w,+(26—1)J, o, wo, andw; are pa-
rameters for the target qubithe superscript “t” is omitted

for brevity). The corresponding phases for one cycle are

given by
5 0)36__(1)
Vo=~ - = 5] (23
2 8¢ 6
s w0yt wi(w;—w)
=— : 24
Yd ™ 000 (24)
Y=—m(1+ Q% w), (25)

with Q%= w2+ (0 — )2 Itis seen from Eq(25) that the
gate described by E¢16) may be accomplished by choosing
the following special parameters,

w=wo=w,—J.

It is worth pointing out that we may achieve the nonadia-

ever

(27)

w=2w1,

=

w5+ 32 (28)
Correspondingly, the conditional geometric phases are given
by yg=—7-r(1+ \/w15/2w). Figure 2 shows the conditional
phases;zélS versus the ratiav,/J. It is evident that the non-
trivial phases ¢4# g in mod 2) required for two-qubit
gates may be achieved forQu,/J<o.

It is worth pointing out that the constraint described by
Eq. (26) [or Egs.(27) and(28)] is equivalent to the condition
that the instantaneous dynamic phase for the wave function
in single qubit(or the target qubjtis always zero[24],
namely, the statels/..) used here are the dark states.

The advantage of the above nonadiabatic gates is.thst
of the same order of magnitude ag or w;. This implies
that the speed of geometric quantum gate is comparable with
that of the dynamic quantum gate. In contrast, the speed of

batic geometric gates by choosing some specific parametergyantum gate based on adiabatic Berry's phase is much

with which y4=0 in the whole process. It is direct to verify
that the dynamic phase in E(1) is zero under the follow-
ing condition,

lower than that of gate using dynamic phase, since the adia-
batic condition requires that both, and w; should be much
larger thanw.
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2.0 EL(t)=—unl(t)-B'(t)
= —° == u[RO(y,x" = x)n=(H)]-[R®(y,x" — x)B(1)]
,1? e 791 =E.(t).
o Therefore, we have proven that the invariant of all phases
§ 16F with respect to the rotation of the symmetric axis of the field
o in Eqg. (17). We conclude thaty (x) in gate(11) is deter-
- S IS - mined by the values ofwg,w,,w} (the symmetric axis of
) e the magnetic field For example, if the magnetic field B’
© 1.4 [/ for x'=0 (w/2), we may achieve the geometric gailg
8 (U,) with y; ,=—m(1—cosy). It is worth pointing out that
/ the above method to contrgl and y4 separately in quantum
1.2F gates is also feasible in nongeometric gates.
We turn to address how to remove the dynamic phases in
a multiloop nonadiabatic evolution. The possible generaliza-
ol tion of a multiloop method from the adiabatic evolution
20 40 60 80 100 [8,20] to nonadiabatic case was mentioned in RE?4,25.
WA We here wish to demonstrate explicitly one removal proce-
dure of the dynamic phase.
FIG. 2. The conditional phasqxg versus the ratiav, /J. Let us first choose the magnetic fields in two loops as
Loop1.
Note that, the geometric gaték;’, may not be practical B=(B,coswt,Bysinwt,B;), te[0,7). (32)
by directly using the fiel® in Eq. (17) as the corresponding
geometric phase in Eq20) is determined by the anglg. Loop 2.

For example, Eq.(20) can be rewritten asyy=—m(1 ' BGNE N R ale o
—cosy); thus y,=0 (—) as x=0 (@/2). This problem B'=R™(y,a’~a)(~Bocoswt, ~Besinot, = By),
can be solved by rotat_in.g_ the fie_ld. It will be seen below that te[r27], (33)
the parametey for the initial cyclic state may be changed by
rotating the symmetric axis of field 7), while the phases in where 7=27/w, a=arctafiwy/(w;—w)], and «
Egs.(20), (21), and(22) are invariant. =arctafw/(w;tw)] with o/ =—guB{/i (i=0,1). As

We introduce a rotation operat&(y,x' —x) that repre- ~Shown before, a pair of orthogonal initial states.) (|4%))
sents the rotation of anglg’ — y around they axis, that is,  WIth x=a (x’=e’) take cyclic evolutions during the loop
one (two). The rotationR®)(y,a’ — ) in Eq. (33) ensures
that the cyclic initial states in the two loops are the same at

!

ROy, x" —x)=exd —i(x'—x)a,] (29 the timet=2m/w [31]. Therefore, the gate described by the
two loops is given byU=U(y,y"+y?), where y1
in the SU2) representation, and (¥?)) is the total phase accumulated in the loop ¢iveo).

Denotingy’ (I=1,2) andy{ the dynamic phases and geo-
metric phases accumulated in the lobprespectively, we

ROy, x"—x)=exd —i(x' —x) 2] (30 now illustrate that there exist processes satisfying
(D4 2 T
with Yo Y i
=0,
0 ! where—1I"7 is a nontrivial geometric phase which we intend
=0 00 (31  to realize in geometric quantum gates. Then the magnetic
i 0 0 fields should satisfy the following equations:
01— wi-f— w
in the SA3) representation. Assuming the required angle is Q Y =2-T, (34)
x' in Eg. (11, we may apply a magnetic field
B’=R®)(y,x’ — x)B, then the solution of the cyclic states Wit oi-ww; (0h)+(0])’*+oo)
are n;:R(S)(gli)(,_X)[int(X!wt)] [|lv[/r>:R(2)(§l!X, w() = 0’ ! (35)

—x)|¢-)] because of the spherical symmetry of the system.

