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Postinhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following a period of
hyperpolarization this effect allows a neuron to fire a spike or packet of spikes before returning to rest. It is an
important mechanism underlying central pattern generation for heartbeat, swimming and other motor patterns
in many neuronal systems. In this paper we consider how networks of neurons, which do not intrinsically
oscillate, may make use of inhibitory synaptic connections to generate large scale coherent rhythms in the form
of cluster states. We distinguish between two cases(i) where the rebound mechanism is due to anode break
excitation and(ii ) where rebound is due to a slow T-type calcium current. In the former case we use a
geometric analysis of a McKean-type model to obtain expressions for the number of clusters in terms of the
speed and strength of synaptic coupling. Results are found to be in good qualitative agreement with numerical
simulations of the more detailed Hodgkin-Huxley model. In the second case we consider a particular firing rate
model of a neuron with a slow calcium current that admits to an exact analysis. Once again existence regions
for cluster states are explicitly calculated. Both mechanisms are shown to prefer globally synchronous states
for slow synapses as long as the strength of coupling is sufficiently large. With a decrease in the duration of
synaptic inhibition both systems are found to break into clusters. A major difference between the two mecha-
nisms for cluster generation is that anode break excitation can support clusters with several groups, while slow
T-type calcium currents predominantly give rise to clusters of just two(antisynchronous) populations.
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I. INTRODUCTION

Recordings from nerve cells demonstrate that if the poten-
tial at the cell body is increased above a certain threshold
value, then a pulselike signal can be initiated along the out-
going axon. In addition to the action potential, one other
important nonlinear phenomenon in a variety of nerve cells
is post inhibitory rebound(PIR). Here the excitability of the
neuron is enhanced temporarily following a period of voltage
depression(hyperpolarization). As a result the neuron may
fire a single spike or a packet of spikes(i.e., it may burst).
Post inhibitory rebound has been shown experimentally to
play an important role in central pattern generating networks
that produce rhythmic output[1–4], as well as providing a
neural mechanism for the extraction of temporal cues in hu-
man speech[5]. The theoretical importance of post inhibitory
rebound for central pattern generation in networks of
nonoscillatory neurons was perhaps first recognized by Per-
kel and Mulloney[6], although dates back to work by Brown
[7] on so-called half-center oscillators. In certain nerve cells,
such as those of the medicinal leech, the ionic mechanism for
post inhibitory rebound has been uncovered[8,9]. It is im-
portant to note, however, that many excitable models of neu-
ral membrane, such as the Hodgkin-Huxley and FitzHugh-
Nagumo model, are known to exhibit a form of post
inhibitory rebound that is more properly called anode-break
excitation. Thus it becomes interesting to distinguish be-
tween mechanisms for rebound based upon the basic mecha-
nism of anode break excitation(common to many excitable
neuron models) and novel ionic currents that do not form
part of the make-up of minimal models of excitable mem-
brane. Specifically we are interested in the slow T-type cal-
cium current known to underly bursting behavior in single

neurons upon release from inhibition. This particular current
is known to play an important role within the context of
thalamocortical oscillations[10,11].

The focus of this paper will be on the existence of phase-
clustered states as a function of the speed and strength of
inhibitory synaptic interaction in networks of globally
coupled neurons. Such states are a collection of subpopula-
tions within a network each of which consists of a fully
phase-synchronized set of neurons. Note that we are con-
cerned with the strong coupling of elements that do not in-
trinsically oscillate. As such this work is complementary to
previous important studies of globally coupled phase-
oscillators, such as by Golombet al. [12], Hanselet al. [13],
and Okuda[14], relevant for networks of weakly interacting
oscillators.

In Sec. II we consider the Hodgkin-Huxley model of an
excitable membrane and its reduction to a planar dynamical
system. This more easily allows us to describe the phenom-
enon of anode break excitation using geometric notions. The
equations of motion of the reduced Hodgkin-Huxley model
are then approximated in a piecewise linear fashion to obtain
a single neuron model of McKean-type[15]. Under the as-
sumption of a separation of time scales for the voltage and
recovery variables of thismodifiedMcKean model we are
able to exactly quantify the PIR response of the neuron to an
inhibitory step input. This analysis forms the basis for a sub-
sequent network study with global inhibitory synaptic con-
nections of simple on/off type. Analytical expressions for the
existence of phase-clustered states are obtained in the singu-
lar limit and shown to be in good qualitative agreement with
simulations of a Hodgkin-Huxley network.

