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ABSTRACT

We consider the general conditions of quark droplet formation in high-density neutron matter. The growth of
the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a
Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the
medium in which it takes place. The conditions for quark bubble formation are analyzed within the framework of
both dissipative and nondissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion
time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and
of the microscopic parameters of the quark nuclei. As an application of the formalism obtained, we analyze the
first-order phase transition from neutron matter to quark matter in rapidly rotating neutron star cores, triggered by
the gravitational energy released during the spinning down of the neutron star. The endothermic conversion
process, via gravitational energy absorption, could take place in a very short time interval, of the order of a few
tens of seconds, in a class of dense compact objects with very high magnetic fields, called magnetars.

Subject headings: dense matter — pulsars: general — stars: interiors — stars: neutron

1. INTRODUCTION

Since Witten (1984), following early proposals by Itoh
(1970) and Bodmer (1971), suggested that strange quark
matter, consisting of u-, d-, and s-quarks, is energetically the
most favorable state of matter, the problem of the existence of
strange quark stars has been intensively investigated in the
physical and astrophysical literature. The possibility that some
compact objects could be strange stars remains an interesting
and intriguing, but still open, question. Witten (1984) also
proposed two possible formation scenarios for strange matter:
the quark-hadron phase transition in the early universe, and
conversion of neutron stars into strange ones at ultrahigh
densities. In the theories of strong interaction, quark bag
models suppose that breaking of the physical vacuum takes
place inside hadrons. As a result, vacuum energy densities
inside and outside a hadron become essentially different, and
the vacuum pressure on the bag wall equilibrates the pressure
of quarks, thus stabilizing the system. If the hypothesis of
quark matter is true, then some neutron stars could actually be
strange stars, made entirely of strange matter (Alcock et al.
1986; Haensel et al. 1986). However, there are general argu-
ments against the existence of strange stars (Caldwell &
Friedman 1991). For an extensive review of strange star
properties, see Cheng et al. (1998a).

Several mechanisms have been proposed for the formation
of quark stars. Quark stars are expected to form during the
collapse of the core of a massive star after a supernova ex-
plosion, as a result of a first- or second-order phase transition,
resulting in deconfined quark matter (Dai et al. 1995). The
proto–neutron star core, or the neutron star core, is a favorable
environment for the conversion of ordinary matter to strange
quark matter (Cheng et al. 1998b). Another possibility is that
some neutron stars in low-mass X-ray binaries can accrete
sufficient mass to undergo a phase transition to become
strange stars (Cheng & Dai 1996). This mechanism has also
been proposed as a source of radiation emission for cosmo-
logical gamma-ray bursts (Cheng & Dai 1998). Some basic
properties of strange stars, such as mass, radius, cooling,

collapse, and surface radiation, have also been studied (Cheng
& Harko 2000, 2003; Harko & Cheng 2000, 2002; Ng et al.
2003).

The physical mechanisms of the transition from neutron
matter to quark matter in an astrophysical background have
been studied in several models. The first is that of Olinto
(1987), who used a nonrelativistic diffusion model. As such,
this is a slow combustion model, with the burning front
propagating at a speed of approximately 10 m s�1. This is
determined primarily by the rate at which one of the down
quarks inside the neutrons is converted, through a weak decay,
to a strange quark: d þ u ! sþ u. The second method of
describing the conversion process was first suggested by
Horvath & Benvenuto (1988) and analyzed in detail by
Lugones et al. (1994) and Lugones & Benvenuto (1995), who
modeled the conversion as a detonation. In this case the
conversion rate is several orders of magnitude faster than that
predicted by the slow combustion model. This model is based
on the relativistic shock waves and combustion theory. But
regardless of the way in which the transformation occurs, an
initial seed of quark matter is needed to start the process.

Real neutron stars have two conserved charges: electric and
baryonic. Therefore, a neutron star has more than one inde-
pendent component, and in this sense is a ‘‘complex’’ system
(Glendenning 1992). The characteristics of a first-order phase
transition, such as the deconfinement transition, are very dif-
ferent in the two cases. In the complex system the conserved
charges can be shared by the two phases in equilibrium in
different concentrations in each phase. The mixed phase,
formed from hadrons and quarks, cannot exist in a simple
body in the presence of gravity because the pressure in that
phase is a constant (Glendenning 2000). This causes a dis-
continuity in the density distribution in the star occurring at
the radius where Gibbs criteria are satisfied. The isospin
symmetry energy in neutron-rich matter will exploit the de-
gree of freedom of readjusting the charges between hadronic
and quark phases in equilibrium so as to reduce the symmetry
energy to an extent consistent with charge conservation.
Regions of hadronic matter will have a net positive charge

945

The Astrophysical Journal, 608:945–956, 2004 June 20

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



neutralized by a net negative charge on the quark matter
regions (Glendenning 2000). Coulomb repulsion will prevent
the regions of like charge from growing too large, and the
surface energy will act in the opposite sense in preventing
them from becoming too small. Consequently, the mixed
phase will form a Coulomb lattice so as to minimize the sum
of Coulomb and surface interface energy at each proportion
of phases. As the quark phase becomes more abundant, the
droplets merge to form rods, rods merge to form slabs, etc.
(Glendenning 2000). Hence, the actual geometric phase of
quark nuggets in a neutron star evolves as a function of the
pressure and of the surface energy between dense nuclear
matter and quark matter.

In order to describe the process of the formation and evo-
lution of quark nuclei in neutron stars, one must use nucle-
ation theory. The goal of nucleation theory is to compute the
probability that a bubble or droplet of the A phase appears in a
system initially in the B phase near the critical temperature
(Landau & Lifshitz 1980). Homogeneous nucleation theory
applies when the system is pure. Nucleation theory is appli-
cable for first-order phase transitions when the matter is not
dramatically supercooled or superheated. If substantial super-
cooling or superheating is present, or if the phase transition is
second order, then the relevant dynamics is spinodal decom-
position (Shukla & Mohanty 2001).

The nucleation of strange quark matter inside hot, dense
nuclear matter was investigated, using Zel’dovich’s kinetic
theory of nucleation, by Horvath et al. (1992). By assuming
that the newly formed strange quark matter bubble can be
described by a simple bag model containing Nq ultrarelativistic
quarks, and by assuming that the time evolution of the radius of
the bubble is described by an equation of the form dr=dt ¼
(r � Rc)=�w, where Rc is the critical radius of the bubble and
�w is the weak interaction timescale, the nucleation rate � is
given by

� ¼ 2:2� 10�2 T=�ð Þ1=2N3=4
cq ��1

w exp �3:1N 1=2
cq �=T

� �
; ð1Þ

where Ncq � 300 is the critical quark number, � is the surface
tension of the bubble, and nn and nq are the particle number
densities in the neutron and quark phase, respectively (Horvath
et al. 1992) . In this way a lower bound for the temperature
of the nucleation, T � 2:1 MeV, can be obtained. The effects
of the curvature energy term on thermal strange quark matter
nucleation have been considered by Horvath (1994), who
derived, within the same approach, the following expression
for the nucleation rate:

