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Using a tight-binding model Hamiltonian and applying the Jordan-Wigner transformation, we
have investigated the Aharonov-Casher (AC) effect for many neutral hard-core bosons in one-
dimensional (1D) mesoscopic rings with the self-induced AC phase included. The total energy
and the persistent fluxon current are analytically derived for 1D perfect lattices. More importantly,
it is suggested that, in the absence of the external AC flux, the self-sustained AC flux state could
be the ground state of a system with weak disorder. The possibility of experimental observations is

briefly discussed.

With advances in nanotechnology, the persistent equi-
librium current occurring in isolated mesoscopic normal-
metal rings penetrated by an Aharonov-Bohm! (AB) flux
P, = fCA - dl, where A is the vector potential, is
one of the most interesting phenomena in mesoscopic
systems.?3 Considering that the persistent current it-
self also produces magnetic flux in addition to the exter-
nally applied flux, the possibility of a self-sustained (or
spontaneous) persistent current for many-fermion sys-
tems was recently addressed.? Interestingly, there also
exists a topological interference effect — the Aharonov-
Casher (AC) effect, which is an electromagnetic dual
of the AB effect: a particle with a magnetic moment
moving in an electric field £ acquires an AC phase, due
to the spin-orbit interaction. This AC effect has been
discussed for a fluxon in type-II superconductors® and
a vortex in Josephson-junction arrays.”® Analogous to
the spontaneous AB effect, an intriguing spontaneous
AC effect due to many-body effects for electrons in one-
dimensional (1D) mesoscopic normal-metal rings was in-
vestigated recently.®!° Unfortunately, in reality, an ob-
servable spontaneous AC effect is usually suppressed by
the dominant AB effect, because the electron also pos-
sesses charge.®® On the other hand, in identifying the ex-
istence of a spontaneous AC effect, statistics could play
a crucial role (e.g., fermion or spinor statistics). Notice
that the previously mentioned fluxons (or vortices) in
type-II superconductors (or Josephson-junction arrays)
can be treated as standard neutral hard-core bosons car-
rying magnetic moment p,,. Thus, it seems natural,
general, and important to consider the AC problem in
a system of many hard-core bosons. In this paper, us-
ing a tight-binding model Hamiltonian and applying the
Jordan-Wigner transformation technique, we investigate
the AC effect for many hard-core bosons in 1D meso-
scopic rings including the self-induced AC phase. It is
indicated that the spontaneous AC effect could exist at
sufficiently low temperature in such a system with weak
disorder. Moreover, the total energy and the persistent
fluxon current is analytically derived for the 1D perfect
lattice.

Let us consider Ny neutral hard-core bosons in an

0163-1829/95/52(7)/5275(4)/$06.00 52

N-site (Nyg < N) 1D mesoscopic ring with radius
R, vanishingly small width a and thickness L, lying
in the zy plane.!! Each neutral hard-core boson car-
ries a magnetic flux quantum ®45 along the z direction
(#yy = PusL/4m). In the presence of the AC phase,
Duc =BT+ P =8B § 2. (dl x E), where @2 and
®AC are, respectively, the externally applied AC flux and
self-induced AC flux enclosed by the ring, and € in the
integral is the total electric field. If the local potential
on sites is strong enough when compared to the boson’s
kinetic energy, the effective model Hamiltonian of the
system can be written as!?

N N
H=— Z (ti+1,iezA9‘sz+lbi + HC) + ZEzb:rbz , (1)
i=1 i=1
where ¢; is the on-site energy, t;11,; = t; ;41 is the hop-
ping matrix, ¢ = 4/—1, A#; is the phase acquired by
a hard-core boson on hopping from the ith site to the
(i + 1)th site, and 1| Af; = 27® /B0 = 27 fac, With
the flux quantum ®¢ = hc/e, b;r and b; are the creation
and annihilation operators of a neutral hard-core boson
on the ith site. These operators satisfy the following re-
lations!?

[b;,b5] = [bi,b;r-] =0fori#3j,
{bi,b]} =1andb? =0,

where [ | and {} denote commutator and anticommuta-
tor, respectively. Actually, they are spinors and suppos-
edly represent neutral particles carrying magnetic mo-
ments. Although we concentrate here on the physics
particular to the AC effect, Eq. (1) is rather a general
model, which represents a system of particles obeying
spinor statistics that acquire an added phase when “hop-
ping” from a site on a 1D lattice to a neighboring one,
and it may apply to a variety of systems.

