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Using both the continuum and tight-binding models, we have investigated analytically the effects of a
statistical phase factor on the persistent charge and magnetic moment currents of ‘‘free’’ hard-core anyons in
one-dimensional mesoscopic rings. In particular, we find that the ground state of the system could, in most
cases, self-sustain the Aharonov-Bohm and Aharonov-Casher effects simultaneously.

PACS number~s!: 03.65.Bz, 66.901r

The importance of quantum effects in mesoscopic sys-
tems, such as the persistent current occurring in isolated me-
soscopic normal metal rings penetrated by an Aharonov-
Bohm @1–4# ~AB! flux, has been widely recognized.
Considering that such a persistent current itself also produces
magnetic flux in addition to the flux from external sources,
the possibility of a self-sustained persistent current in the
absence of external flux was recently addressed@5#. A
ground state with such a spontaneous current is known as a
flux-phasestate@6#. It is also interesting to note that there
exists another topological interference effect—the Aharonov-
Casher~AC! effect @7#, which is the electromagnetic dual of
the AB effect; a particle with a magnetic momentm moving
in an electric fieldE acquires an AC phase@8# due to the
spin-orbit interaction. Thus the spin-1

2 electrons in a meso-
scopic metal ring pierced by a charged rod are expected to
display a persistent spin current@9#, which is periodic in the
AC flux FAC[(m/e)rC E3 ẑ•dl. This AC effect has also
been discussed for a fluxon in type-II superconductors@10#
and for a vortex in Josephson-junction arrays@11#. In addi-
tion, based on a similar idea for the spontaneous AB effect,
an interesting spontaneous AC effect for electrons in a one-
dimensional~1D! mesoscopic normal-metal ring was inves-
tigated more recently@12,13#. In identifying the existence of
spontaneous topological effects, the statistics of the particles
plays a crucial role. On the other hand, the concept of frac-
tional statistics or anyons@14#, has been a subject of intense
study over the past several years. Such entities may be of
great importance in the study of the fractional quantum Hall
effect @15# and high-temperature superconductivity@14,16#.
However, it has been realized that calculations incorporating
general anyons present rather unique and challenging prob-
lems, even if their only interaction is due to their statistics
@17#. Fortunately, the formalism of hard-core anyons can be
well constructed, since in this case the anyon world lines do
not cross and the notion of braids still holds@18#. Notice that
the anyon concept is essentially two dimensional; a recent
study @19# of spinon excitations in one-dimensional antifer-
romagnets, however, has suggested that anyons could exist in
one-dimensional systems. Thus a fundamental and important
question naturally arises: What will happen to the topological
effects for 1D anyons? In this paper, within the framework of
the continuum and tight-binding models, we study the per-
sistent currents due to the AB and AC effects in a 1D meso-

scopic ring of ‘‘free’’ hard-core anyons having both charge
and magnetic moment. In particular, the interesting sponta-
neous AB and AC effects are proposed.

Let us first considerNa free hard-core anyons confined to
a 1D ring with radiusR ~circumferenceL52pR), vanish-
ingly small widthb, and thicknessl , lying in xy plane. In
the presence of both AB flux and AC flux@20#, the total flux
F5FAB1FAC . The continuum free hard-core anyon model
is defined by the following four conditions.

~i! The wave function satisfies the Schro¨dinger equation
for the motion ofNa free anyons, each possessing chargeq
and magnetic momentm, in the ring.

~ii ! The wave function satisfies the phase condition with
respect to the interchange of particle coordinates

C~xi j8 , . . . !52e2 ixpC~xi j , . . . !, ~1!

here xi j8 5eipxi j is any two-particle relative position
xi j5xi2xj rotated through a positive anglep not enclosing
any other particles. The parameterx indicates that we are
dealing with fractional statistics, and for fermions we have
x50 while for bosonsx51 @21#.

~iii ! The wave function satisfies the cyclic boundary con-
dition, which in the presence of both the AB and AC fluxes
reads in part

C~x11L,x2 , . . . ,xNa!5ei2p fC~x1 ,x2 , . . . ,xNa!, ~2!

with a similar condition for the derivative. Here
f5 fAB1 f AC5FAB /F01FAC /F0 with the flux quantum
F05hc/e. The direction of the magnetic moment carried by
each anyon is assumed to be parallel to the positivez axis.

~iv! The wave function vanishes when the coordinates of
two particles coincide.

In consideration of conditions~i!, ~ii !, and~iv!, the wave
function in any region should have the form@22#

C5~e2 ixp!P detueiknxj u, ~3!

where (e2 ixp)P denotes the statistical phase resulting from
the permutation andP is the number of transpositions of two
variables that brings any other region to the region
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R1 : (0<x1<x2<•••<xNa<L). Using the boundary con-

dition Eq. ~2!, we can find the energyEn of the nth eigen-
state

En5
\2

2maR
2 ~ f1n1x̄ !2, ~4!

where ma is the anyon mass,n50,61,62, . . . , and
x̄5(Na21)x/22 Int@(Na21)x/2#. Note that, from Eq.~3!,
each eigenstate can be occupied by only one anyon. The
energy ofNa anyons is given by the sum of Eq.~4! over all
occupied levels

E5
\2

2maR
2 F(

n
n212~ f1x̄ !(

n
n1Na~ f1x̄ !2G . ~5!