� ¼ r2cnqnn

4��w

T

�

� �1=2

exp
�4�R2

c

3T

� �
: ð2Þ

All the effects of the curvature enter only through the value
of Rc. As a general conclusion, we find that even though the
curvature term acts against strange quark matter nucleation,
the physical temperature of a just-born proto–neutron star is,
in any model, more than enough to drive an efficient boiling of
the neutron material (the observations of the neutrino flux
from SN 1987A are consistent with an effective temperature of
T � 4 MeV). The possibility of stable strange quark matter
(both bulk and quasi-bulk) at finite temperature, and some of
its properties, have been investigated within the framework of
the dynamical density-dependent quark mass model of con-
finement by Chakrabarty (1993). The behavior of the surface
tension and the stability of quark droplets at T 6¼ 0 have

also been discussed, with reference to strangelet formation in
ultrarelativistic heavy-ion collisions.
A different approach to the problem of thermal nucleation

was taken by Olesen & Madsen (1994). They used the as-
sumption (standard in the theory of bubble nucleation in first-
order phase transitions) that bubbles form at a rate given by
R � T 4 exp (�Wc=T ), where Wc is the minimum work re-
quired to form a bubble with radius rc. As a main result it
follows that if the bag constant lies in the interval where three-
flavor but not two-flavor quark matter is stable at zero pressure
and temperature (145 MeV � B1=4 � 163 MeV), then all or
parts of a neutron star will be converted into strange matter,
during the first second of its existence. For the bag constant
above the stability interval, a partial transformation is still
possible (Olesen & Madsen 1994).
Heiselberg (1995) calculated the rate of formation of quark

matter droplets in neutron stars from a combination of bub-
ble formation rates in cold degenerate and high-temperature
matter, taking into account nuclear matter calculations of
the viscosity and thermal conductivity. The droplet formation
rate is that of Langer & Turski (1973), given by I ¼ (k=2�)
�0 exp (�Wc=T ), where �0 ¼ (2=3

ffiffiffi
3

p
)(�=T )3=2(rc=�q)4 is

the statistical prefactor, which measures the phase-space vol-
ume of the saddle point around Rc that the droplet has to pass
on its way to the lower energy state. Here �q is the quark
correlation length. The dynamical prefactor determines the
droplet growth rate and is given by k ¼ (2�=�w2r 3c )½kT þ
2(4�=3þ � )�, where �w is the enthalpy difference and k, �,
and � are the thermal conductivity and the shear and bulk
viscosities, respectively. The droplet formation rate can be
expressed as (Heiselberg 1995)

I ¼ �
7=2
20 �2

400�50

�P10�w2
10T

3=2
10

exp 185� 134
�3
20

�P2
10T10

� �
s�1 km�3;

ð3Þ

where �400 is the quark chemical potential in units of 400 MeV.
The total number N of droplets formed by nucleation is the

integrated rate over the volume of the neutron star and the
time after the nucleation process starts at the moment t0,
N ¼

R R
0
4�r2 dr

R1
t0

I �p rð Þ; T tð Þð Þ dt, where R is the radius
of the neutron star. The pressure and temperature depend sen-
sitively on the equation of state (EOS) of the nuclear and quark
matter. To convert the core of the neutron star into quark
matter, at least one droplet must be formed, i.e., N > 1. Then,
by equation (3), the condition for the formation of at least
one droplet requires � � 24 MeV fm�2(�P

2=3
c;10T

1=3
c;10), where Pc

and Tc are the core values of the pressure and temperature,
respectively (Heiselberg 1995). The pressure and enthalpy
difference depends strongly on the EOS of nuclear and quark
matter, and hence the droplet formation rate cannot be reliably
estimated.
The effect of subcritical hadron bubbles on an inhomoge-

neous first-order quark-hadron phase transition was studied
in Shukla et al. (2000). The transition from nuclear matter
(consisting of neutrons, protons, and electrons) to matter
containing strangeness was considered, within a mean field
type model and using Langer nucleation theory, by Norsen
(2002). An estimate of the time it takes for the new phase to
appear at various densities and times in the cooling history of
a proto–neutron star was also given.
On the other hand, as a result of an increase of the cen-

tral density of the star, due, for example, to accretion or spin-
ning down, a metastable, supercompressed neutron phase can
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appear, with a star consisting of the new phase surrounded by
normal neutron matter (Grassi 1998). This situation is similar
to a gas undergoing a phase transition to its liquid state if
compressed to a volume Vc at fixed T. If it is slowly com-
pressed, it may stay in the vapor state even for V < Vc (similar
examples are liquid water freed of dissolved air, which can be
heated above boiling temperature without the formation of
vapor and cooled below freezing temperature without solidi-
fication). The transition from the supercompressed neutron
phase to the quark phase can take place over a very long time,
which in some cases can be longer than the estimated life of
the neutron star (Grassi 1998). Therefore, an increase in the
density of the neutron star does not automatically lead to the
transition to quark matter inside the star.

The effect of the magnetic field on the quark star structure
and on the nucleation process of the quark bubbles has been
studied in Chakrabarty (1995, 1996) and Chakrabarty & Sahu
(1996). In the presence of strong magnetic fields the EOS of
strange quark matter changes significantly. The strange stars
become more compact, the magnetic field reducing the mass
and radius of the star. The surface energy and the curvature
term of the quark phase both diverge, with the surface tension
diverging logarithmically, while the curvature term diverges
much faster. Therefore, the thermal nucleation of quark bub-
bles in a compact metastable state of neutron matter is com-
pletely forbidden in the presence of a strong magnetic field.

These results for the formation of quark bubbles in neutron
matter have been obtained by using the Csernai & Kapusta
theory of nucleation (Csernai & Kapusta 1992a, 1992b) and
its extension including the thermal conductivity of dense
matter (Venugopalan & Vischer 1994). In this theory both the
hadron and quark materials are considered as substances with
zero baryonic number and are treated by using a relativistic
formalism. The principal result of this approach is the sug-
gestion that the prefactor k is proportional to the transport
coefficients (viscosity and thermal conductivity) of the neutron
matter; thus, when these coefficients vanish, a quark bubble
necessarily does not form.

However, Ruggeri & Friedman (1996) argued that the en-
ergy flow does not vanish in the absence of any heat con-
duction or viscous damping. Since the change of energy
density e in time is given, in the low-velocity limit, by the
conservation equation @e=@t ¼ �:(wv) (Csernai & Kapusta
1992a), where w is the enthalpy and v is the velocity, this
implies that the energy flow �wv is always present. Therefore,
an expression for the prefactor can be derived that does not
vanish in the absence of viscosity. The viscous effects cause
only a small perturbation to the prefactor. The differences
between the Csernai-Kapusta (CK; Csernai & Kapusta 1992a)
and Ruggieri-Friedman (RF; Ruggeri & Friedman 1996) re-
sults are due to the technical differences in the treatment of
the pressure gradients.

A generalized approach, following the CK formalism and
leading to the prefactor in both viscous and nonviscous
regimes, was developed by Shukla et al. (2001). Unlike in
Csernai & Kapusta (1992a), the linearized relativistic hydro-
dynamics equations have been solved in all regions.

It is the purpose of the present paper to extend the
Zel’dovich nucleation theory for the formation of quark
droplets in neutron matter, by taking into account the effects of
both the energy flow and thermal conductivity and shear and
bulk viscosities. As a result, a more general expression for the
quark matter droplet rate formation can be obtained, which is
also valid in the limiting case of vanishing conductivity and

viscosity coefficients. In the nucleation theory of Csernai &
Kapusta (1992a), the transition from the neutron to quark state
is possible only for normal matter having viscous properties.
For zero bulk and shear viscosities the transition is impossible.
This assumption is, however, too restrictive, and the transition
can also take place for a perfect (no viscosity or heat con-
duction) neutron matter fluid. We also derive the expression of
the rate formation for this case.