In Sec. III we consider a spiking neuron model, possess-
ing a slow T-type calcium current, that can support a rebound
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spike burst in response to an inhibitory synaptic current. For
slow synaptic inhibition we are able to formulate network
dynamics in terms of a firing rate model. An exact analysis
of this model is possible for a Heaviside firing rate function
and is used to calculate the regions in parameter space where
cluster states exist. In comparison to Sec. II we do not ex-
plicitly exploit any underlying geometric features of the dy-
namics and are able to consider a more general class of syn-
aptic response functions.

Finally, in Sec. IV we discuss the similarities and differ-
ences between cluster states generated by the two mecha-
nisms discussed in this paper.

II. ANODE BREAK EXCITATION

In the Hodgkin-Huxley model of excitable nerve tissue
the membrane current arises mainly through the conduction
of sodium and potassium ions through voltage dependent
channels in the membrane[16]. The contribution from other
ionic currents is assumed to obey Ohm’s law. In fact the
Hodgkin-Huxley dynamics is considered to be a function of
membrane potentialv and three time and voltage dependent
conductance variablesm, n, andh:

m
dv
dt

= Fsv,m,n,hd

; − gLsv − vLd − gKn4sv − vKd− gNahm3sv − vNad + I .

s1d

Here, m is the membrane capacitance,gK, gNa, and gL are
constants andVL, VK, andVNa represent the constant mem-
brane reversal potentials associated with the leakage, potas-
sium, and sodium channels, respectively.I is an externally
injected current. The conductance variablesm, n, andh take
values between 0 and 1 and approach the asymptotic values
m`svd, n`svd, and h`svd with time constantstmsvd, tnsvd,
andthsvd, respectively. Summarizing, we have that

tXsvd
dX

dt
= X`svd − X, X P hm,n,hj. s2d

The six functionstXsvd andX`svd, XP hm,n,hj, are obtained
from fits with experimental data(given in the Appendix).

A systematic approach for reducing the dimension of
Hodgkin-Huxley-type models has been proposed by Abbott
[17], called the method ofequivalent potentials. We may use
this approach to obtain a reduced two-dimensional version of
the Hodgkin-Huxley model that can be readily investigated
with the tools of phase-plane analysis and geometry. In es-
sence this approach makes use of the fact thattmsvd is small
for all v so that the variablem rapidly approaches its equi-
librium value m`svd. Moreover, the equations forh and n
have similar time-courses, so that they may beslaved to-
gether via a so-called equivalent potential,w. The result of
this procedure is a two dimensional model with membrane
current fsv ,wd=Fsv ,m`svd ,n`swd ,h`swdd, such that

m
dv
dt

= fsv,wd + I,
dw

dt
= gsv,wd, s3d

where

gsv,wd =

] F

] h
Fh`svd − h`swd

thsvd G +
] F

] n
Fn`svd − n`swd

tnsvd G
] f

] h`

dh`swd
dw

+
] f

] n`

dn`swd
dw

,

s4d

and ]F /]h and ]F /]n are evaluated ath=h`swd and n
=n`swd. The variablev corresponds to a membrane potential
while w is associated with the refractory properties of a neu-
ron. One natural consequence of this reduction is that the
nullcline for w (defined byẇ=0) is the straight linew=v.
The voltage nullcline has a morecubicshape, as expected for
a model of excitable membrane. A plot of the phase-plane for
this model is given in Fig. 1. It is convenient to discuss the
“cubic” nullcline in terms of left, middle and right hand
branches. WhenI =0 the fixed point falls on the left hand
branch and is stable. With increasingI the fixed point can
become unstable and moves on to the middle branch. As it
goes unstable(in a Hopf-bifurcation) one sees the appear-
ance of a stable periodic orbit. However, our interest is in the
response of the system to inhibitory input. Consider for the
moment a negative value ofI such that the fixed point moves
to a hyperpolarized value(with respect to the case whenI
=0). Since this fixed point is also stable it will remain there
for all time. However, an abrupt removal of this inhibition
leads to a rebound spike: to equilibrate back to the fixed
point the system makes a transition to the right-hand branch,
as illustrated in Fig. 1, before jumping back to the left-hand
branch and relaxing to the fixed point forI =0. We see that
the systematic reduction of the Hodgkin-Huxley model to the
plane is a natural way in which to uncover the geometric
mechanism underlying anode break excitation. The mecha-
nism of anode break excitation is clearly dependent on the
overall cubic shape of thev nullcline, but is independent of
any detailed structure. Hence, further insight is likely to
come from a simpler(yet similar) choice of this shape. We
note from Fig. 1 that the main effect of an inhibitory drive is
to simply reduce the minima of thev nullcline while leaving