In order to treat the above nontrivial Hamiltionian,
it is crucial to introduce the Jordan-Wigner transforma-
tion,!3

b; = fieiwz151<.' f,“fx, b: = e—'."zlsx«fszzfi’r’
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where f; and f:r are the usual fermion operators that
satisfy the anticommutating relations,

{Fo £y =6, fi Fiy = 5L fly =0,

for i =1,2,...,N. Note that if we choose the boundary
condition by1 = —by, we could have fxy41 = fre~#Nus
with Nyp as the total number of hard-core bosons. Con-
sequently, Eq. (1) can be rewritten as

N-1
H=_ Z (ti+1,ieiA9i f;f“fi + H.c.)
=1
X N
- (t1,Ne’(Ae”+"N“B)fIfN + H.c.) +> eflfi
=1

(2)

Equation (2) is simply the Hamiltonian of noninteracting
fermions on a ring threaded by a flux. Obviously, H can
be represented as a quasitridiagonal NV x N matrix in the
single-site representation,

61. _tlze—iAol . _the-AeN
—t10e80 €2 .
H = ... . e ... ... ’
_the—iAON EN

3)

with Afx = Afx + "Nys. We now introduce a unitary
transformation,

e—iTiLi A6
e—iTiS A6

’ (4)

e—iAON_1

which simplifies the Hamiltonian matrix in Eq. (3) to the
form

€1 —tip - —tiy

A=vtgUu=| "2 2 )
—EIN ... GN

with ;5 = tye i™(3fac+Nus)  This transformation

makes it clear that the transformed H depends only on
the total AC phase enclosed rather than all the individual
phases acquired at each step, and shows the familar result
that the only effect of the flux is to modify the boundary
condition. Now one can easily find that the eigenval-
ues of H in Eq. (5), which is a textbook tight-binding
model with flux-shifted boundary condition, is periodic
in ®,. with the period ®o, and so are other physical
quantities. In general, we need to solve the eigenvalue
problem for H given by Eq. (5) numerically, and then
calculate the total energy and persistent fluxon current
for the fixed number Ngp. In Fig. 1 and Fig. 2 we plot
the energy spectrum, total energy, and fluxon current
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FIG. 1. The energy spectrum (first four levels) as a func-
tion of dimensionless AC flux (®ac/Po) threading the ring,
calculated using the tight-binding model without disorder for
N = 16, Ny = even and odd (solid and dashed curves, re-
spectively).

as a function of the AC flux for a perfect lattice, i.e.,
t;; =t. (Hereafter, we set ¢; = 0.) The energy spectrum
for odd Nyg coincides with that for even Nyg if one shifts
by ®,c/®0 = 1/2 along the AC flux axis. At this stage,
the possibility of the spontaneous AC effect could be ex-
pected because, in the absence of the external flux, we
see that the energy of the state with self-induced AC flux
is always lower than that without AC flux. In fact, for
the perfect lattice, the above eigenvalue problem can be
solved analytically by introducing an equivalent transfor-
mation that casts the boundary factor e**7(2fic + Nus)
in H into the boundary condition for the wave function,
ie., Uny1 = Uret*n(2fac + Nus).'* Consequently, the
energy F, and fluxon current I, of the nth eigenstate
are derived as

27
E, = —2tcos [F (n+ fAc)] s

_ ®4s OF,
In = 27h Ofac (6)

2Pt . 27
— HB sin [“JV— (n+fAc)} )

Nh

for even Nyg, and

27 1
E, = —2tcos |:]—V— (n+fAC — —2—>] s
_ 2®yupt . | 2m 1
In* Nk s l:']—v— (n+fAC"2)] ’

for odd Nyg, where n = 0,%1,+2,.... At zero temper-
ature, the total energy, and fluxon current for a fixed
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FIG. 2. The total energy F (a) and the persistent current
Is (b) vs the AC flux within two periods for N = 16, Nuys = 4
(solid curve) and 5 (dashed curve).
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N

[
o

number of hard-core bosons Nyg are found to be

E=ZE,,

sm (mNyg/N) cos [(27 /N)(fac — 1/2)]
sin (7 /N)

()

L,,:an

_ 2®5t sin (Nyg/N) sin [(27 /N ) (fac —
Nk sin (7 /N)

1/2)]

’ (8)

with f.c being in the range [0,1).
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So far, we have obtained the “macroscopic” current I
from the quantum calculation. Note that the reduced
flux f.c is also a “macroscopic” parameter and, accord-
ing to conventional wisdom, it is determined from clas-
sical electrodynamical considerations,*®'2 which, pro-
vided that the self-induced AC flux fg;) is negligible,
could be independent of the detailed geometry of the
ring. In fact, in the absence of the external flux and
at extremely low temperature, the fAC) induced by Is it-
self cannot be neglected. Because of this, it is reasonable
and acceptable to consider the current-induced flux fi¢ D
and calculate it based upon classical considerations and
some average notion.