An alternative point of view of the transformation of neu-
tron matter into strange matter can be developed if one
assumes that the conversion process is endothermic. In this
case the strange quark matter formation inside a neutron star is
triggered by an external source of energy (accretion from the
companion star or spin-down). Pulsars are born with an
enormous angular momentum and rotational energy, which
they radiate over a long period of time via electromagnetic
radiation and electron-positron pair emission. When rotating
rapidly, a pulsar is centrifugally flattened. With decreasing
angular velocity the central density of the star is increasing
and may attain the critical density necessary for a phase
transition. First at the center and then in an expanding region,
the neutron matter will be converted to a highly compressible
quark matter phase (Glendenning et al. 1997). The conversion
of neutron matter to quark matter alters the moment of inertia
of the star, and the epoch over which conversion takes place
will be signaled in the spin-down characteristics of the pulsar.
A measurable quantity, the braking index ��̈=�̇2, where � is
the angular velocity of the star, could be an observational
indicator of the slow transition from neutron to quark phase
(Glendenning et al. 1997). By using the formalism developed
for the nucleation of quark matter, we reconsider the idea of
phase transition from neutron matter to quark matter in ro-
tating compact stellar objects, by assuming that the nucleation
and the growth of the quark droplets and the formation of a
quark core in a neutron star are a result of the transfer of the
gravitational energy to the quark droplets, as a result of the
spinning down of the rapidly rotating neutron star.

The present paper is organized as follows. The nucleation
kinetics of strange matter bubbles is considered, within the
framework of the Zel’dovich nucleation theory, in x 2. The
expressions for the rate of formation of quark matter are de-
rived, in both the perfect and dissipative neutron fluid case, in
x 3. The transition of a neutron star to a quark star, due to
increase of the central density as a result of the spinning down,
is considered in x 4. In x 5 we discuss our results and give
conclusions.

2. NUCLEATION KINETICS OF STRANGE MATTER
IN NEUTRON STARS

We consider that the change from the metastable neutron
phase to the stable quark phase occurs as the result of fluc-
tuations in a homogeneous medium, formed of neutrons, in
which small quantities of the quark phase (called bubbles or
nuclei) are randomly generated. Since the process of creation
of an interface is energetically unfavorable, it follows that
when a quark nucleus is below a certain size, it is unstable and
disappears again. Surface effects disfavor the survival of small
bubbles below the radius Rc (called critical size; the nuclei of
this size are called critical nuclei or bubbles), which is nothing
but the value that extremizes the thermodynamical work W
necessary to create the bubbles. Only nuclei whose size r is
above the value Rc are stable and can survive (Landau &
Lifshitz 1980). The nuclei are assumed to be macroscopic
objects containing a large number of particles (quarks).
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For strongly degenerate neutron matter, the thermodynamic
work W necessary to create a quark bubble is (Alcock &
Olinto 1989; Mardor & Svetitsky 1991; Madsen & Olesen
1991; Olesen & Madsen 1994; Horvath 1994)

W ¼
�
nq �q � �n

� �
� Pq � Pn

� �	 4�
3

r3þ 4��r2 þ 8��r þ Ec;

ð4Þ

where Pq and Pn are the pressures of the quark matter and
neutron matter, respectively (exterior to the bubble, assumed
to be spherical), � is the surface tension, nq is the particle
number density of quark matter, �q and �n are the chemical po-
tentials of each phase, � is the curvature coefficient, and Ec ¼
3
5
Z2e2=r is the Coulomb energy of the droplet (Heiselberg

et al. 1993). Here Ze ¼ ð	q � 	nÞVd is the excess charge of
the droplet with volume Vd compared with the surrounding
medium, and 	q and 	n are the charge densities of the quark
and nuclear matter, respectively. Therefore, the Coulomb en-
ergy of the droplet is given by Ec ¼ 16�2(	q � 	n)

2r5=15.
Assuming that the quark matter is immersed in a uniform
background of electrons and that it is in 
 equilibrium, with
�d ¼ �s ¼ �u þ �e, it follows that the total electric charge
in the quark phase can be expressed as 	q � e�q(m

2
s=2 �

2�e�q)=�
2, where �u � �d � �q (Heiselberg et al. 1993).

Generally, 	q 3	n.
The appropriate form of the curvature energy can be

obtained from (Madsen 1993; Heiselberg et al. 1993)

Ecurv ¼
gr

3�

Z 1

0

dk k 1þ exp k � �

T

� �h i�1

¼ g�2r

6�
1þ O

T

�

� �2
" #

; ð5Þ

where g is the statistical weight and � is the chemical potential.
Hence, the curvature coefficient is given by � ¼ 3�2=8�2 �
18 MeV fm�1(�=300 MeV)2 (Heiselberg et al. 1993).

Requiring W to be an extreme, @W=@r ¼ 0, gives the fol-
lowing equation for the value of the critical radius r ¼ Rc:

4�½nqð�q � �nÞ � ðPq � PnÞ�r2 þ 8��r þ 8��

¼ � 16�2

3
	q � 	n
� �2

r4: ð6Þ

By neglecting the Coulomb energy, we obtain for the crit-
ical radius Rc0 of the bubble the expression

Rc0 ¼
�

C
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b0

p� �
; ð7Þ

where

C ¼ �nqð�q � �nÞ þ Pq � Pn

� �
¼ �nq��þ�P > 0 ð8Þ

and

b0 ¼ 2C �j j=�2 > 0: ð9Þ

The parameter b0 can also be represented as b0 �
6(C=20MeV fm�3)(�=18MeV fm�1)½�=(7MeV)3��2

(Horvath
1994).

To find the value of the critical radius for a nonnegligible
electrostatic energy of the bubble, we use an iterative method,

by substituting for r in the right-hand side of equation (6) the
zeroth-order approximation given by equation (7). Then, in
first order, the critical radius is given by

Rc ¼
�

C
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �
; ð10Þ

where

b ¼ C

�2
2� þ 4�

3
	q � 	n
� �2

R4
c0


 �
: ð11Þ

For values of C ¼ 20 MeV fm�3, � ¼ 18 MeV fm�1, � in
the range (75–100 MeV)3, 	q � �0:4e fm �3, and negligible
	n the critical radius is of the order of Rc ¼ 2 7 fm. The
Coulomb correction has the effect of increasing the critical
radius. The value r ¼ Rc corresponds to the limit beyond
which large quantities of the quark phase begin to be formed.
In fact, it is more appropriate to refer not to a limit point
r ¼ Rc, but to a critical range of values of r near that point,
with width �r � (T=4��)1=2 (Landau & Lifshitz 1980). The
fluctuational development of nuclei in this range can still, with
high probability, throw them back into the subcritical range,
but nuclei beyond the critical range will inevitably develop
into the new quark phase.
The minimum critical work required to form a stable quark

bubble is therefore given by

Wc ¼
4��3

3C2
FðbÞ 1þ 4� 	q � 	n

� �2 �2

C3
Gðb; b0Þ


 �
; ð12Þ

where we denote

FðbÞ ¼ 2þ 2 1þ bð Þ3=2þ3b ð13Þ

and

Gðb; b0Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �5
2þ 2 1þ bð Þ3=2þ3b

1

5
�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b0

p� �4
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �4
" #

:

