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Dynamics and Berry phase of two-species Bose-Einstein condensates
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In terms of exact solutions of the time-dependent Schro¨dinger equation for an effective giant spin modeled
from a coupled two-mode Bose-Einstein condensate~BEC! with adiabatic and cyclic time-varying Raman
coupling between two hyperfine states of the BEC, we obtain analytic time-evolution formulas of the popula-
tion imbalance and relative phase between two components with various initial states, especially the SU~2!
coherent state. We find the Berry phase depending on the number parity of atoms, and particle number
dependence of the collapse revival of population-imbalance oscillation. It is shown that self-trapping and phase
locking can be achieved from initial SU~2! coherent states with proper parameters.
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I. INTRODUCTION

The experimental discovery of Bose-Einstein conden
tion in trapped atomic clouds opened up the exploration
quantum mechanics of mesoscopic systems in a qualitati
new regime. The cold gas clouds have many advantage
investigation of quantum phenomena, and hence becom
test ground of quantum-mechanical principles as well as
interplay between macroscopic and quantum coherence.
observation of matter-wave interference implies the real
tion of coherent atomic beams, atomic Josephson effect,
a variety of quantum interference phenomena@1#. In particu-
lar, recent experiments on two-component Bose-Eins
condensates~BECs! in 87Rb atoms@1,2# have stimulated
considerable interests in the phase dynamics and num
fluctuations of the condensates. Aside from its intrinsic
peal, the capability demonstrated by the recent experim
might lead to applications also on quantum computati
Based on the macroscopic wave-function approach it is d
onstrated that the Josephson effect exists in a driven t
state single-particle BEC in a single trap. The macrosco
quantum self-trapping, as well as thep-phase oscillations in
which the time-averaged value of the phase difference
equal top, has been studied extensively@3–7#. It is also
shown that the population oscillation is modulated by
collapses and revivals due to the quantum nature of the
tem @8–14#. The relative phase of two condensates in diff
ent hyperfine atomic states can be measured@2# using Ram-
sey’s method of separated oscillating fields@15# and it is
evident that the phase locking indeed occurs for small se
ration between condensates@1#, implying the broken gauge
symmetry. Most theoretical studies are focused on semic
sical analysis and a full quantum-mechanical formulation
the dynamics of the two-component BECs coupled by tim
dependent driving is certainly of interest and importance
is well known that the system of two-component BECs c
be described by a giant or mesoscopic pseudospin@16# using
Schwinger realization of angular momentum operators
terms of two-mode bosons. Berry phase@17# emerges natu-
rally in the mesoscopic pseudospin model@16# if the cou-
1050-2947/2004/69~2!/023611~9!/$22.50 69 0236
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pling between two components varies with time cyclica
and adiabatically. The Berry phase in the mesoscopic s
model for the coupled two-component BECs has been
plored recently in an elegant way by means of geome
evolutions@16#. Trapped atomic BECs make it possible
create mesoscopic quantum objects containing of the o
106 atoms in the same quantum state with a longer lifetim
allowing the implementation of adiabatic evolution which
required for the Berry Phase. However, the dynamics of
mesoscopic spin modeled from the two-mode BEC has
yet been studied in the quantum-mechanical formalism.
in the present paper use the exact solution of the tim
dependent Schro¨dinger equation for the mesoscopic spin
provide a quantum-mechanical evaluation of the phase
namics and the number fluctuation. With the time-evoluti
operator obtained by means of the generator of tim
dependent SU~2! coherent states@18# we are able to derive
analytic time-evolution formulas of both population imba
ance and relative phase between the two-component B
for various initial states, in particular, the SU~2! coherent
state with which the new effect of particle number depe
dence is discovered. Moreover, our approach has the ad
tage to obtain the phase dynamics and number fluctuation
both cases with and without the nonlinear interatomic co
sions in the same framework so that the effects of int
atomic collision can be recognized explicitly by compari
the results between two cases. We show that interatomic
lisions do not affect the Berry phase but lead to the damp
and collapse revival of the population-imbalance oscillat
depending explicitly on the coupling strength and the to
number of atoms as well. The SU~2! coherent states are th
most realistic initial states for the two-species BEC crea
by coupling two hyperfine states of atoms with radiation fie
@12#. To our knowledge, we in this paper report for the fir
time a full quantum-mechanical evaluation of the dynam
of the two-species BEC described by an explicitly tim
dependent Hamiltonian with the initial SU~2! coherent states
and the phenomena such as self-trapping, phase locking
collapse-revival are recovered theoretically in the same
malism.
©2004 The American Physical Society11-1
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The plan of the paper is as follows. In Sec. II we deri
the mesoscopic spin model from the two-component BE
The SU~2! coherent states, which are considered as m
practical initial states for the two-species BEC, are brie
introduced. The dynamics and Berry phase of the pseudo
are investigated in terms of the SU~2! coherent-state tech
nique for both cases with and without the interatomic co
sions in Sec. III.

