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Viscous dissipative effects in isotropic brane cosmology
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We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an
isotropic brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermody-
namic theory. In the limiting case of a stiff cosmological fluid with pressure equal to the energy density, the
general solution of the field equations can be obtained in an exact parametric form for a cosmological fluid
with a constant bulk viscosity and with a bulk viscosity coefficient proportional to the square root of the energy
density, respectively. The obtained solutions describe generally noninflationary brane worlds, starting from a
singular state. During this phase of evolution the comoving entropy of the Universe is an increasing function
of time, and thus a large amount of entropy is created in the brane world due to viscous dissipative processes.
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I. INTRODUCTION have been extensively studi¢8-16]. In one of the first
cosmological applications of this scenario it was pointed out
The idea[1,2] that our four-dimensional Universe might that a model with a noncompact fifth dimension is potentially
be a three-brane embedded in a higher-dimensional spawégble, while the scenario that might solve the hierarchy
time has recently attracted much attention. According to th@roblem predicts a contracting Universe, leading to a variety
brane-world scenario, the physical fields in our four-of cosmological problemisl7]. By adding cosmological con-
dimensional space time, which are assumed to arise as flustants to the brane and bulk, the problem of the correct be-
tuations of branes in string theories, are confined to the threkavior of the Hubble parameter on the brane has been solved
brane, while gravity can freely propagate in the bulk spacéyy Cline et al. [18]. As a result one also obtains normal
time, with the gravitational self-couplings not significantly expansion during nucleosynthesis, but faster than normal ex-
modified. This model arose from the study of a singlepansion in the very early Universe. The creation of a spheri-
3-brane embedded in five dimensions, with the 5D metriccally symmetric brane world in AdS bulk has been consid-
given byds’=e~ ¥y, dx*dx"+dy?, which can produce a ered, from a quantum cosmological point of view, with the
large hierarchy between the scale of particle physics andse of the Wheeler-de Witt equation, by Anchordogqual.
gravity due to the appearance of the warp factor. Even if th¢19].
fifth dimension is uncompactified, standard 4D gravity is re- The effective gravitational field equations on the brane
produced on the brane. Hence this model allows the presenegorld, in which all the matter forces except gravity are con-
of large or even infinite noncompact extra dimensions andined on the 3-brane in a five-dimensional space time with
our brane is identified to a domain wall in a five-dimensionalZ,-symmetry, have been obtained by using an elegant geo-
anti—de SitteffAdS) space time. metric approach, by Shiromizat al. [20,21]. The correct
The Randall-Sundrum model was inspired by superstringignature for gravity is provided by the brane with positive
theory. The ten-dimension&g X Eg heterotic string theory, tension. If the bulk space time is exactly anti—de Sitter, ge-
which contains the standard model of elementary particlenerically the matter on the brane is required to be spatially
could be a promising candidate for a description of the reahomogeneous. The electric part of the five-dimensional Weyl
Universe. This theory is connected with an 11-dimensionatensorE,; gives the leading-order corrections to the conven-
theory, M theory, compactified on the orbifoR°<S'/Z,  tional Einstein equations on the brane. The four-dimensional
[3]. In this model we have two separated ten-dimensionafield equations for the induced metric and scalar field on the
manifolds. For a recent review of the dynamics and geomworld volume of a 3-brane in the five-dimensional bulk with
etry of brane universes sé4]. Einstein gravity plus a self-interacting scalar field have been
The static Randall-Sundrum solution has been extended tderived by Maeda and Wand®2]. The effective four-
time-dependent solutions and their cosmological propertiedimensional Einstein equations include terms due to scalar
fields and gravitational waves in the bulk.
The linearized perturbation equations in the generalized