ð14Þ

Within a purely thermodynamic approach, one can pose
only the problem of calculating the probability of occurrence
in a medium of fluctuating nuclei of various sizes, the medium
being regarded as in equilibrium. Instead of the thermody-
namic probability of nucleation, it is more convenient to use
the equilibrium distribution function for nuclei of various
sizes existing in the medium, denoted f0(r). Here f0 dr is the
number of nuclei per unit volume of the medium with sizes in
the range dr. According to the thermodynamic theory of
fluctuations (Landau & Lifshitz 1980),

f0 rð Þ � exp �W rð Þ=T½ �: ð15Þ

Near r ¼ Rc the thermodynamic work can be expressed as

W rð Þ ¼ 4��3

3C2
FðbÞ 1þ 24�

5
	q � 	n
� �2 �2

C3
GðbÞ


 �

�
�


12��C3
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
� 32�2 	q � 	n

� �2
� �3 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3�
3C3
� ��1



r � Rcð Þ2: ð16Þ
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Therefore, for the equilibrium distribution function we find
the expression

f0ðrÞ ¼ f0 Rcð Þ exp
 (


12��C3
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
� 32�2 	q � 	n

� �2

� �3 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3�
3C3T
� ��1

)
r � Rcð Þ2

!
; ð17Þ

where f0(Rc) ¼ C0 exp (�Wc=T ), C0 ¼ const.
In order to estimate the coefficient C0 of the exponential in

f0(Rc), we follow Landau & Lifshitz (1980) and assume
C0 ¼ nqnnR

2
c , where nn and nq are the particle number densi-

ties in the neutron and quark phases, respectively. Thus, we
obtain

f0 Rcð Þ ¼ nqnnR
2
c exp

�
� 4��3

3C2T
FðbÞ

� 1þ 4� 	q � 	n
� �2�2

C3
Gðb; b0Þ


 �

: ð18Þ

Let f (t; r) be the kinetic size distribution function of the
nuclei. The elementary process that changes the size of a
nucleus is the attachment to it, or the loss by it, of a quark
droplet, and this is to be regarded as a small change, since the
nuclei are considered to be macroscopic objects. Therefore,
the growth of the nuclei is described by a Fokker-Planck
equation (Landau & Lifshitz 1980)

@f t; rð Þ
@t

¼ � @j

@r
; ð19Þ

where j ¼ �B(@f =@r)þ Af is the flux in the size space. Here
B is the nuclear size diffusion coefficient and A is connected
with B by a relationship that follows from the fact that for
an equilibrium distribution j ¼ 0. Therefore, we find A ¼
�BW 0(r)=T .

In the case of a continuous stationary phase transition
process, we have j ¼ const. The constant flux is just the
number of nuclei passing through the critical range per unit
time per unit volume of the medium; i.e., it defines the rate of
the process. With the condition of constant flux we obtain
�Bf0(@=@r)( f =f0) ¼ j, giving

f

f0
¼ �j

Z
dr

Bf0
þ const: ð20Þ

The constant in this equation and j are found from the
boundary conditions for small and large r. The fluctuation
probability increases rapidly with decreasing size, and small
nuclei have a high probability of occurrence. This is expressed
by the boundary condition f =f0 ! 1 as r ! 0. The boundary
condition for large r can be established by noting that above
the critical range the function f0 increases without limit,
whereas the true distribution function f (r) remains finite. This
situation is expressed by imposing the boundary condition
f =f0 ¼ 0 for r ! 1. The solution that satisfies the above
conditions is (Landau & Lifshitz 1980)

f

f0
¼ j

Z 1

r

dr

Bf0
;

1

j
¼
Z 1

0

dr

Bf0
: ð21Þ

In these equations the integrand has a sharp maximum at
r ¼ Rc. By extending the integration with respect to r from
�1 to +1, one obtains for the number of viable quark nuclei

formed in stationary conditions per unit time and per unit
volume the expression

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�C3

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
� 32� 	q � 	n

� �2
�3 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3
3C3T

s

� B Rcð Þ f0 Rcð Þ: ð22Þ

Above the critical range, the distribution function is constant:
having reached that point, the nucleus becomes steadily larger,
with practically no change in the reverse direction. Accord-
ingly, we can neglect the term containing the derivative @f =@r
in the flux, leading to j ¼ Af . From the significance of the flux it
follows that the coefficient A acts as a velocity in size space,
A ¼ (dr=dt)macro (Landau & Lifshitz 1980). Therefore, we find

B ¼� T

W 0ðrÞ
dr

dt

� �
macro

¼
 

3C3T
� ��

2



12��C3

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
� 32�2 	q � 	n

� �2

� �3 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3�
r � Rcð Þ


�1
!

dr

dt

� �
macro

: ð23Þ

The rate of growth of the bubble radius near the critical
radius is given by (dr=dt)macro ¼ k(r � Rc), where k is the
dynamical prefactor (Langer & Turski 1973; Csernai &
Kapusta 1992a).

The prefactor k has been evaluated, by solving the equations
of relativistic fluid dynamics in all regions, in Shukla et al.
(2001). The result (also taking into account heat conduction) is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

R3
c

wn

�wð Þ2

s
þ 1

c2s

�

R3
c �wð Þ2

knT þ 2
4

3
�n þ �n

� �
 �
;

ð24Þ

where cs is a constant (the velocity of the sound in the medium
around the saddle configuration) and kn, �n, and �n are the
thermal conductivity and shear and bulk viscosity coefficients
of the neutron matter, respectively. The first term in the above
equation is the same as obtained by Ruggeri & Friedman
(1996), corresponding to the case of nonviscous matter. The
second term is similar to the results obtained by Csernai &
Kapusta (1992a) and Venugopalan & Vischer (1994), but with
a minor difference; i.e., instead of 4 there is a factor c2s in the
numerator.

3. NEUTRON MATTER TO QUARK MATTER
TRANSITION RATES

From equation (24) for the prefactor it follows that the rate
of formation of quark bubbles in neutron matter is given by

j ¼ nqnnR
2
c

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3C3T

12�C3
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1þ b

p� �3
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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R3
c
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�wð Þ2

s
þ � knT þ 2 4=3ð Þ�n þ �n½ �f g

c2s R
3
c �wð Þ2

 !

� exp

�
�
�

4��3

3C2

� �
f ðbÞ

� 1þ 4� 	q � 	n
� �2 �2

C3

� �
G b; b0ð Þ


 �

T�1

�
: ð25Þ
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To obtain the number � of the net strange quark matter
bubbles, the rate j must be multiplied by the time interval
available for prompt nucleation, �t, and by the volume V0, at
which the nucleation can take place in the dense core (Horvath
et al. 1992). We impose the condition that at least one quark
bubble appears (which would suffice to convert the whole
neutron star). Therefore, using equation (25), one obtains the
following general condition for a quark bubble formation in a
neutron star core:

� ¼ j�t�V0 � 1: ð26Þ

The quark bubble formation rate essentially depends on the
enthalpy difference in the two phases. In the density range of
interest, all the neutron matter EOS can be very well param-
eterized as polytropes, Pn ¼ Kn

�
B (Lugones et al. 1994). The

corresponding energy density in the neutron phase is "n ¼
nBmn þ ½1=(� � 1)�Kn�B, leading to wn ¼ "n þ Pn ¼ nBmn þ
½�=(� � 1)�Kn�B. We also assume that the formed quark bubble
consists of u- and d-quarks in the ratio 1: 2; only later weak
interactions may change the composition to an energetically
more favorable state. The quarks’ chemical potentials are re-
lated by �d ¼ 21=3�u, and, assuming chemical equilibrium
across the phase boundary, we also have �n ¼ �u þ 2�d ¼
(1þ 24=3)�u (Olesen & Madsen 1994). Then the pressure
in the quark phase is (assuming a simple bag model) Pq ¼
½(�4

u þ �4
d)=4�

2� � B and "q ¼ 3Pq þ B (Cheng et al. 1998a),
giving wq ¼ ½(�4

u þ �4
d)=�

2� � 3B. Hence, the enthalpy dif-
ference in the two phases can be approximated by

�w ¼ �4
u þ �4

d

�2
� 3B� nBmn �

�

� � 1
Kn

�
B: ð27Þ

Assuming that the energy flow is provided by the viscous
effects only, one obtains for the prefactor the expression
(Venugopalan & Vischer 1994)

k ¼ 2�

�wð Þ2R3
c

knT þ 2
4

3
�n þ �n

� �
 �
: ð28Þ

In the limit of zero baryon number, kn ! 0 and we obtain
the result of Csernai & Kapusta (1992a). If the matter is
baryon-rich, but viscous damping is negligible, �n; �n ! 0,
and we obtain the results of Langer & Turski (1973) and
Kawasaki (1975).