II. MODEL AND INITIAL STATE

We consider the Bose-Einstein condensate of trap
atomic gas in a single trap consisting of two internal sta
which are coupled by a spatially uniform radiation field wi
a Rabi frequencyL. Atoms are subjected to trapping pote
tial Vl ( l 5a,b). The atoms interact via elastic two-bod
collisions with the interaction potential ofd-function-type. In
the formalism of second quantization, the system is
scribed by the Hamilton operator

Ĥ5 (
l 5a,b

Ĥ l1Ĥ int1Ĥ f , ~1!

Ĥ l5E d3r H Ĉ l
†~r !F2

\2

2m
D21Vl~r !GĈ l~r !

1
ql

2
Ĉ l

†~r !Ĉ l
†~r !Ĉ l~r !Ĉ l~r !J , ~2!

Ĥ int5qa,bE d3rĈa
†~r !Ĉb

†~r !Ĉa~r !Ĉb~r !, ~3!

Ĥ f5L~ t !E d3r @Ĉa
†~r !Ĉb~r !eiw(t)1Ĉb

†~r !Ĉa~r !e2 iw(t)#.

~4!

Here we have used the field interaction representation in
tating frame. The Rabi frequencyL(t) is time dependent in
the sense that it can be turned on and off adiabatically@3#.
The phasew(t) due to the small detuning of external fie
from resonance excitation varies with time slowly and the
fore we work on the adiabatically time-varying Hamiltonia
The phasew(t) we see plays a central role in generating
the Berry phase.

In the two-mode approximation of condensation such t

Ĉa(r )'âfa(r ),Ĉb(r )'b̂fb(r ), whereâ,b̂ are the annihi-
lation operators obeying the usual boson commutation r
tions, we have

Ĥa5vaâ†â1
ha

2
â†â†ââ, ~5!

Ĥb5vbb̂†b̂1
hb

2
b̂†b̂†b̂b̂ ~6!

with
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v l5E d3rf l* ~r !F2
\2

2m
D21Vl~r !Gf l~r !, l 5a,b,

~7!

and

h l5qlE d3r zf l~r !u4, l 5a,b.

The interaction operator between two species of atoms i

Ĥ int5xâ†âb̂†b̂, ~8!

where

x5qa,bE d3r ufa~r !u2ufb~r !u2.

The transition operator induced by the external field is

Ĥ f5G~ t !~ â†b̂eiw(t)1b̂†âe2 iw(t)! ~9!

with

G~ t !5L~ t !E d3rfa* ~r !fb~r !.

The time-dependent coupling drive is characterized by
Rabi frequencyL(t) and the phasew(t). Here we consider
the adiabatically varying phasew(t) such that its time de-
rivative is negligibly small. The study of the dynamics of th
system would be greatly simplified by introducing of th
pseudoangular-momentum operators in terms of Schwin
relation,

Ĵx5 1
2 ~ â†b̂1b̂†â!, ~10!

Ĵy5
1

2i
~ â†b̂2b̂†â!, ~11!

Ĵz5
1
2 ~ â†â2b̂†b̂!. ~12!