Thusy may change to any requirgd for implementation of  \where Q= ‘/w02+ (01— )? and Q' = J(w() >+ (0] + w)>2.

the quantum gate, with the geometric phase being Unas for the required, it is possible that there exist many
changed, because the area swephbjs the same as that by solutions, since there are five unknown variables in two
n. On the other hand, we have equations. For example, we numerically calculate the solu-
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tions forI'=1/2. For simplicity, we setv; = w, as the unit,
and find that iff w,wg, g} (0<w<w,) satisfy the equations
given by

w+1.1338%y=0.999 98,

®+1.070 91vy—0.062 9%, =0.888 89,

which describe a straight liggegment in the three-
dimensional space, the geometric phase accumulated in the
whole two-loop evolution is just what we required, with the
total dynamic phase being zero.

The multiloop method to remove dynamic phase is also
feasible for two-qubit geometric quantum gates. We choose
the magnetic fields on the target qubit in two loops as

Loop 1.

B=(Bycoswt,Bgsinwt,B;), te[0,7), (36)
Loop 2.
B'=RO)(y,n)(—Bjcosw’t,—Bjsinw’t,—B}),
te[r,7+7'], (37
wherer' =2x/w’. The angle
n=arctafiwe/(0— )] - arctaiwy/ (w;+ o) -

should be independent on the staten the control qubit. To
guarantee that the interaction between qubits is still deter-
mined by the original initial staté of the control qubit, the
control qubit should be rotated BR®)(y, ) at timet=r
[The state of the controlled qubit is unchanged if a rotation
RG)(y, — 7) is also applied at time+ 7']. Correspondingly,
the §-independent constraint described by E88) can be
rewritten as

o wg

(wl—w)z—\]2 _(wi-l- w')z—Jz.

(39

On the other hand, the condition under which there exisE
processes with zero dynamic phase is

w%—k wf(wf— ) _(w(’))2+ wiﬁ(a)i‘s-ﬁ- ')

0Q?

, (40
w'Q'?
Qré

where and

Magnetic fields

Conditional Phases yg5 (-m)
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FIG. 3. (a) The magnetic fields required in loop two versus
b) The conditional geometric phaseé versusw.

15+wr

Qﬁ

Q'

The corresponding conditional phas¢§ for wg=w,;=5.0

=\(wp)?+(w;°+ w')?. Note that the geometric phases areas a function ofw are plotted in Fig. @). It is seen that the
nontrivial (yg# ¥§ in mod 2), and thus can be applicable nontrivial phasesyg# y§ may be realized by appropriately

in geometric quantum computation.

The magnetic fields, which satisfy Eq89) and (40) in
loop two, as a function of» are plotted in Fig. @), where
wo= w1=>5.0 with J as the unit. We may numerically calcu-
late the three unknown variabl¢s’, wg, w1} in three equa-
tions described by Eq$39) and (40). Then the conditional
geometric phases may be obtained from equatiqw@s
—TI" %7 with
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choosing the values dfw,wy,w,} and{w’,0{,w;}. As a
consequence the nontrivial two-qubit geometric quantum
gate may be achieved.

IV. CONCLUSIONS AND DISCUSSIONS

An experimentally feasible scheme based on a pair of
orthogonal cyclic states has been proposed to accomplish a
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universal set of quantum logical gates, in which quantum Finally, we wish to make a few remarks on experimental
computation implemented by both dynamic and geometridmplementation of geometric quantum computation. The
operations can work, i.e., quantum gates in this scheme magimplest geometric quantum computation should experimen-
be implemented by the total phases accumulated in the cycligilly complete the following three steps one by ofig:de-
evolution, and the geometric quantum computation can beection of the(conditiona) geometric phase shifts in qubit
achieved by eliminating the dynamic phase. Furthermore, thgystemsgii) implementation of a universal set of geometric
geometric phase shift used is the cyclic AA phase, which cagyantum logic gates, particularly the implementation of a
be nonadiabatic. It is possible that the gates achieved hegnditional gatediii) illustration of a simple algorithm by
can handle arbitrary quantum Computation without the intrin-pure geometric guantum gates, such as Deutsch’s prob|em'
sic limitation on Operation time. Therefore, the nonadiabati(crover's search a|gorithm, or Shor’s factorization a|gorithm’
method proposed here may allow us to physically implemengtc. Two recent exciting experiments reported that the con-
(geometri¢ quantum computation even for systems with gitional geometric phase shifts for quantum logical gates us-
very short decoherence time, which could be especially useng NMR were detected in adiabatj0] and nonadiabatic

ful for solid-state implementations of scalable quantum com{26] regions. However, a universal set of gates as well as a
puters. simple quantum algorithm experimented lgdiabatic or

We here discuss briefly the errors induced by randonhgonadiabatizgeometric phases are still awaited.
noises in geometric quantum computation. Random noises

may lead to two kinds of errors. One is that the path may not
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