Therefore, the condition of the formation of a quark bubble
is given by

1

�

nqnn

�wð Þ2Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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 �

�t�V0 � 1: ð29Þ

The transport properties of dense matter have been inten-
sively investigated in both high-energy physics and astro-
physical frameworks (Flowers & Itoh 1976, 1979, 1981;
Hakim & Mornas 1993). The shear viscosity � and thermal
conductivity k for neutron matter have been derived by
Danielewitz (1984) from the Uhlenbeck-Uehling equation
(see also Sawyer 1989; Cutler et al. 1990). They are given
by � ¼ (16�2)�1( p5F=m

2
n�̃1)T

�2 and k ¼ 5( p3F=m
2
n�̃2)T

�1=96,

where pF is the Fermi momentum and �̃1; �̃2 are some quan-
tities related to particle-particle cross sections, estimated in
Danielewitz (1984). The contributions of the bulk viscosity
and thermal conductivity are negligible, and the main contri-
bution is from the shear viscosity, which is typically of the
order of � � 50 MeV fm�2 (Heiselberg 1995). But in the case
of an ideal neutron gas, with zero viscosity, there will be no
bubble growth, and in this case the transition from neutron
matter to quark matter in astrophysical objects cannot take
place.
Assuming that the energy flow does not vanish in the ab-

sence of any heat conduction or viscous damping, and con-
sidering that the viscous effects are small and can be
neglected, the condition of the formation of a quark bubble
inside the dense core of a neutron star becomes

1ffiffiffi
2

p
�

nqnn

�w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �2 �2

C3
G b; b0ð Þ


 �� 

��tV0 � 1: ð30Þ

For r > Rc the time growth of the radius of the quark
droplets can be described by the equation (Csernai & Kapusta
1992a; Shukla et al. 2001)

dr

dt
� kR2

c

r � Rc

r2
; ð31Þ

with the general solution

t � 1

k

1

2

r

Rc

� �2

þ r

Rc

þ ln
r � Rc

Rc

� 4

" #
; ð32Þ

where we have used the initial condition r(0) ¼ 2Rc. There-
fore, for a neutron star with radius R, the time tconv required for
the conversion of the whole star to a quark star can be obtained
from

tconv �
1

k

1

2

R

Rc

� �2

þ R

Rc

þ ln
R� Rc

Rc

� 4

" #
: ð33Þ

Since R3Rc, with a very good approximation we find

tconv �
1

2k

R

Rc

� �2

: ð34Þ

Neglecting the viscous effects, and by assuming again that
the neutron matter is described by a polytropic EOS, while the
quark phase obeys the simple bag model EOS, one obtains for
the conversion time

tconv �
�wð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Rcwn

p R2

¼
�4
u þ �4

d

� �
=�2

� 	
� 3B� nBmn � �= � � 1ð Þ½ �Kn�B

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Rc nBmn þ �= � � 1ð Þ½ �Kn�B

� �q R2:

ð35Þ
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The volume V(t) of the neutron matter converted to quark
matter after a time interval t < tconv is given, in this simple
model, by

V tð Þ � 217=4� �wnRcð Þ3=4

3 �wð Þ3=2
t3=2: ð36Þ

If the transition from neutron to quark phase is driven by
viscous processes only, then

tconv �

Rc

�4
u þ �4

d

� �
=�2 � 3B� nBmn � �= � � 1ð Þ½ �Kn�B

� �2
2� knT þ 2 4=3ð Þ�n þ �n½ �f g R2;

ð37Þ

and

V ðtÞ � 25��3=2

3 �wð Þ3R3=2
c

knT þ 2
4

3
�n þ �n

� �
 �3=2
t3=2: ð38Þ

4. ENDOTHERMIC NUCLEATION OF QUARK
MATTER BUBBLES IN THE CORE OF

ROTATING NEUTRON STARS

In the previous sections we have considered the process of
nucleation of quark bubbles in neutron star cores, and we have
derived the conditions for quark matter formation in an as-
trophysical context. In the present section we apply the results
previously obtained to analyze the possibility of the transition
from neutron to quark phase during the spinning down of a
rapidly rotating neutron star. In this case the rotational energy
of the star can be used to trigger the phase transition.

The minimum energy density required to create a quark
bubble is

uq ¼
3Wc

4�R3
c

¼ C

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3 FðbÞ 1þ 24�

5
	q � 	n
� �2 �2

C3
GðbÞ


 �
:

ð39Þ

An estimation of equation (39) for C � 20 MeV fm�3,
� � 18 MeV fm�1, � � (75 MeV)3, 	q � �0:4e fm�3, and
	n � 0 gives uq � 3:76� 1034 ergs cm�3.

We consider that the evolution of the rotating neutron star
can be approximated by a sequence of MacLaurin spheroids
(Chandrasekhar 1986; Cheng et al. 1992). The mass of the
star is denoted by M and the major and minor axis of the star
by a and c (equatorial and polar radius). Then the eccentricity
of the star is defined according to e ¼ ½1� (c=a)2�1=2. Let
	 ¼ const denote the density of the star, corresponding to a
given value of the angular velocity � and of the equatorial
radius a.

Hence, the basic equations describing the mass, hydrostatic
equilibrium, and gravitational energy Egr of the rotating star
are (Chandrasekhar 1986)

M ¼ 4�

3
a3	 1� e2
� �1=2

; �2 ¼ 2�G	f ðeÞ;

Egr ¼ � 3

5

GM 2

a

arcsin e

e
; ð40Þ

where

f ðeÞ ¼ 1� e2ð Þ1=2

e3
3� 2e2
� �

arcsin e� 3 1� e2ð Þ
e2

: ð41Þ

Assuming that the total mass of the star is a constant, one
obtains the following relation between the variation �a, ��,
�	, and �e of the equatorial radius, angular velocity, density,
and eccentricity, respectively:

3

a

�a

��
þ 1

	

�	

��
¼ e

1� e2
�e

��
: ð42Þ

The variation of the eccentricity with respect to the angular
velocity is given by

�e

��
¼ �� �Gf ðeÞð�	=��Þ

�G	gðeÞ ; ð43Þ

where

g eð Þ ¼ �f ðeÞ
�e

� df ðeÞ
de

¼ 2 9� 2e2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ 8e2 � 9ð Þ arcsin e

e4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p : ð44Þ

With the use of the above equations the variation of the
gravitational energy of the neutron star, corresponding to a
simultaneous change in equatorial radius, angular velocity,
and density, is given by

�Egr a; 	;�ð Þ ¼ 3

5

GM 2

a
A eð Þ �

�G	
� B eð Þ 1

	

�	

��
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��; ð45Þ

where we denote

hðeÞ ¼ 1

3

e

1� e2
� 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p þ arcsin e

e2
; ð46Þ

AðeÞ ¼ hðeÞ
gðeÞ ; BðeÞ ¼ hðeÞ f ðeÞ

gðeÞ þ 1

3
: ð47Þ

The gravitational energy density released as the result of the
slowing down of the neutron star can trigger the endothermic
phase transition at the center of the star. Inside a sphere of
radius Rq the gravitational energy density is

ugr a; 	;�ð Þ ¼ 9

20�

GM 2

a
R�3
q A eð Þ �

�G	
� B eð Þ 1
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��
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��:

ð48Þ

This energy should be greater than or equal to the mini-
mum energy necessary for the formation of a quark bubble,
given by equation (39). Therefore, the gravitational energy
converts to the quark phase the neutron matter inside a sphere
of radius

Rq a; 	;�ð Þ ¼ 2:88
M

M	

� �2=3
a

106

� ��1=3

� A eð Þ �

�G	
� B eð Þ 1
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 �1=3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ b
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C�1=3

2þ 2 1þ bð Þ3=2 þ 3b
h i1=3 ��ð Þ1=3�106 cm:

ð49Þ

NUCLEATION OF QUARK MATTER IN NEUTRON STAR CORES 951No. 2, 2004



In order for the whole neutron star to be converted to a
quark star, the condition Rq 	;�ð Þ ¼ a 	;�ð Þ must hold. On
the other hand, for typical neutron star densities of the order of
1014–1015 g cm�3, the term A(e)�/�G	 is much smaller than
B(e)(�	/��)/	,

A eð Þ �

�G	
TB eð Þ 1

	

�	

��
: ð50Þ

For small eccentricities e the function B(e) can be approxi-
mated by 1

3
.