The Casimir invariant is

J2̂5
N̂

2
S N̂

2
11D , ~13!

whereN̂5â†â1b̂†b̂ is the total number operator, which is
conserved quantity and thus is set equal to the total num
of atomsN52 j with j being the quantum number of angul
momentum. The Hamilton operator apart from a trivial co
stant reads

Ĥ5v0Ĵz1qĴz
21G~ t !~ Ĵ1eiw(t)1 Ĵ2e2 iw(t)!, ~14!

where v05va2vb1(N21)(ha2hb)/2, q5(ha1hb)/2
2x, and Ĵ65 Ĵx6 i Ĵy .

The relative phase of the two-mode BEC surely can
abstracted from the expectation value of the angular mom
1-2
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tum operatorsĴ6 , which along with the expectation value o
Ĵz ~giving rise to the population imbalance between tw
components of BECs! is a measurable quantity in exper
ment.

Since the two-component BECs are experimentally c
ated by coupling two hyperfine states with radiation field
has been shown that the prepared initial state can be a
ticular case of the SU~2! coherent state@12# ~or known as
atomic coherent state in quantum optics! which describes a
state with a well-defined relative phase between the two s
cies. However, a full quantum evaluation of the dynamics
the two-species BECs coupled by time-dependent driv
with the initial spin coherent states has not yet been giv
The SU~2! coherent state is defined as

Ĵ•nun&5 j un&, ~15!

wheren5(sinu cosf,sinu sinf,cosu) is a unit vector. The
SU~2! coherent state can be generated from an extre
Dicke state such that

V̂~u,f!u j , j &5un&, ~16!

where

V̂~u,f!5eu/2(Ĵ2eif2 Ĵ1e2 if). ~17!

This is called the coherent state in the north pole gauge
compared to the generation of the coherent state from
extreme stateu j ,2 j & where it is called the state in the sou
pole gauge. The Dicke states are defined as usualĴzu j ,m&
5mu j ,m& and can be generated from the vacuum by bo
creation operators, i.e.,

u j ,m&5
1

A~ j 1m!! ~ j 2m!!
~ â†! j 1m~ b̂†! j 2mu0&. ~18!

The coherent state of Eq.~16! can be expanded in terms o
the Dicke states,

un&5 (
m52 j

j S 2 j

j 1mD 1/2S cos
u

2D j 1mS sin
u

2D j 2m

ei ( j 2m)fu j ,m&.

~19!

It is easy to verify that

^Ĵz&5^nzĴzun&5
N

2
cosu, ^Ĵ1&5

N

2
sinueif,

^Ĵ2&5
N

2
sinu e2 if ~20!

and the phaseeif is seen to be the relative phase of the tw
species prepared in the initial SU~2! coherent state. In this
paper the generator of SU~2! coherent states Eq.~17! is used
as a unitary transformation to formulate the dynamics of
mesoscopic spin system modeled from the two-compon
BECs.
02361
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III. DYNAMICS AND BERRY PHASE

A. The case ofqÄ0

We first of all consider the case ofq50 achieved by the
condition (ha1hb)/25x , which, although a special case,
practical in the range of BEC parameters. The equalityqa
'qb'qab can be fulfilled practically for the two-componen
BECs consisting of87Rb atoms with different internal state
since the scattering lengths of atoms with the two inter
states are known at the 1% level to be@2# in proportion
aa :aab :ab51.03:1:0.97, whereaa and ab are the same-
species scattering lengths andaab is the scattering length fo
interspecies collisions. The ground-state wave function
same,fa(r )5fb(r ), and therefore the conditionha'hb
'x can be satisfied. The model in the case ofq50 is ex-
actly solvable. We start with a generalized gauge transfor
tion @19# in terms of the time-dependent unitary transform
tion @20# defined by

R̂~ t !5el/2(Ĵ2e2 iw(t)2 Ĵ1eiw(t)), ~21!

which has the same form as the generator Eq.~17! of SU~2!
coherent states and is the key point of the present form
tion. The time-dependent Schro¨dinger equation is covarian
under the gauge transformation@19# such that

i
d

dt
uc8~ t !&5Ĥ8uc8~ t !&, ~22!

where

Ĥ85R̂ĤR̂†2 iR̂
]

]t
R̂†, uc8~ t !&5R̂uc~ t !& ~23!

and the stateuc(t)& is assumed to be the solution of origin
Schrödinger equation

i
d

dt
uc~ t !&5Ĥuc~ t !&. ~24!