*Email address: cmchen@phys.ntu.edu.tw Randall-Sundrum model have been obtained, by using the
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cal energy density determines the tidal acceleration in théulk viscosity leads to pathological behavior in the late Uni-
off-brane direction and can oppose singularity formation viaverse while the solutions of the full causal theory [82] (a)
the generalized Raychaudhuri equation. Isotropy of the coder stable fluid configurations the dissipative signals propa-
mic microwave background may no longer guarantee ajate causally(b) unlike in Eckart-type theories, there is no
Friedmann-Robertson-Walk€FRW) geometry. Vorticity on  generic short-wavelength secular instability, dodeven for
the brane decays as in general relativity, but nonlocal bulkotating fluids, the perturbations have a well-posed initial
effects can source the gravitomagnetic field, so that vectovalue problem. For general reviews on causal thermodynam-
perturbations can also be generated in the absence of vortiiws and its role in relativity seg33] and|[34].
ity. Causal bulk viscous thermodynamics has been exten-
A systematic analysis, using dynamical systems techsively used for describing the dynamics and evolution of the
nigues, of the qualitative behavior of the FRW, Bianchi typeearly Universe or in an astrophysical context. But due to the
| and V cosmological models in the Randall-Sundrum branecomplicated character of the evolution equations, very few
world scenario, with matter on the brane obeying a barotroexact cosmological solutions of the gravitational field equa-
pic equation of state=(y— 1)p, has been realized by Cam- tions are known in the framework of the full causal theory.
pos and Sopuert®4,25. In particular, they constructed the For a homogeneous Universe filled with a full causal viscous
state spaces for these models and discussed what new critidalid source obeying the relaticir p*/, exact general solu-
points appear, the occurrence of bifurcations and the dynantions of the field equations have been obtaineBB+37. In
ics of the anisotropy for both a vanishing and nonvanishinghis case the evolution of the bulk viscous cosmological
Weyl tensor in the bulk. model can be reduced to a Painleve-Ince type differential
All these investigations of brane cosmological modelsequation, whose invariant form can be reduced, by means of
have been performed under the simplifying assumption of aonlocal transformations, to a linear inhomogeneous ordi-
perfect cosmological fluid. But in many cosmological situa-nary second-order differential equation with constant coeffi-
tions an idealized fluid model of matter is inappropriate, escients[38]. It has also been proposed that causal bulk vis-
pecially in the case of matter at very high densities and pressous thermodynamics can model on a phenomenological
sures. Such possible situations are the relativistic transport dével matter creation in the early Univer$s6,39. Exact
photons, mixtures of cosmic elementary particles, evolutiorcausal viscous cosmologies wigh- p° have been obtained
of cosmic strings due to their interaction with each other andn [40].
surrounding matter, classical description of tfogiantum Because of technical reasons, most investigations of dis-
particle production phase, interaction between matter and raipative causal cosmologies have assumed FRW symmetry
diation, quark and gluon plasma viscosity, etc. From a physifi.e., homogeneity and isotropyor small perturbations
cal point of view the inclusion of dissipative terms in the around it{41]. The Einstein field equations for homogeneous
energy-momentum tensor of the cosmological fluid seems tmodels with dissipative fluids can be decoupled and there-
be the best motivated generalization of the matter term of théore are reduced to an autonomous system of first-order or-

gravitational field equations. dinary differential equations, which can be analyzed qualita-
The first attempts at creating a theory of relativistic fluidstively [42,43.
were those of Eckarf26] and Landau and Lifshit£27]. It is the purpose of the present paper to investigate the

These theories are now known to be pathological in severadffects of the bulk viscosity of the cosmological matter fluid
respects. Regardless of the choice of equation of state, abin the dynamics of the brane world. Since the effects of the
equilibrium states in these theories are unstable and in addéextra dimensions and also the viscous effects are more im-
tion signals may be propagated through the fluid at velocitieportant at high matter densities, we restrict our analysis to
exceeding the speed of light. These problems arise due to thiee extreme case of a stifZeldovich type cosmological
first-order nature of the theory, that is, it considers only first-fluid, with pressure equal to the energy density. Hence the
order deviations from the equilibrium leading to parabolic most important contribution to the energy density of the mat-
differential equations, hence to infinite speeds of propagatioter comes from the quadratic term in density, and during this
for heat flow and viscosity, in contradiction with the prin- period the energy density of matter is proportional to the
ciple of causality. Conventional theory is thus applicableHubble parameter, in opposition to the standard general rela-
only to phenomena that are quasistationary, i.e., slowly varytivistic case with energy density proportional to the square of
ing on space and time scales characterized by mean free patie Hubble parameter. In this case, and by assuming that the
and mean collision time. bulk viscosity coefficient and the temperature dependence of
A relativistic second-order theory was found by Israelthe cosmic fluid on the energy density are given by simple
[28] and developed by Israel and Stewg26)] into what is  power laws, the field equations can be solved exactly for
called “transient” or “extended” irreversible thermodynam- several explicit functional forms of the viscosity coefficient.
ics. In this model deviations from equilibriuiiibulk stress, The present paper is organized as follows. The field equa-
heat flow, and shear stresare treated as independent dy- tions on the brane describing the evolution of a viscous cos-
namical variables, leading to a total of 14 dynamical fluidmological fluid are written down in Sec. Il. In Sec. Ill we
variables to be determined. However, Hiscock and Lindblonpresent the general solution of the field equations for a con-
[30] and Hiscock and Salmons¢81] have shown that most stant bulk viscosity and a bulk viscosity coefficient propor-
versions of the causal second-order theories omit certain diional to the square root of the energy density. The study of
vergence terms. The truncated causal thermodynamics e stability of the equilibrium points of the dynamical sys-
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tem associated to the evolution of the viscous cosmological The Einstein equation in the bulk, Codazzi equation, also
fluid is performed in Sec. IV. In Sec. V we discuss and con-implies the conservation of the energy-momentum tensor of
clude our results. the matter on the brane