Defining

n5H x̄ for odd Na

x̄21/2 for evenNa ,
~6!

we can write the ground-state energy ofNa anyons in a com-
pact form, i.e.,

E5E0
~o,e!1

\2Na

2maR
2 ~ f1n!2, ~7!

whereE0
(o,e) are the f -independent energy constants corre-

sponding to odd and even number of particles andf is in the
range @21/22n,1/22n). Once the ground-state energy is
known, the persistent charge~magnetic moment! current is
then given by the derivative of the energyE with respect to
fAB ( f AC) @23,24#, i.e.,

I p5
Na\p

2mapR
2 ~ f1n!, ~8!

where p5q,m represent the charge and magnetic moment
currents, respectively. Clearly, both of the persistent currents
in each period vary linearly with the total flux and there is a
discontinuous jump at the end of each period.

So far we have not taken into account the fluxF I induced
by the charge and magnetic moment currents themselves.
From physical considerations, this self-induced flux should
be included. In particular, at sufficiently low temperatures
and small external driven fluxFext, F I can become of the
order ofFext or even larger. This raises the possibility of a
self-sustained flux in 1D anyon systems. According to Fara-
day’s law “3 E52 (1/c)(]B/]t) , we can easily obtain
the AC flux generated by the magnetic moment current and
the corresponding energy stored in this electric field@12,13#

f AC
~ I ! 52

4pRm

lb\c2
Im , EE5

lb\2c2

4Rm2 f AC
2 . ~9!

Furthermore, the charge currentI q induces an AB flux and
produces the corresponding magnetic energy@5,12#

f AB
~ I ! 52

Lc

~e/q!F0
I q , EB5

~e/q!2F0
2

2Lc2
f AB
2 , ~10!

whereL54pR2/ lc2 is the self-inductance of the ring. In the
absence of the external AB and AC fluxes, Eqs.~8!–~10! lead
to a set of self-consistent solutions

f AB
~s!52

nB

A1B1AB
, f AC

~s!52
nA

A1B1AB
, ~11!

whereA[4p2maR
2/Naq

2L andB[mac
2Rlb/2Nam

2.
On the other hand, the total energy of the system is the

sum of the energy ofNa anyons and the energy stored in the
magnetic and electric fields, i.e.,ET5E1EB1EE . It is
straightforward to find thatET reaches its minimum just at
fAB5 f AB

(s) and fAC5 f AC
(s) , which implies that as long as

nÞ0 the state with spontaneous AB and AC fluxes is a stable
ground state of the system and therefore the time-reversal
symmetry is spontaneously broken. Indeed, we do have
nÞ0 for a general hard-core anyon gas (0,x,1). Also
note that whenx50, n50 for an oddNa butn521/2 for an
evenNa , which implies that the spontaneous AB and AC
fluxes could only be trapped by a ring with an even number
of particles; whenx51, n50 for both odd and evenNa ,
which results in no self-sustained flux state regardless of the
number of particlesNa being even or odd@25#. Conse-
quently, Eq.~11! recovers the results for the spontaneous
effects in the two special cases, i.e., 1D normal-metal rings
@12,13# and 1D rings of a neutral hard-core boson gas@26#.
For semions (x51/2), one finds thatn51/4,21/4,1/2 for
Na54m0 ,4m012,4m013 while n50 for Na54m011,
which indicates that there exist spontaneous effects in 1D
semion rings, except whenNa54m011. Since an anyon
possesses both charge and magnetic moment, the charge cur-
rent accompanies magnetic moment current and therefore the
spontaneous AB and AC effects cannot be separated in 1D
anyon rings. The relative strength of the two fluxes is deter-
mined by the factorA/B52m2/q2Rb. If A!B ~e.g., elec-
tronic systems! then f AC

(s)'0 and f AB
(s)5n so that the self-

consistent flux comes almost purely from the anyonic
statistics. Nevertheless, for general anyons,A/B may not be
definitely small because the magnetic momentm and charge
q depend on the properties of anyons considered. If we as-
sume that an anyon carries chargeq5e and fluxf5F0/2
and take typically mesoscopic valuesR;1024 cm and
l;b;1027 cm, we can findA/B;2. Herem5f l /4p has
been used.