Therefore, we obtain the following condition for the relative
change in the central density, necessary to convert a neutron
star to a strange star, due to the endothermic gravitational
energy transfer in the whole volume of the star:

�	

	
� 0:125

C 2þ 2 1þ bð Þ3=2þ3b
h i

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p� �3 M

M	

� ��2=3

: ð51Þ

For a neutron star of around two solar masses, M � 2 M	, and
by assuming C � 20 MeVand b � 6, we obtain �	=	 � 1:85.

Of course, this result is strongly dependent on the precise
numerical values of C and b, which are generally poorly
known; C is also a neutron matter EOS-dependent parameter.
For example, assuming for C a value of 10 MeV will lead to
�	=	 � 0:92. An increase in the mass M of the star will also
decrease the value of the relative change in the density of the
star necessary to convert the neutron star.

At present, we have very little observational knowledge
regarding how fast newborn neutron stars can rotate. The most
well-known young pulsar is the Crab pulsar, which was born
with a rotational period of about 20 ms (Manchester & Taylor
1977). If so, during its lifetime the pulsar’s central density only
increases by about �	c=	c � 0:001 (Ma & Xie 1996). Cur-
rently, the fastest rotating pulsar known is PSR 1937+214,
which has a period of 1.55 ms or � � 4000 s�1, but it has
weak magnetic field, and it has been suggested that it is spun
up by accretion (Alpar et al. 1982). However, it has been
suggested that some rapidly spinning millisecond pulsars are
be born by accretion-induced collapse from white dwarfs
(Arons 1983). Therefore, it cannot be ruled out that some
pulsars may be born with millisecond periods and strong
magnetic field.

The theoretical investigation of rotating general relativistic
objects performed by Cook et al. (1994) shows that for some
realistic EOSs of neutron matter, this variation of the central
density can be achieved during the complete spin-down of the
star (see Table 1).

The central density increase due to the spin-down can be
easily realized in a short time interval for a special class of
stellar-type objects, called magnetars. Magnetars are compact
objects with superstrong magnetic fields of the order B �
1015 G or even higher (Duncan & Thompson 1992; Paczynski
1992; Thompson & Duncan 1995, 1996). It is now believed
that soft gamma repeaters (SGRs)—a small class (four con-
firmed and one candidate) of high-energy transients discovered
through their emission of bright X-ray/gamma-ray bursts,
which repeat on timescales of seconds to years—are magne-
tars. There is evidence that the giant SGR flares involve the
cooling of a confined e
 -photon plasma in an ultrastrong
magnetic field (Lyubarsky et al. 2002). Some authors (Cheng
& Dai 1998; Usov 2001), motivated in part by the super-
Eddington luminosities of the SGRs’ giant flares, have sug-
gested that they are strange stars. The magnetars differ from the

canonical pulsars (with low magnetic fields of the order of
B � 1011 1013 G) in the sense that they spin down much more
rapidly.
If we assume that the spin-down of the magnetar is com-

pletely determined by the torque of its relativistic wind
emission, generated via the magnetic dipole radiation, then the
time variation of the angular velocity � of the star is given by
Shapiro & Teukolsky (1983),

I�̇ ¼ � 2

3

�2�3

c3
; ð52Þ

where I is the moment of inertia of the star and � ¼ R3B is the
magnetic dipole moment. When the star is born with a spin
period much shorter than the observed one, the age of the star
is the spin-down age �sd ¼ P=Ṗ, where P and Ṗ are the present
spin period and its time derivative, respectively. If the spin-
down is entirely due to the magnetic dipole radiation, we
obtain

�sd ¼
�

�̇
¼ 3

2

Ic3

B2R6�2
: ð53Þ

By adopting for the moment of inertia and the radius of the
magnetar the typical values I ¼ 1045 g cm2 and R ¼ 106 cm,
and by assuming that the star was born with a magnetic
field of the order of B � 1015 G and with an angular velocity
of �0 ¼ 6000 rad s�1, the spin-down age is given by �sd �
1125 s.

From equation (52) it follows that the decay law of the
angular velocity � of the star is of the form

� ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3ð Þ B2�2

0R
6=c3I

� �
t þ 1

q ; ð54Þ

where �0 is the initial angular velocity of the star.
Hence, in a time interval of around t � 106 s and for a

magnetic field B ¼ 1015 G the angular velocity of the star
decreases from �0 ¼ 6000 rad s�1 to � ¼ 142 rad s�1. For an
initial angular velocity of the order of � ¼ 8000 rad s�1 and
for a magnetic field of the order of B � 1016 G, �sd � 5 s. In a
time interval of around t � 600 s the angular velocity of the
star decreases to � � 579 rad s�1.
Therefore, in a magnetar density changes, due to the spin-

down, take place in a short interval of time. Hence, they can
provide enough energy to trigger spontaneous nucleation to
the quark phase, once the central density of the star goes
above the critical density.

TABLE 1

Variation of the Central Density of the Rapidly Rotating Neutron

Star for Different Equations of State

EOS

Mstat

(M	)
Rstat

(km)

��
(s�1) �	c /	c

A............................ 1.6551 8.368 10011 1.26

AU......................... 2.1335 9.411 10587 0.97

FPS........................ 1.7995 9.281 8874.9 0.91

L ............................ 2.7002 13.7 6482.9 1.244

M........................... 1.8045 11.6 4437 4.189

Note.—Variation of the central density of the rapidly rotating neutron star
for different EOSs (Cook et al. 1994): A (Pandharipande 1971), AU (Wiringa
et al. 1988), FPS (Lorentz et al. 1993), L (Pandharipande et al. 1976), and
M (Pandharipande & Smith 1975).
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The nucleation of quark droplets in the presence of strong
magnetic fields essentially depends on the strength of the
magnetic field. The energy of a quantum particle changes
significantly if the magnetic field is of the order or exceeds the
critical value Bc ¼ m2c3=ef, where m is the mass of the par-
ticle. For electrons the value of the critical field is BðeÞ

c ¼ 4:4�
1013 G. In order to calculate the value of the critical magnetic
field for quarks, we have to use the estimations for the quark
masses. However, there are many uncertainties in the numer-
ical values of the quark masses, which play an essential role in
the calculation of the critical magnetic field and are generally
poorly known. In the case of free quarks, the current quark
mass is considered to be in the range of mq � 5–10 MeV.
Then the corresponding critical magnetic field is B

ðqÞ
c �

(1 2)�102B
ðeÞ
c � (4:4 8:8)�1015 G. For the current quark

mass, this is the typical strength of the magnetic field at which
the cyclotron lines begin to occur. In this limit the cyclotron
quantum is of the order of or greater than its rest energy. This is
equivalent to the requirement that the de Broglie wavelength is
of the order of or greater than the Larmor radius of the particle
in the magnetic field (Chakrabarty 1995). However, from the
physical point of view a better description of the quark mass
can be obtained by using, instead of the current quark mass, the
effective or constitute quark mass, which takes into account the
effects of the strong interactions, and which is of the order
mq � 100–300 MeV (Cheng et al. 1998a). The critical
magnetic field corresponding to the effective quark mass could
be as high as B

ðqÞ
c � 1017 1018 G.