1. DISSIPATIVE COSMOLOGICAL FLUIDS ON THE DVT””:O. (7)
BRANE
Moreover, the contracted Bianchi identities on the brane im-

In the 5D space time the brane world is located as,, it the projected Weyl tensor should obey the constraint

Y(X")=0, whereX',1=0,1,2,3,4 are five-dimensional coor-

. “The effecti i i : . ) )
dinates e effective action in five dimensiong2g] D,E, =k§DVSM _ ®)

Finally, Egs.(3), (7), and(8) give the complete set of field
equations for the brane gravitational field.
For any matter field¢scalar field, perfect fluids, kinetic
+J d“x\/—_g iKt_)\H_matter 1) gases, dissipative fluids, et¢he general form of the brane
-0 kg ' energy-momentum tensor can be covariantly given as

S= f d°Xy/—gs

L Re-A
57 /)5
2k2

with ki=87Gs the five-dimensional gravitational coupling Tuv=puyu,+ph,,+m,,+2q,U,. 9
constant and where*, ©=0,1,2,3 are the induced four-

dimensional brane-world coordinate®s is the 5D intrinsic  The decomposition is irreducible for any chosen four-
curvature in the bulk and&k™ is the intrinsic curvature on Velocity u“. Herep andp are the energy density and isotro-
either side of the brane. pic pressure, and,,,=g,,+Uu,u, projects orthogonal ta*.

On the five-dimensional space tinfthe bulk, with the  The energy flux obeys,=q,,, and the anisotropic stress
negative vacuum energys and brane energy momentum as obeysw,,=m,,), Where angular brackets denote the pro-
the source of the gravitational field, the Einstein field equajected, symmetric, and tracefree part:
tions are given by

1
Giy=kiTiy,  Tiy=—Asgis+8(Y)[—\gyy+ T3] Vi=h.Vu,  Wemy=|h, hV)B_ghaﬁh#V}WaB'
2 (10)

In this space time a brane is a fixed point of #iesymme-
try. In the following capital Latin indices run in the range
0, ...,4while Greek indices take the values.0. ,3.
Assuming a metric of the formds?=(n;n;+g,;)dx'dx’,
with n,dx'=dy the unit normal to they=const hypersur-
faces andy,; the induced metric oy= const hypersurfaces, E —_—K4
the effective four-dimensional gravitational equations on the -
brane (which are the consequence of the Gauss-Codazzi
equation$ take the form[20,21]: wherek=ks/k,. In Eq. (11) U is the effective nonlocal en-
ergy density of the brane arising from the free gravitational
G,,=—Ag,, +KiT,,+kiS,,—E,,, (3)  field in the bulk,P,, is the nonlocal anisotropic stress car-
_ _ rying Coulomb, gravitomagnetic, and gravitational wave ef-
whereS,, is the local quadratic energy-momentum correc-fects from the bulk, whileQ is the effective nonlocal energy

The symmetric properties d&,, imply that, in general,
we can decompose it irreducibly with respect to a chosen
four-velocity fieldu* as

1
L{(uﬂuﬁ =h

3w +PMV+2Q(//-UV)

, (1D

tion flux on the brane.
1 1 1 The effect of the bulk viscosity of the cosmological fluid
— @ a 2 i i i
Sw_l_zTTuv_ ZT“ Tout ﬂgw(?’T AT s T2), can be considered by adding to the usual thermodynamic

pressurep the bulk viscous pressudd and formally substi-
(4) tuting the pressure terms in the energy-momentum tensor by
per=pP+1II. The particle flow vectoN* is given by N#
=nu*, wheren=0 is the particle number density.
In the framework of causal thermodynamics, and limiting
ourselves to second-order deviations from equilibrium, the
Ey=Ciaen™n®, E;—E,, 088 as x—0. (5 entropy flow vectorS* takes the form

andE,, is the nonlocal effect from the bulk free gravita-
tional field, transmitted projection of the bulk Weyl tensor

CIAJB!