The auxiliary parameterl, which is time dependent in gen
eral, is to be determined by requiring that the Hamilton o
eratorĤ8 is diagonal in theĴz representation. Using the re
lations given in the Appendix@Eqs. ~A1!–~A4!# @20#, and
noticing the adiabatic condition thatdw/dt.0 and dl/dt
.0, we obtain the Hamilton operator

Ĥ85a~ t !Ĵz , a~ t !5Av0
214G2~ t ! ~25!

with auxiliary parameterl chosen as

sinl52
2G~ t !

v0
cosl ~26!

and

cosl5
v0

a~ t !
. ~27!
1-3
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It is easy to obtain the exact general solution of the origi
Schrödinger equation

uc~ t !&5 (
m52 j

j

cme2 iam(t)u j ,m~ t !&, u j ,m~ t !&5R̂†~ t !u j ,m&

~28!

with u j ,m& being the usual eigenstate of angular moment
Ĵz so thatĴzu j ,m&5mu j ,m&. The total phase is seen to be

am~ t !5«m~ t !1gm~ t !5mE
0

t

a~ t8!dt8, ~29!

which consists of the dynamical part given by

«m~ t !5E
0

t

^ j ,m~ t8!uĤu j ,m~ t8!&dt8 ~30!

and the geometric part, i.e., the Berry phase

gm~ t !52 i E
0

t

^ j ,m~ t8!u
]

]t8
u j ,m~ t8!&dt8, ~31!

which is defined in the usual way. In the following we on
consider a time-independent Rabi frequencyG for the sake
of simplicity. For a variation of one periodT, i.e., w(T)
2w(0)52p, the Berry phase is found as

gm~T!52m R ~12cosl!dw5m
v02a

a
2p, ~32!

which has an obvious, geometric meaning from the vie
point of differential geometry that the one formdw is exact
but not closed, wherea5Av0

214G2, which is a time-
independent parameter. The Berry phase does not depen
an explicit form of the functionw(t) and is simplym times
of a solid angle with the polar anglel, in agreement with the
recent result reported in Ref.@16# in which the Berry phase is
evaluated in terms of geometric evolutions for the coup
two-component BECs. We, however, following the origin
procedure of Berry@17#, obtain the Berry phase and the exa
wave function as well by solving the time-dependent Sch¨-
dinger equation. In our approach the time evolution of b
population imbalance and relative phase between two c
ponents of BECs can be investigated analytically. The
plicit dependence of the Berry phase on the parameter
two-species BECs is also given with our procedure and
properties of the Berry phase can be explored. The geom
phase is actually the same as obtained in the contex
SU~2! coherent-state path integrals@21#. To study the dynam-
ics of the mesoscopic spin it is useful to derive the expl
time-evolution operator such that

uc~ t !&5Û~ t !uc~0!&, ~33!

where the time-evolution operator is found from the ex
general solution of the time-dependent Schro¨dinger equation
uc(t)& in Eq. ~28! as @20#
02361
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Û~ t !5R̂†~ t !e2 iat ĴzR̂~0!. ~34!

For a given initial stateuc(0)& of the system the population
imbalance between two components can be evaluated b

DN~ t !5Na~ t !2Nb~ t !52^c~0!uĴz~ t !uc~0!&, ~35!

where the time-dependent angular momentum operatorĴz(t)
in the Heisenberg picture is given in the Appendix@Eq. ~A5!#
with the help of Eqs.~A1!–~A4!. For the sake of simplicity,
we have set the initial phase to zero, i.e.,w(0)50. To have
the phase dynamics we need also the time-dependent an
momentumĴ1(t) or Ĵ2(t) in the Heisenberg picture and th
explicit formula of Ĵ1(t) is shown in Eq.~A6!. The time
evolution of population imbalance and the expectation va
of Ĵ1(t) given by

^Ĵ1&5^c~0!uĴ1~ t !uc~0!& ~36!

are evaluated for various initial states as follows.
~1! We consider, first of all, the initial stateuc(0)&1

5u j ,m& and obtain in terms of Eqs.~A5! and ~A6!