The study of the behavior of the surface and curvature
energy terms in strong magnetic fields has shown that both
quantities diverge for B > B

ðqÞ
c , with the curvature term di-

verging much faster. Consequently, in the presence of strong
magnetic fields the rate of stable quark droplet formation per
unit volume I � T4 exp (�W=T ) tends to zero, I ! 0, and
therefore there cannot be any thermal nucleation of quark
droplets in neutron star cores (Chakrabarty 1995, 1996).

The value of B inside a magnetar is not known, and it is not
certain if the interior magnetic field is much stronger than the
surface field. If in the interior of the magnetar the value of the
magnetic field can exceed the critical value B

ðqÞ
c � 5� 1015 G,

which represents the most conservative estimation of the
critical magnetic field, corresponding to the free quark mass
m ¼ 5 MeV, then the rate of droplet formation can be con-
siderably reduced and the transition from neutron matter to
quark matter could not take place.

On the other hand, by taking into account that the physical
mass of the quark is the effective mass, the corresponding
critical magnetic field could be of the order B

ðqÞ
c � 1017 1018

G, a value that could be higher than the magnitude of the
magnetic field inside the magnetars. For magnetic fields
smaller than B

ðqÞ
c , the endothermic nucleation process can take

place in a short time interval during the spin-down of the
magnetar.

5. DISCUSSIONS AND FINAL REMARKS

In this paper we have considered a kinetic theory of strange
matter nucleation in neutron stars. We derived general nec-
essary conditions for neutron to quark matter conversion.
There have been several assumptions made in the derivation
of the results, mostly related to the form of the growth speed
of the bubble. The result is valid only if nonlinear effects can
be ignored, and the linearized hydrodynamic equations are
applicable. Furthermore, we have assumed that the radii of the
bubbles are larger than the correlation length and that heating

due to dissipation is slow, causing the temperature to vary
slowly across the bubble wall. We also considered that the
phase transition is strongly first order, releasing considerable
amounts of heat.

The growth of the critical size quark bubbles nucleated in
the first-order transition in the neutron star core is governed
by the dynamical prefactor k. There are several expressions for
the prefactor obtained in the physical literature. In the Csernai-
Kapusta approach (Csernai & Kapusta 1992a), the prefactor
essentially depends on the dissipative properties (shear, bulk
viscosity, and thermal conductivity) of neutron matter.
Therefore, in a nonviscous medium with �n ¼ �n ¼ kn ¼ 0,
the growth of the quark bubbles cannot take place. The main
physical assumption is that the energy flow is provided by the
viscous effects only.

On the contrary, one can argue that the energy flow does not
vanish in the absence of heat conduction or viscous damping
(Ruggeri & Friedman 1996; Shukla et al. 2001) . In this case,
and in the limit of zero viscosity, the prefactor depends only
on two scale parameters, the correlation length � and the
critical radius of the quark bubble Rc. For a viscous medium
the prefactor can simply be written as the sum of the viscous
and nonviscous terms, with the viscous term not affecting the
growth process significantly. The previous (viscous) results
can be reobtained by using some assumptions for the velocity
of sound in the medium around the saddle configuration.

The condition for the formation of at least a quark bubble in
the neutron matter as a result of the thermal fluctuation is given
by equation (29). The condition includes the cases of both
viscous and ideal neutron matter. It is extremely sensitive with
respect to the numerical values of the microscopic parameters
characterizing the quark bubble, such as the surface tension �,
the bag constant B, or the curvature coefficient �. In discussing
the astrophysical implications of equation (29), we consider
separately the two limiting cases, corresponding to viscous
and nonviscous neutron matter, respectively.

In the case of ideal neutron matter, the condition of the
formation of a quark bubble is given by equation (30). This
equation determines at which temperature the phase transition
takes place. For example, in the case of the Walecka mean
field equation of state (Walecka 1975), with K ¼ 15758 and
� ¼ 4:95 (Lugones et al. 1994), the temperature Tc necessary for
the formation of a stable quark bubble in a second (�t ¼ 1 s),
in a volume �V0 with radius �R0 ¼ 1 km (�V0 ¼ 4�=3 km3),
and at the center of the neutron star is around Tc ¼ 12
13 MeV, for � ¼ (85 MeV)3. Here we have also assumed the
standard values for the quark matter chemical potential and for
the bag constant, �u ¼ �d ¼ 280 MeV and B ¼ 60 MeV fm�3

(Cheng et al. 1998a). Since the temperature of a newborn
neutron star is around 10 MeV (Olesen & Madsen 1994), this
value of the surface tension seems to rule out, for the given
equation of state, the possibility of quark nuclei forming in the
neutron matter. However, a small variation in the value of �,
� ¼ (75 MeV)3, reduces the temperature for quark nuclei for-
mation to Tc ¼ 4 6 MeV, a value that does not exclude the
possibility that quark nuclei formation can be initiated in the
early stages of neutron star evolution. Smaller values of �, of
the order of � ¼ (50 MeV)3, can lower the phase transition
temperature even more, making it possible even for cold neu-
tron stars. The transition temperature is relatively insensitive to
the details of the equation of state of the dense neutron matter.

If the temperature at which the phase transition is initiated is
strongly dependent on the microscopic model adopted for
describing the neutron matter properties, the total transition
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time of the neutron star to a quark star, given by equation (35),
is much less dependent on the details of the equation of state
or the exact numerical values of the surface tension or cur-
vature of the bubble. Generally, for a neutron star with radius
R ¼ 12 15 km, the conversion time is very long, of the order
of 106 yr for � � (75 MeV)3. For � � (50 MeV)3 or even
lower, the conversion time could have values of the order of
107 yr, which are still of the same order of magnitude as the
lifetime of a neutron star (107 yr). Hence, in the present ap-
proach, which is limited to the consideration of linear effects
only in the hydrodynamic description of the first-order phase
transitions for an ideal neutron fluid, the growth of the quark
nuclei is very slow. Therefore, the results of the present
analysis suggest that even though quark nuclei could appear
inside the neutron star at a very early stage, the transition to a
pure quark phase ends only in the final stage of its evolution.

If the neutron matter–quark matter phase transition is
mainly driven by viscous processes, as in the CK scenario,
then the time necessary for a neutron star to convert to a quark
star follows from equations (28) and (34). In order to nu-
merically estimate the conversion time, we need an estimation
of viscosity and conduction coefficients of nuclear matter. We
also consider two limiting cases for the phase transition. Be-
low the critical density 	 ¼ 	c � 1014 g cm�3, cold neutron
matter consists of two distinct phases. At low density, neutron
star matter consists of nuclei that form a solid lattice for
temperatures below the melting temperature and a sea of rel-
ativistic electrons. When the density reaches 	 � 1011 g cm�3,
neutrons begin to ‘‘drip’’ from the neutron-rich nuclei and
then, in addition to the relativistic electrons, there is a sea of
nonrelativistic neutrons. At the critical density the neutron-
rich nuclei dissolve, leaving seas of degenerate neutrons,
protons, and electrons. The neutrons in cold neutron star
matter are quite likely superfluid, and therefore the transport
coefficients are dominated by electrons, with the motion of
electrons determined by electron-electron and electron-proton
scattering (Flowers & Itoh 1979). As a result, the viscosity is
much lower, but the thermal conductivity is only slightly
smaller as compared to the case in which both neutrons and
protons form normal fluids (Flowers & Itoh 1979). Hence, we
can neglect the viscosity coefficients with respect to the
thermal conductivity and approximate kn by kn � k0	14=T8,
with k0 � 1023 (Flowers & Itoh 1979). A slightly different
expression for the leading term in thermal conductivity has
been proposed in Danielewitz (1984), knT � k0(n=n0)

1=4,
with k0 ¼ 0:15 fm�3 and n0 ¼ 0:145 fm�3. Hence, by using
this last expression, we obtain for tconv

tconv � Rc

�wð Þ2

4�k0 n=n0ð Þ1=4
R2: ð55Þ

The transition time is independent of the temperature of the
neutron matter. It depends only on the microscopic properties
of the quark bubble (surface tension and curvature coefficient),
density, and the equation of state of the matter inside the star.
For �u ¼ �d ¼ 280 MeV, B ¼ 60 MeV fm�3, and � �
(75 MeV)3 equation (55) gives, for a neutron star with radius
R ¼ 12 km and for several equations of state, values of the
conversion time of the order tconv � 1011 yr.