2

The four-dimensional cosmological constant, and the _ T
coupling constantk,, are given by St=sN* 26T u, (12
2 2y 2 4
A E( K5\ ) k2=k5—)\ 6) wheres is the entropy per particle; the relaxation timeT
2\7% 6 )7 M6 the temperature, anélis the bulk viscosity coefficient.
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We consider that the heat transfer is zejg=0 in Eq. Since the effects of the extra dimensions are important at
(9), and also a vanishing effective nonlocal anisotropic stressery high densities, when the cosmological fluid behaves like
and energy fluxP,,=0=Q, . Then the matter corrections a Zeldovich fluid withp=p (y=2), as are also the dissipa-

are given by tive effects, we consider only the physical situation in which
the quadratic term dominates in the energy equaftis).
1 1 Therefore during the early period of evolution the energy
_ 2 il
Sur= 12° Uy 12p(p+2p6ﬁ)hf”' (13 density of the Universe is given approximately by

H . . ~3p0H, W|th 3p0: \ 6)\/k4
The line element of a flat Robertson-Walker metric is given | order to close the system of Eq45)—(19) we have to
by specify T, 7, andé.

— _dt24 32 21 v+ d 72 First, following [44] we suppose that the relatian=&/p
ds’=—dt+a%()(dx+dy*+dz). (14 holds in order to guarantee that the propagation velocity of
We also assume that the thermodynamic prespuoé the bulk viscous perturban(_)ns, ie., _the_nona@abgtlc contribution
cosmological fluid obeys a linear barotropic equation of statd® the speed of sound in a dissipative fluid without heat flux
p=(y—1)p,y=const and Ey=<2. Under these assump- OF Shear viscosity, does not exceed the speed of light. An
tions, the field equations and the conservation equations gnalysis of the relativistic kinetic equation for some simple

the Bianchi type | brane gravitational field take the form ~ Cases given by Belinskii and Khalatnikdw5], Belinskii
et al.[44] and Murphy{46] has shown that in the asymptotic

421 6U regions of small and large values of the energy density, the

3H2=A+k§p+ —p2+T, (15 viscosity coefficients can be approximated by power func-

2\ kah tions of the energy density with definite requirements on the
] exponents of these functions. For small values of the energy
2H+3H2=A—K3[(y—1)p+11] density it is reasonable to consider large exponents, equal in

2 the extreme case to one. For largehe power of the bulk
2Uu i i fficient should be considered smaltarequa)
4 2 viscosity coefficient shou altmrequal
—ﬁ[(zy—l)f) +2PH]—K, 19 o1/
4 Therefore we assume the following simple phenomeno-
logical laws for the bulk viscosity coefficient, temperature,

p3yHp=—3HII, A7 and relaxation time:
U+ 4HU=0, (18) P
| E=ap=EH®, T=Bp'=TH', r=-=——)
where the Hubble parameter is defined adH=a/a. N*,, P o (21)
=0 leads to the particle number conservation equation
+3Hn=0. where s=0, r=0, =0, and =0 are constants ang,
The causal evolution equation for the bulk viscous pres= a(3p)® and 7o= &, .
surell is given by[33] In the context of irreversible thermodynamigs,p, T and

the number density are equilibrium magnitudes which are
generally related by equations of state of the fogpm
=p(T,n) andp=p(T,n). From the requirement that the en-
tropy is a state function we obtain the equation

. 1
TH+H=—3§H—§TH

Equation(19) arises as the simplest wdlnear inIl) to
satisfy theH theorem[i.e., for the entropy production to be ap ptp T/(dp
nonnegativeS*.,=I1%/(£T)=0]. The Israel-Stewart theory ol " n  nleTl
is derived under the assumption that the thermodynamic state T n

of the fluid is close to equilibrium, which means that the hich imposes the constraint= (y— 1)/y. Hence for a Zel-
nonequilibrium bulk viscous pressure should be small wheryqyich fluid we have = 1/2.

compared to the local equilibrium pressure, thafll$<p. With these assumptions the bulk viscous pressiirean

The growth of the total comoving entropy(t) over a be obtained from Eq(17) in the form
proper time interval {p,t) is given by[34]

(22

3 (tHa®H H
SOt =~ | =3 o
0

H . (23

dt. (20) II=—po

An important observational quantity is the deceleration The bulk viscous evolution equatiqii9) can be written

parameteg=dH /dt— 1. The sign of the deceleration pa- as

rameter indicates whether the model inflates or not. The posi- .