It is well known that an electric field e, is induced
when a particle carrying a magnetic flux moves with ve-
locity v,. According to Faraday’s law, v X &, = :‘:g:,
we are able to obtain g,, = %b X Uy, = g;’fcb x I, with
b= ®,5/(2mrRa) as the effective fluxon density of an in-
dividual particle.!® The total electric field generated by
the fluxon current inside the ring can be found,

£ = an = ——Iq,'r (9)

where 7 is a unit radial vector. The induced AC flux is
then found to be

Iy _ busér R -
AC hc
In the absence of the external AC flux, Egs. (9) and (10)

lead to a self-consistent solution fi’é) for the self-induced

AC flux. For very small a, to order of (a/R)?, ,Sc) can
be approximated as

_ q)HBLRI
dmahc? ¢

(10)

. 252 .2 ; -1
() 1 [1+ aN?h?c?sin(w/N) ] (11)

®2 tLRsin(mNyg/N)

On the other hand, the total energy of the whole system

consists of two parts: the energy of the particles in the

ring E, and the energy of the electric field Eg¢, i.e., Ex =
E + E¢, where

1 47r2afi2c2

Pz = ———f2 12

Be = & ~ ®2_LR (12)

It is straightforward to find that the total energy Er

8ETx
fAC7 ie., 8fAc|

0, 7971‘1| > 0, which implies that the AC flux state

with the spontaneous fluxon current is in fact the stable
ground state of the system. We have, therefore, the re-
markable result that in the absence of an external electric
field the AC flux, ®,c = f\2®,, and the corresponding
fluxon current can be self-sustained in the system regard-
less of whether the number of hard-core bosons Nyg is
even or odd. This quite different from the case of a fully
polarized normal-metal ring, where the flux state carry-
ing a spontaneous spin current is only possible for an
even number of electrons.?'® Note that, if the width a
of the ring approaches zero, the self-sustained AC flux

reaches its minimum just at f,c =
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approaches a finite constant %, whereas the flux current

Ig’) approaches zero.

We wish to point out that, in analogy to electron
systems,'® all hard-core bosons in one-dimensional dis-
ordered systems are exponentially localized. We will
speak of weakly or strongly disordered rings depending on
whether the dimensionless localization length [ is larger
or smaller than the dimensionless circumference N of
the ring. For the above circular geometry, we are able
to define the crossover from weak to strong disorder by
N = [. If we choose random on-site energy €; uniformly
distributed between —W/2 and +W/2, and set the hop-
ping matrix element ¢;; = ¢, the localization length I will
be uniquely determined by the disorder parameter W/t.
For large W, the hard-core bosons are tightly bound with
energies close to their on-site energies ¢;. Numerical cal-
culations demonstrate that when W > 2xt, the localiza-
tion length is less than five lattice constants. It is thus ex-
pected that the spontaneous AC effect will be destroyed
by strong disorder, but will survive with weak disorder
in mesoscopic systems. As for the effects of a finite tem-
perature, one can similarly define a characteristic tem-

perature T* = (k;er) sin(Nypm/N).1® The persistent
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current decreases dramatically with T/T* at T > T*,
however, it is insensitive to temperature at 7' < T*.
Finally, it may be useful to discuss briefly the possibil-
ity for experimental observation of the expected sponta-
neous AC effect. Consider an annular type-II supercon-
ducting sample in the dilute mixed state with a ~ A ~ ¢
and the external magnetic field applied along the z axis,
where A and £ are, respectively, the penetration length
and the superconducting coherence length. In the ideal
case, i.e., f,sz) ~ 1/2, and at very low temperature, the
possible maximum signal of the radial voltage, due to
the spontaneous AC effect, may be roughly estimated
as V& ~ EOX ~ ZRox ~ £(2) ~ 1075(V) if
R ~ 10 pm and L ~ 10X are chosen, which could be
observed by some suitably designed experiments.
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