In the case of young and hot neutron stars, the main dis-
sipative mechanism that could drive the phase transition is the
shear viscosity of the neutron matter. The temperature de-
pendence of the shear viscosity coefficient can be approxi-
mated by �n � (�0=T

2)(n=n0)
2, with �0 ¼ 1700 MeV3 fm�2

(Danielewitz 1984). Consequently, by neglecting the heat
conduction and the bulk viscosity, the conversion time
becomes

tconv �
3

32
Rc

�wð Þ2

��n
R2 � 3

32
Rc

�wð Þ2

��0 n=n0ð Þ2
T2R2: ð56Þ

In small temperatures, the shear viscosity becomes very
large. Hence, for a shear viscosity–driven phase transition the
conversion time could be very small.
In Figure 1 we have represented tconv given by equation (56)

as a function of temperature, for different equations of state
of neutron matter. We have considered four equations of
state, namely, the equation of state (EOS) of the free neutron
gas (Shapiro & Teukolsky 1983), the Bethe-Johnson EOS
(Shapiro & Teukolsky 1983), the Lattimer-Ravenhall EOS
(Lattimer & Ravenhall 1978), and the Walecka EOS (Walecka
1975). In all cases we calculated the conversion time for a
neutron star with radius R ¼ 10 km.
As one can see from the figure, in this case the conversion

time is much shorter as compared to the ideal neutron matter
case or thermal conduction–driven phase transition. Time tconv
is rapidly decreasing with the temperature. For a neutron star
with rapidly cooling processes (e.g., direct Urca process, kaon
condensation), the stellar temperature can decrease to less than
10�2 MeV in a timescale of 10�4 yr (Tsuruta 1998). According
to Figure 1, the conversion can take place on a timescale less
than 10�3 yr if the spin-down timescale is less than this
timescale. This can be the case if this neutron star is a mag-
netar. We should point out that the interiors of magnetars are
not quantum liquid, i.e., superfluid or superconducting, be-
cause the strong magnetic field can destroy the nucleon cooper
pairs (Chau et al. 1992).
On the other hand, if the neutrons and protons are superfluid,

then the transport properties are completely determined by
electron-electron scattering. In fact, in this case the viscosity of
the nuclear fluid is given by ��1 ¼ (15�4�2=2p5e)(2pe=kTF)
½5=2þ 3(me=pe)

2 þ (me=pe)4�T 2 (Flowers & Itoh 1976), where
� is the fine-structure constant, kTF ¼ (4�pe
e=�)1=2 is the
Thomas-Fermi wavevector, and me , pe , and 
e are the electron
mass, momentum, and energy, respectively.
We assume that the electron gas inside the neutron star is

extreme relativistic and strongly degenerate. Then it follows
that pe � pF ¼ (3ne=8�)

1=3 (Shapiro & Teukolsky 1983), with
pF the Fermi momentum and ne the electron number density.
Since ne can be related to the total particle number n by means
of the relation ne ¼ Yen, with Ye the mean number of electrons
per baryon, it follows that pe � (3Yen0=8�)

1=3(n=n0)
1=3.

Hence, we obtain for the shear viscosity coefficient of the
nuclear matter

��1 � 15

2

85=3�37=6�3=2

3Yen0ð Þ5=3 n=n0ð Þ5=3

(
5

2
þ 3

me 8�ð Þ1=3

3Yen0ð Þ1=3 n=n0ð Þ1=3

" #2

þ me 8�ð Þ1=3

3Yen0ð Þ1=3 n=n0ð Þ1=3

" #4)
T 2: ð57Þ

The variation of the conversion time, as a function of
temperature, is represented, for a superfluid neutron and pro-
ton core of the star with Ye ¼ 0:1, in Figure 2.
In this case, since the viscosity of the superfluid nuclear

matter is much smaller, the conversion time is longer than for
a nuclear fluid dominated by the neutron viscosity. However,
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in this case the phase transition from neutron matter to quark
matter can also take place at very low temperatures. Conse-
quently, a very short tconv , of the order of hours or a few days,
is also allowed in the framework of this model.

It is widely accepted that at asymptotic densities the ground
state of QCD with ms ¼ 0 is the color-flavor locked (CFL)
phase (Alford et al. 1998; Rajagopal & Wilczek 2001). In this
phase, color gauge symmetry is completely broken, as are
both chiral symmetry and baryon number. The effective cou-
pling is weak and the low-energy properties can be determined
by using methods from the theory of superconductivity. For
large gaps (� � 100 MeV), the CFL phase is rigorously
electrically neutral, despite the unequal quark masses and even
in the presence of electron chemical potential. The transition
from nuclear matter to quark matter via bubble nucleation can
be greatly simplified if the transition occurs directly to quark
matter in the CFL phase (Rajagopal & Wilczek 2001). For a
given baryonic chemical potential �̄, electrically neutral nu-
clear matter and electrically neutral quark matter have differ-
ent values of the electronic chemical potential �e. Since �e

must be continuous across any interface, a mixed phase region
is formed, within which positively charged nuclear matter and
negatively charged quark matter with the same �e coexist at
any given radius. The growth of the quark droplets is at the
expense of the nuclear matter. However, if the quark matter is
in the CFL phase, an interface between bulk nuclear matter
with nonzero electron number Ne 6¼ 0 and CFL quark matter
with Ne ¼ 0 may be stable, as long as �e satisfies the condition
jm2

s=4�̄� ��j < �=
ffiffiffi
2

p
, where �� is the variation of the

chemical potential (Rajagopal & Wilczek 2001). Therefore,
the existence of the CFL phase supports the idea that in

neutron stars quark matter and baryonic matter may be con-
tinuously connected. Then the growth of the interface between
the neutron and CFL quark phase could be the result of ex-
terior energy absorption, via an endothermic mechanism.

In summary, by using the kinetic nucleation theory, we have
considered the possibility that the neutron matter–quark matter
phase transition could be triggered by the gravitational energy
released during the spin-down of a pulsar. This process could
take place in a very short time interval, of the order of a few
tens of seconds, in a class of dense compact objects, with very
high magnetic fields, called magnetars. However, the per-
centage of neutron star matter that can be converted into quark
matter depends on the initial period, the neutron star mass, and
the equation of state of the neutron and quark phases. An im-
portant and open issue is how we could determine if such a
process is taking place or has already taken place in some
pulsars or magnetars, as well as what the observational sig-
natures of the endothermic neutron matter–quark matter tran-
sition are. In particular, it would be interesting to know if such
a process could be a possible gamma-ray burst mechanism, as
suggested by Berezhiani et al. (2003). All of these issues will
be considered in a subsequent paper (P. S. Tang et al. 2004, in
preparation).
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