tive sign ofq corresponds to “standard” decelerating models I+ EH ——3pH— EH( 3H _§ 3) (24)
whereas the negative sign indicates inflation. T 2 2
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and for a stiff cosmological fluid on the brane takes the form dw

w
- = —,(bWZ—W-i-l). (31)
H 7H? : dn" 7
IR AR SSH+67,H275=0. (25

H? Hence the general solution of EO) is given by

By means of the substitutiod =y~ *3, Eq. (25) takes the

w
form '=C————¢fW), (32)
7 Vbw?—w+1
. 9 -
y+(3+ moy*R)y 4/3)/—57'0)/(45 %)=, (26 whereC>0 is an arbitrary constant of integration,
By taking u=y and denotingv =1/u, Eq. (26) can be f(w)= 1] dw (33)
transformed to a second type Abel nonlinear first-order dif- bw?—w+1'
ferential equation:
and
dv asi-43 2. 2 as-5)3.3
d—y—(3+TOy )Yy v +E7'0y v°=0. (27 1 2bW—1—\/Z . 1
f(w)= \/_In i if b<Z’ (34
By introducing a new variable;=3y~ 3 Eq. (27) be- 2yA |\ 2bw—1+vA
comes
2 _ 1
do 34S+l f(W)Z—m, if b:Z' (35)
ﬁ+(3+34s7_07]745)v2_ 5 7'07]1 4S 3_ =0. (28)
f(w) 220 gt
W)= ——=arctan ———|, i —,
I1l. BRANE EVOLUTION OF DISSIPATIVE STIFF V—A V—A 4
COSMOLOGICAL FLUIDS (36)

In the previous section we have formulated the basiavhere we denoted =1—4b.
equations describing the dynamics of a dissipative stiff cos- Therefore the general solution of the field equations can
mological fluid on the brane. We have considered only thebe expressed in the following exact parametric form, with
extreme case of very high densities, when the main contrig=1Av taken as parameter:
bution to the energy of the matter is given by the quadratic
term in the energy-momentum tensor, due to the form of th _
Gauss-Codazzi equations, and which leads to major changige)_tozcof (0>~ 0+b)e”*"do, (37)
in the dynamics of the Universe. In this case the basic equa-
tion describing the evolution of the Universe can be reduced ()
to an Abel type equatio28). H(8)=Hg 5
It is the purpose of the present section to consider some (6°—6+Db)
exact classes of solutions of E@8), corresponding to some

(38

particular values of the constast a(0)=aoex —2CoHof ()], (39)
As a first case we assume that the bulk viscosity coeffi- B
cient ¢ is a constanté=&y=const, corresponding to the q(0)=46/CoHo—1, (40
choices=0 in the equation of state of the bulk viscosity 4(0)
coefficient. Fors=0 the temperature and the relaxation time _ _
are functions of density, according to the equations of state (o)= 2p°(92_ 0+ b)2(3H° 20/Co), (41)
(21).
For s=0 the evolution equatiof28) of the bulk viscous 6a3po\Ho
pressure takes the form 2(0)=2(0g) +———
dv 3
ﬁ+(3+ To)vZ— Eromﬁzo. (29 Xf (3CoHo—20)exfd 2f(0)(1—3CyH 0)]
(6°—6+b)?
By introducing a new variabley’ = (3+ 7y) » and denot- (42)
ing b=37,/2(3+ 75)?, Eq. (29) takes the form
d Z/l( 0)22/{0 quSCOHof(e)], (43)
1%
. _ ’ 3_
d7’ +v*=bn'v B0 hereH,=[C/3(3+ 70)]%, Co=3%(3+ 70)¥/C%, andty, ay,
andl{, are constants of integration. In the new variablgne
By takingv=w/7’, Eq. (30) is transformed into functionf is given byf(8)=—2"11(6°— 6+b) de.
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The thermodynamic consistency of the model can be stud- 1
ied from the ratio of the bulk viscous and thermodynamic H(o)= 8_1774(0)’ (53
pressure, which is given by
29(o)
I 1 _ 7
IZE‘:§|5_q| (44) a.(O') aoeXF{f 277_0 do s (54)
The second case we analyze corresponds to the extreme 4o 367,
limit of very high densities whes=1/2. Then Eq(28) takes q(o)= (o) 2 +11, (59)
the form n n°(o)
dv _ 27 _ M(o)= @ 2 37%(o)+2 —18
—+(3+97‘077 2)1)2——7'07] 103:0_ (45) (0-)_ 81 n (0-)[ n (0-) 0-77(0-) TO]7
dy 2
(56)
Introducing two new functionsA(%) = —27%/97y+ 2/3 5
and B(#)=—29/277, allows us to rewrite Eq(45) in the B _ 4podg J 2
general form 2(0)=%(00) 81roToks n(o)[3n°(o)
dv ve d A(n)] , p“ 27(0)
R i +2 —-18 do|do, 5
a7 B(7) | dn B(7) v (46) on(o) TolEX 97 oldo (57)
By introducing a new variable 8
U(o) =Uy ex 57 n(o)do|. (58
1 Aln) o
=0 By (47)
IV. STABILITY ANALYSIS OF THE EQUILIBRIUM
Eq (46) can be written in the genera| form POINTS OF THE VISCOUS COSMOLOGICAL FLUID
d7 The general evolution equation of the bulk viscous cos-