DN1~ t !5
2m

a2
@v0

214G2 cos$at1w~ t !%# ~37!

and

^ Ĵ1&15m sinlF2cosle2 iw(t)1cos2
l

2
eiat

2sin2
l

2
e2 i [2w(t)1at] G . ~38!

The population imbalance exhibits a simple oscillation. It
interesting to see a fact that the state of vanishing imbala
can be achieved for the case of even number of particles~i.e.,
j 5N/2 is integer! with the initial state ofm50, but not for
the case of odd number of particles wherej is half-integer
and the state ofm50 does not exist.

~2! For a general SU~2! coherent stateuc(0)&25un&, the
population imbalance is found as

DN2~ t !5
N

2 S $cos2l1sin2l cos@at1w~ t !] %cos u

2sin l cosl sin u cosf1Fcos2
l

2
cos@at1w~ t !

1f#2sin2
l

2
cos@at1w~ t !2f#Gsinl sinu D .

~39!

The self-trapping with nonvanishing population imbalan
takes place for the initial state withf50 andu52 l. The
population imbalance thus reduces to
1-4
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DN2~ t;f50,u52l!5
N

2
cosl5

N

2

v0

a
. ~40!

The asymmetric trap potential, i.e., nonvanishingv0 is the
necessary condition to achieve the self-trapping. The exp
tation value of angular momentum operatorĴ1(t) for the
initial SU~2! coherent state is seen to be

^Ĵ1&25
N

2 H sinlFcos2
l

2
eiat2sin2

l

2
e2 i [at12w(t)]

2cosle2 iw(t)Gcosu1Fcos4
l

2
eiat

1sin4
l

2
e2 i [at12w(t)]1

1

2
sin2 le2 iw(t)Geif sinu

1F2cos2
l

2
sin2

l

2
~eiat1e2 i [at12w(t)] !

1
1

2
sin2 le2 iw(t)Ge2 if sinuJ ~41!

and reduces to

^ Ĵ1&2~f50,u52l!5N
G

a
e2 iw(t) ~42!

for the initial state withf50 andu52l, indicating obvi-
ously the phase locking. We see that self-trapping of b
population imbalance and relative phase of the tw
component BECs can be obtained simultaneously from
SU~2! coherent state. For the particular case of symme
trap potentialva5vb (v050) we havel52p/2 seen from
Eq. ~27!, and the Berry phase then reduces to

gm~T,v050!5m R dw5m2p. ~43!

The population imbalance is

DN1~ t,v050!5m cos@2Gt1w~ t !# ~44!

and

^ Ĵ1&1~v050!5m@ 1
2 ei2Gt2 1

2 e2 i [2w(t)12Gt] # . ~45!

The population imbalance for the initial SU~2! coherent state
vanishes as seen obviously from Eq.~40! in the case ofv0
50, while

^ Ĵ1&2~f50,u52l,v050!5
N

2
e2 iw(t). ~46!

The relative phase of two components is locked exactly
the phase of external field. The phase locking, remains in
case with interatom collisions, i.e., the nonvanishingq. It
may be worthwhile to emphasize that the Berry phase of
~43! is trivial in the case of an even number of particles (m is
integer! while it would lead to an antiperiodic wave functio
02361
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under 2p evolution of the phase anglew for the odd number
of particles (m is half-integer in this case! similar to the spin
parity effect in the macroscopic quantum coherence in s
systems@22–24#.

B. With nonlinear interactions

We now consider the general case with nonvanishing
small q for the practical model at hand, i.e., the two-spec
BEC created by coupling two hyperfine states of87Rb atoms.
For a single trap a reasonable condition isv050 (l
52p/2). With the help of time-dependent unitary transfo
mation, Eq.~21!, and the relation given by

R̂Ĵz
2R̂†5 Ĵz

2 cos2 l1 1
2 @~ ĴzĴ11 Ĵ1Ĵz!e

iw(t)

1~ ĴzĴ21 Ĵ2Ĵz!e
2 iw(t)#cosl sinl1 1

4 ~ Ĵ1
2 ei2w(t)

1 Ĵ1Ĵ21 Ĵ2Ĵ11 Ĵ2
2 e2 i2w(t)!sin2 l, ~47!