At this stage, it is also of importance and interest to study
the topological effects by using the tight-binding model. The
second quantized Hamiltonian of the model reads

H52(
i51

N

~ t i11,iai11
† aie

iDu i1H.c.!1(
i51

N

e iai
†ai , ~12!

wheret i j is the hopping matrix element,e i characterizes the
on-site energy, andDu i are the phases acquired by anyons
hopping successively from thei th site to the (i11)th site
and they obey

(
i

N

Du i52p f .
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ai
† andai construct a set of anyon creation and annihilation
operators defined on the sites and satisfy the generalized
equal-time commutation relations@18#

aiaj
†5d i j2e2 ixpaj

†ai , aiaj5d i j2eixpajai ~13!

for iÞ j and the hard-core condition

aiai5ai
†ai

†50 .

To solve the eigenvalue problem ofH in Eq. ~12!, it is cru-
cial to perform the generalized Jordan-Wigner transforma-
tion

aj5expS ixp (
1<s, j

cs
†csD cj ,

aj
†5cj

†expS 2 ixp (
1<s, j

cs
†cs D , ~14!

where the operatorscj
† andcj obey the standard anticommu-

tation relations. Then we can arrive at an equivalent Hamil-
tonian

H5(
i51

N

e ici
†ci2 (

i51

N21

~ t i11,ici11
† cie

iDu i1H.c.!

2~ t1Nc1
†cNe

i @DuN1xp~Na21!#1H.c.!, ~15!

which describes the quantum motion of a system ofNa fer-
mions coupled to a ‘‘fictitious’’ gauge field in addition to the
vector and scalar potentials. Note that the periodic boundary
conditiona15aN11 has been used here. In general, allu ’s
are different even for the perfect lattice~i.e., t i j5t,
e i5const!, but physical quantities should globally depend on
the total flux enclosed by the ring. This fact becomes quite
clear when we perform a unitary transformation
Ui j5exp@2 i (( l5 i

N Du l2DuN)#d i j @27#, which simplifies
the Hamiltonian given by Eq.~15! in the single-site repre-
sentation to

H̃5S e1 2t12 ••• 2 t̃1N*

2t12 e2 •••

••• ••• ••• •••

2 t̃1N ••• eN

D , ~16!

with t̃1N5t1Ne
2 ip@2 f1x(Na21)#. For the perfect lattice~set

e i[0), performing a further unitary transformation

Ū j j 85ei (N2 j )Dũd j j 8 with Dũ5(2p/N)( f1x̄) to redistribute
phases uniformly, followed by the well-known Fourier trans-
formation, the energy of thenth eigenstate can be obtained
analytically

En522t cosF2p

N
~ f1n1x̄ !G . ~17!

At zero temperature, the ground-state energy ofNa anyons
and the persistent current are given by

E52«0 cosF2p

N
~ f1n!G ~18!

and

I p5
p«0
N\

sinF2p

N
~ f1n!G , ~19!

respectively, where«052tsin(Nap/N)/sin(p/N). Obviously,
for largeN ~with fixed Na /N and lattice constant! the ex-
pressions for the currents in the tight-binding model are simi-
lar to the continuum formulas.

In a similar way, one can obtain the spontaneous AB and
AC fluxes. In the limit of vanishingly small cross section of
the ring, they can be approximated as

fAB
~s!'2

nB8

A81B81A8B8
, f AC

~s!'2
nA8

A81B81A8B8
,

~20!

where A8[N2\2/q2«0L and B8[N2\2c2lb/8p2m2«0R.
Note thatA8/B852m2/q2Rb, which is the same as that in
the continuum model. Moreover, a similar discussion and
conclusions, concerning spontaneous topological effects, can
be made in the present case.

It is worthwhile to point out here that all hard-core anyons
are exponentially localized in one-dimensional disordered
systems. However, for weak disorder, the characteristic lo-
calization length could be greater than the typical size of the
mesoscopic ring@2#. We thus expect that the spontaneous
topological effects will survive in these systems. At finite
temperatures, one can similarly define a characteristic tem-
perature T* @e.g., T*5(2t/kBpN)sin(Nap/N) @2# for the
tight-binding model#. The persistent current decreases dra-
matically with T/T* at T.T* ; however, it is insensitive to
temperature atT,T* . Finally, we wish to mention that, in
general, the Coulomb repulsion between anyons needs to be
included unless their chargeq is small enough. As we have
shown, the 1D problem ofNa hard-core anyons is equivalent
to Na fermions coupled to a fictitious gauge field. With this
analogy, several results obtained for a system of fermions
apply to the present case. Numerical calculations by either
the exact-diagonalization technique@28# or the Hartree-Fock
approximation@29# for small-size normal metal rings have
indicated that both long-range and short-range interactions
suppress the amplitude of persistent currents. However, the
flux dependence of the current does not change qualitatively.
Therefore, it is rather reasonable to conclude that the spon-
taneous topological effects could still exist in the system
mentioned with the Coulomb interaction included, as long as
the self-induced flux is taken into account.

To summarize, we have calculated the persistent charge
and magnetic moment currents for hard-core anyons con-
fined to 1D mesoscopic rings, with particular emphasis on
the effect of the statistical phase factor. In general, both of
the spontaneous AB and AC effects could simultaneously
occur in 1D rings of hard-core anyons.
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