=B(7)a+A(7), (48 mological fluid on the brane is given by E®5). From a
do mathematical point of view it is a second-order nonlinear

differential equation of the formH+R(H,H)=0, with
R(H,H)=—7H%4H+ (3H+ 7oH " $)H + 6 7,H3"S. There-
dy 2 , 2 2 fore R(0,0)=Ilim R(H,X)=0 and R(H,0)#0 for H
ol / el 0/ b gl (49
do 979 277 3 #0.
In order to study the stability of the equilibrium points of
Hence we have transformed the initial Abel type equationthe evolution equation of the viscous cosmological fluid on
into a Riccati equation. A particular solution of E@9) is  the brane, Eq(25), we shall rewrite it in the form of an

or, equivalently,

H,X—0

given by autonomous dynamical system, by introducing a new vari-
7=9700A(0), (50) able X=H:
and therefore the general solution of E49) is ?TT:X’ (59)
A2(0')67 0'2/277'0
7(0)=9750A(0) +——— ! X T LS X a3 60
C1+¥f AZ(O_)efoz/Z?TodO_ a_ m_( +TO ) — 07 . ( )
0

(51) The critical points of this dynamical system are given by

whereA (o) = (02+277,/2) L and C, is a constant of inte- H=X=0. They correspond to a Minkowskian space time
gration. (a=const1) and to a de Sitter inflationary phase, wéh
Hence we obtain the general solution of the gravitationa™ €XPHof) andHo=const. The system has no other critical

field equations on the brane for a Zeldovich causal bulk visPoints besides the origin. _ _
cous fluid, with bulk viscosity coefficient proportional to the 1€ Lyapunov function/(H,X) associated to this system

square root of the density, in the following exact parametricc@n be chose47] as V(H,X)=X?/2+ [gR(s,0)ds and is
form, with o taken as parameter: given by

1 1.2, 67 4
t(o)—to=67, fr]_g(a)da, (52) V(H,X)=3X +aogH (61)
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FIG. 1. Variation as a function of time of the Hubble parameter FIG. 2. Time evolution of the scale factarof the brane Uni-

H of the brane Universe with confined dissipative cosmological’®">® ,With confineq dis.sipative. cosmological fluid with constant
fluid with constant coefficient of bulk viscosity for different values coefficient of bulk viscosity for different values of the paramdter

of the parameteb: b= 1/6 (solid curve, b= 1/4 (dotted curvg and b=1/6 (solid curvg, b=1/4 (dotted curvg andb=1/2 (dashed
b=1/2 (dashed curve The values of the constarity, Co, andt, curve. The values of the constandg, C,, andt, are different for
are different for each curve. each curve.

The Lyapunov function61) has the propertie¥/(0,0)=0  energy-momentum tensor, leading to an energy density of the
and dV/dt=7X3%4H — (3H+ roH' %) X?. According to the  cosmic fluid proportional to the Hubble parameter.

standard theory of this type of differential equati@7] the By assuming the usual equations of state for bulk viscos-
equilibrium state H=0,X=0) is stable if the conditions ity, temperature, and relaxation time, the field equations can
be solved exactly for some specific choices of the congtant

HR(H,0)=67,H* >0, for H#0, (62) describing the bulk viscosity coefficient-energy density func-
and tional relation.
For thes=0 case corresponding to a constant bulk vis-
IR(H,X) 7X e cosity coefficienté= const, the general solution of the field
—ox = 2p "3H*mH equations for the viscous fluid on the brane world is given by
Egs. (37)—(43). Since the bulk viscous pressurk must be
7 B negative I1<0, it follows that in order to satisfy this condi-
=H|7(q+1)+3+7H"®/=0, (63  fion the range of the parametér must be restricted ta
€[0,2/3].
holds, where the deceleration parameter —X/H2—1. In the limit of small times, we havé— 0 and one obtains

Moreover, if the conditiorvR(H,X)/dX>0 is satisfied for the following equations describing the evolution of the vis-
HX#0, the equilibrium state is asymptotically stalper].  cous cosmological fluid on the brane:
The equilibrium state is unstable #R(H,X)/dX<0 for