we obtain, apart from a trivial constant,

Ĥ852GĴz2
q

2
Ĵz

2 , ~48!

where the two-photon transition terms~proportional to
Ĵ1

2 ei2w(t) and Ĵ2
2 e2 i2w(t)) have been neglected as a reaso

able approximation@13,14# which is good enough for the
small q in comparing with the transition coupling betwee
two components, namely,q!G. The Berry phase in this
case is the same as Eq.~43! due tov050. The interatom
collisions do not affect the Berry phase. The time-evoluti
operator is

ÛqS 2
p

2
,t D5R̂†S 2

p

2
,t DexpF i t S GĴz1

q

2
Ĵz

2D GR̂S 2
p

2
,0D .

~49!

The population imbalance for the initial stateuc1(0)&
5u j , j & is possible to be evaluated with the help of Eq.~16!
and the Dicke-state representation of the SU~2! coherent
state Eq.~19! as

DN1~q,t !5S 1

2D N

(
m52N/2

N/221

~21!N22mS N

N

2
1m11D

3S N

2
1m11D 1/2

3cosH FG1qS m1
1

2D G t2w~ t !J . ~50!

To compare the time evolution of population imbalance o
tained here with that in the case ofq50, i.e., Eq.~44! ~for
m5 j 5N/2) where the time variation of imbalance is
simple oscillation, the time evolution of Eq.~50! is shown in
Fig. 1 with various values of the ratioq/G and the number of
particlesN. It is seen that the damping goes faster when
1-5
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number of particles,N, and the ratioq/G increase@Figs.
1~a,b!#. The N dependence of the oscillation of populatio
imbalance for fixed ratioq/G is shown in Fig. 1~a! for N
5102 ~dashed line!, N5103 ~dotted line!, andN5104 ~solid
line!, respectively. The nonlinear interaction dependence
a fixed number of particles,N5103, is shown in Fig. 1~b! for
q/G50.01;0.1. With the similar method the time-evolutio
of population imbalance from the initial spin coherent st
Eq. ~16!, uc2(0)&5un&, with nonvanishingq is obtained as

DN2~q,t !52 (
m52N/2

N/221 S N

N

2
1m11D S N

2
1m11D 1/2

3cosN12m11S 2p/21u

2 D

3sinN22m21S 2
p

2
1u

2
D

3cosH FG1qS m1
1

2D G t2f2w~ t !J , ~51!

where we again use the Dicke-state representation of S~2!
coherent state Eq.~19!. The oscillation of population imbal
ance is shown in Fig. 2 with various values of the coupli
strengthq/G and angleu @for the sake of simplicity we se
f5w(t)50]. Besides the damping, the most important
fect of the nonlinear interaction with initial spin cohere
state is the collapse revival of the population-imbalance
cillation. The particle number dependence of collapse rev
is shown in Fig. 2~a! for fixed q/G and the parameteru. We
observe an interesting phenomenon that the frequency o
collapse revival depends on both the number of particles
the coupling strengthq/G. In Figs. 2~b,c! we show the fre-
quency behavior of the collapse revival varying with t
product of the particle number and the coupling streng
Nq/G. The frequency is almost the same for the same va
of the productNq/G while different individual values ofN
and q/G. Moreover Nq/G dependence of collapse-reviv
frequency is not monotonic. A critical valueNq/G565 is
found at which the frequency of collapse revival approac
a minimum. To see the effect of nonlinear interatom co
sions closely we look at the population imbalance Eq.~39!
with f5w(t)50 for the case ofq50 as a comparison. In
that case the population imbalance of Eq.~39! reduces to a
simple oscillation such that

DN2~ t,v050!5
N

2
cosu cos~2Gt! ~52!

for v050. It is obvious that the nonlinear interaction resu
in both damping and collapse revival of populatio
imbalance oscillation. The simple oscillation of Eq.~52! with
Rabi frequency is in agreement with the experimental ob
vation @2#.