HX#0.
The stability criteria of the critical point can be formu- a~tCoHo2  H~t7 oMot p=p~t~2CoHet  gq=—1,
lated in terms of some conditions imposed on the decelera- (64)

tion parameter. In the limit of large timél— 0 and the term
H >0 dominates in the expression @R(H,X)/dX, mak-  II~—t"%, ~t"2CoHo 3 (1)~3(ty)+ 13~ CoHo)/2,
ing it obviously non-negative. In the small time limiy
—o and the condition of the stability of the critical point is
7(g+1)/2+3=0, or g=—13/7. If g>—13/7 the critical 0.75 "
point is also asymptotically stable. On the other handgfor
< —13/7 the equilibrium point is unstable.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the evolution of a
causal viscous dissipative cosmological fluid in the brane-
world scenario. As the only source of dissipation we have 40 60 80
considered the bulk viscosity of the matter on the brane. The £
most important differences to standard general relativity are g 3. pynamics of the deceleration paramegesf the brane
expected to occur in the limit of extremely high densities, ynjverse with confined dissipative cosmological fluid with constant
when the fluid obeys a Zeldovid(stiff) equation of state  coefficient of bulk viscosity for different values of the parameter
=p. In this case the Friedmann equation is modified due t®&=1/6 (solid curve, b=1/4 (dotted curv and b=1/2 (dashed
the presence of the terms from extra dimensions, quadratic iturve. The value of the constang is different for each curve and
the energy density, which dominates the other terms in thénhe constant€, andH, have been normalized so thayCy=1.
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FIG. 4. Variation as a function of time of the bulk viscous pres- /G- 6. Variation as a function of time of the Hubble parameter
surell of the brane Universe with confined dissipative cosmologi-H .Of the brane U.nllverse with c.;onflr]ed d|SS|p§ltlve cesmological
cal fluid with constant coefficient of bulk viscosity for different fluid with the coefficient of bulk viscosity proportional to the square
values of the parametds: b=1/6 (solid curve, b=1/4 (dotted root of the energy densitysE& 1/2) for different numerical values of

curve, andb= 1/2 (dashed curje The values of the constaritg,, M€ integration con_staml: C,=0.58(solid (iurve, C,=0.62(dot-
Co, andt, are different for each curve. ted curve, andC,;=0.66 (dashed curje(to=0). The constant,

has been normalized so thaj=1.

The variations of the scale factor, Hubble parameter, derag) Al the inflationary states clearly contradict the condi-
celeration parameter, bulk viscous pressure, and comovingyn On the other hand it is possible to find some particular

entropy of the constant bulk viscosity coefficient dissipatives the parameteb leading to thermodynamic consistency
cosmological fluid confined on the brane are presented i'EIuring the noninflationary phase.

Figs. 1-5. _ _ The time variations of the Hubble parameter, scale factor,
The evolution of the viscous brane Universe starts from &jeceleration parameter, bulk viscous pressure, and comoving

singular state, with infinite values of the energy density anchnropy for the brane Universe with a dissipative cosmologi-
pressure and zero scale factor. The initial evolution is infla| fluig with the bulk viscosity coefficient proportional to
tionary, with a negative deceleration parameter. But in thgpe square root of the energy density=(1/2) are repre-
large-time limit the dynamics becomes noninflationary, withgapted in Figs. 6-10.

the deceleration parametgk>0. Therefore the inclusion of The behavior of the Universe depends on the numerical
viscous effects during the period when the quadratic term iR 5|yes of the arbitrary integration constaBi and of the
energy densitycoming from extra dimensionsdominates  qnstantr,. For the chosen numerical values of these param-
the dynamics of the space time, provides an effective mechgsiers the Universe generally starts from a singular state, with
nism for the “graceful exit” of the brane world from the -qrq anq infinite values of the scale factor and energy den-
initial inflationary phase to a noninflationary era. Because Ogity, respectively. In order that the model represents a dissi-
dissipative effects the entropy on the brane is increasing iBative fluid, with negative bulk viscous pressure, the param-
time and a large amount of entropy is p_roduced in the earlyﬂem must satisfy the condition @< 187,/ 7(a) —37(c).
stages of the evolution of the brane Universe. The nonlocal, onnosition to the constant bulk viscosity case, the evolu-
energy density on the brang, is a decreasing function of yion is noninflationary for all times. Because of viscous dis-

time, so thg effects'o.f the gravitatio_nal' field on the b“|ksipative effects, a large amount of comoving entropy is cre-
becomg rapld!y negligible. But the criterion of the thermo- ta4 on the brane and the entropy of the Universe is
dynamic consistency of the modék:|I1/p|< 1, is not gen- increasing due to viscous dissipation.

erally satisfied in this model, as can be easily seen from Eq.

100

FIG. 7. Time evolution of the scale factarof the brane Uni-
FIG. 5. Time evolution of the comoving entrofy of the brane  verse with confined dissipative cosmological fluid with the coeffi-
Universe with confined dissipative cosmological fluid with constantcient of bulk viscosity proportional to the square root of the energy
coefficient of bulk viscosity for different values of the paraméter density 6=1/2) for different numerical values of the integration
b=1/6 (solid curve, b=1/4 (dotted curv¢ and b=1/2 (dashed constantC,: C;=0.58(solid curve, C;=0.62(dotted curvg and
curve. The values of the constarity,, Cy, tg, anda, are different  C,=0.66(dashed curvye(t,=0). The constant, has been normal-
for each curve. ized so thatry=1.
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FIG. 8. Dynamics of the deceleration paramejesf the brane FIG. 10. Dynamics of the comoving entroy of the brane
Universe with confined dissipative cosmological fluid with the co- ypjverse with confined dissipative cosmological fluid with the co-
efficient of bulk viscosity proportional to the square root of the efficient of bulk viscosity proportional to the square root of the
energy density §=1/2) for different numerical values of the inte- gnergy density §=1/2) for different numerical values of the inte-
gration constantC,: C,=0.58 (solid curvg, C;=0.62 (dotted  gration constantC,: C,=0.58 (solid curvé, C;=0.62 (dotted

curve, andC,=0.66 (dashed curve(to,=0). The constanto has  ¢yrve, andC,=0.66 (dashed curve(t,=0). The constant, has
been normalized so that=1. The deceleration parameter satisfies pean normalized so that=1.

the conditiong>0 for all times.

) ) o ) during the entire expansionary evolution period. But in the

Figure 11 presents the time variation of the rdtiof the  -ane model the evolution is noninflationary, with the con-
bulk viscous and thermodynamic pressures, respectively. FQfigtency condition satisfied, at least for a specific range of
all times|[I1/p|<1 and hence in this model the thermody- \ 5| es of the parameters, andC,, which are unknown for
namical consistency condition of the smallness of the bulky regjistic physical situatiofof course for some particular
viscous pressure is satisfied for all imes and for a large clasgymerical values of these parameters, inflationary initial be-
of adm|SS|bIe_ values of the integration const@@t@nd ofq_-o. havior or increasing energy density can also be obtained

The effective nonlocal energy on the bratg,is tending  pyring the general relativistic inflationary period the density,
rapidly to zero in the large time limit. _ temperature, bulk viscosity coefficient, and comoving en-
_ The general exact solution of the gravitational field equayyopy are rapidly increasing functions of time. In fact the
tions for a homogeneous flat FRW Universe filled with ageneral solution of the GR field equations describe a transi-
causal bulk viscous fluid with the bulk viscosity coefficient {jon petween two Minkowskian space times connected by an

: H 1/2 . . . .

proportional to the Hubble functiog~p™“~H has been ob- infjationary period. For some particular values of the param-
tained, in the framework of the standard general relativityeters one can also obtain general relativistic noninflationary
(GR), in [37]. The solution of the field equations can in this solutions[37].
case also be represented in an exact parametric form. There The consideration of viscous dissipative effects in the
are major differences between the general evolution of th@rane and general relativistic models in the extreme limit of
dissipative cosmological fluids in the brane and GR modelsvery high densities could be a useful way to differentiate

In GR the dynamics of the cosmological fluid described bypetween the two cosmological scenarios. The different be-
the general solution is inflationary for all times, with the

thermodynamic consistency conditiofil/p|<1 violated

0.9
0.8
-0.001 07
-0.002 o6
-0.003
& _0.004 0.5
-0.005 0.4
-0.006}" 0.3
~0.007 0 200 400 600 800 1000
0 200 400 600 800 1000 t
t

FIG. 11. Time variation of the absolute valuef the ratio of the

FIG. 9. Variation as a function of time of the bulk viscous pres- bulk viscous and thermodynamic pressuies|II/p| of the brane
surell of the brane Universe with confined dissipative cosmologi-Universe with confined dissipative cosmological fluid with the co-
cal fluid with the coefficient of bulk viscosity proportional to the efficient of bulk viscosity proportional to the square root of the
square root of the energy density=<1/2) for different numerical energy density §=1/2) for different numerical values of the inte-
values of the integration consta@t: C,;=0.58 (solid curve, C; gration constantC,: C;=0.58 (solid curvg, C;=0.62 (dotted
=0.62 (dotted curveg, and C,=0.66 (dashed curye(t,=0). The  curve, andC,=0.66 (dashed curve(t,=0). The constant, has
constantry has been normalized so thaj=1. As required by the been normalized so thaty=1. For all times for the chosen set of
model, the bulk viscous pressure is negative for all times. parameters the ratio of the pressures is smaller than 1.
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