Particularly, the initial state can be prepared such thau
5p/2, the population imbalance vanishes for both ca
02361
r

e

-

s-
al

he
d

,
e

s
-

r-

s

with and without the nonlinear interatom collisions@see Eq.
~52!#. The phase-locking state is achieved again by see
that

^ Ĵ1~q,t !&2S f50,u5
p

2 D5
N

2
e2 iw(t), ~53!

which is the same as Eq.~46! for the case ofq50. In other
words, phase locking is independent of the nonlinear in
action. The expectation value^ Ĵ1(q,t)&2 for generalf, u is
also derived analytically with the help of Eqs.~16! and~19!.
The resulting formula is tedious and may not be of interes
be presented here.

IV. CONCLUSION

Using the exact solution of the time-dependent Sch¨-
dinger equation the population imbalance and phase dyn
ics are evaluated with various initial states, particularly w
SU~2! coherent states which are the most realistic init
states for the two-species BEC created by coupling two

FIG. 1. Time evolution of population imbalance from initia
stateuc1(0)&5u j , j &, w(t)50. ~a! q/G50.01; N5102,103,104. ~b!
N5103, q/G50.01;0.1.
1-6
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FIG. 2. Time evolution of population imbalance from initial stateuc2(0)&5un&, w(t)5f50, u50.8p/2. ~a! q/G50.01, N5103

;83103. ~b! Nq/G dependence ofDN2(q,t), for Nq/G560;70; left N523103; right N533103. ~c! Nq/G dependence ofDN2(q,t),
for Nq/G560;70; left N543103; right N553103.
023611-7
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FIG. 2 ~Continued!.
as

a
ho

om
th
c

da
perfine states of atoms with radiation field@12#. We conclude
that self-trapping can be achieved from the initial SU~2! co-
herent state with an asymmetric trap potential only. Ph
locking is obtained also from the initial SU~2! coherent state
and is independent of the nonlinear interaction, which m
be observed experimentally in terms of Ramsey’s met
measuring the relative phase of two components of BEC
different hyperfine atomic states. The nonlinear interat
coupling does not affect the Berry phase but leads to
damping and collapse revival of the population-imbalan
oscillations. The interesting particle number dependence
the collapse revival and Berry phase as well is explored.
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APPENDIX

It is easy to prove the following useful relations@20#:

R̂Ĵ1R̂†5 Ĵ1 cos2
l

2
2 Ĵ2e22iw(t) sin2

l

2
2 Ĵze

2 iw(t) sinl ,

~A1!

R̂Ĵ2R̂†5 Ĵ2 cos2
l

2
2 Ĵ1e2iw(t) sin2

l

2
2 Ĵze

iw(t) sinl ,

~A2!
02361
e

y
d
in

e
e
of

-

R̂ĴzR̂
†5 Ĵz cosl1 1

2 ~ Ĵ1eiw(t)1 Ĵ2e2 iw(t)!sinl , ~A3!

iR̂
]

]t
R̂†52

dw

dt
sin2

l

2
Ĵz2

1

2

dw

dt
sinl~eiwĴ11e2 iwĴ2!

1
i

2

dl

dt
~eiwĴ12e2 iwĴ2!. ~A4!

The time-dependent angular momentum operatorsĴz and
Ĵ1 are obtained, respectively, as

Ĵz~ t !5Û†~ t !ĴzÛ~ t !

5@cos2 l1sin2 l cos$at1w~ t !%# Ĵz

1
1

2
sinlF2cosl1cos2

l

2
e2 i [at1w(t)]

2sin2
l

2
ei [at1w(t)] G Ĵ11

1

2
sinl

3F2cosl1cos2
l

2
ei (at1w(t))

2sin2
l

2
e2 i (at1w(t))G Ĵ2 , ~A5!

and
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Ĵ1~ t !5sinlFcos2
l

2
eia(t)2sin2

l

2
e2 i [a(t)12w(t)]2cosle2 iw(t)G Ĵz1Fcos4

l

2
eia(t)1sin4

l

2
e2 i [a(t)12w(t)]

1
1

2
sin2le2 iw(t)G Ĵ11H 2cos2

l

2
sin2

l

2
@eia(t)1e2 i [a(t)12w(t)] #1

1

2
sin2 le2 iw(t)J Ĵ2 . ~A6!
e

nd

s-

s.

hy

hy

d

,

hoi,

li-

tt.
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