FIG. 1. (Color online) The phase-plane for the reduced
Hodgkin-Huxley model obtained by the method of equivalent po-
tentials. The straight diagonal line is thew nullcline, w=v, while
the two “cubic’’ curves are thev nullclines withI =0 andI =−4. The
inset shows the rebound spike that arises when the fixed point with
I =−4 is abruptly removed, by settingI =0.
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other parts of the curve relatively unchanged. From the de-
sire to work with a mathematically tractable model that cap-
tures the essential features of the Hodgkin-Huxley model we
therefore introduce the following choices forfsv ,wd and
gsv ,wd:

fsv,wd + I = fsv;Id − w + w0, s5d

gsv,wd = v − w, s6d

where

fsv;Id = 5− sv − v0d/b0sId v , v1,

sv − v2d/bsId v1 ø v ø v2

− sv − v2d/b1 v . v2.

, s7d

Parameters of this model are easily fit to the reduced
Hodgkin-Huxley model and have a natural physical interpre-
tation as points of maxima and minima of thev nullcline or
gradients on the left, middle, and right branches. This is most
easily described with the aid of the plot in Fig. 2. Here we
have setb1=3 and

b0sxd =
v1 − v0

w0 − w1sxd
, bsxd =

v2 − v1

w0 − w1sxd
, s8d

with w0=−42.5, w1=−65.2, v0=−76.0, v1=−63.7, v2
=−19.5. The functionw1sxd=w1+wsxd, describes how much
the minima ofv is perturbed by a constant current injection.
A detailed comparison with the reduced Hodgkin-Huxley
model suggests a choice such aswsxd=4 logs1+x/4.75d
sx,0d. However, for the sorts of mechanistic questions we
are interested in simpler choices, such aswsxd=x, are equally
as valid. We call the above the modified McKean model
since it has piecewise linear nullclines, as does the original
McKean model[15]. However, we take more care in obtain-
ing an approximation of the Hodgkin-Huxley model by fit-
ting to the properties of the reduced Hodgkin-Huxley model.

Mathematical progress in quantifying anode break excita-
tion for this model can be made under the simplifying as-
sumption of fast relaxation which allows one to use some of
the tools of geometric singular perturbation theory. The sys-

tem has nullclines defined byw−w0= fsv ; Id and w=v. The
case when the fixed point is such thatv,v1 is said to define
the excitable regime. It is convenient to keep track of which
branch of the nonlinear function(7) is playing a role in the
dynamics. If the time scale for thev dynamics is fast com-
pared to the time-scale for thew dynamics(i.e., in the limit
as m→0), then v spends no appreciable time off of the
nullclines forv̇=0. Whenv,v1 we shall say that the system
is on the left-hand branch:w−w0=sv0−vd /b0sId and when
v.v2 the system is on the right-hand branch:w−w0=sv2

−vd /b1. In this case the slow dynamics takes the form

ẇ = HA0sId − g0sIdw v , v1,

A1 − g1w v . v2,
s9d

where g0sxd=1+b0sxd, g1=1+b1, A0sxd=v0+b0sxdw0, A1

=v2+b1w0 and we have adopted the notationẇ=dw/dt.
Note that a necessary condition for anode break excitation
within this model is that the fixed point on the left branch be
lower than the minima withI =0, i.e.,A0sId /g0sId,w1. Net-
works of weakly coupled oscillatory McKean neurons have
previously been discussed in[18,19]. We shall now pursue
the case of strong inhibitory coupling and the emergence of
network rhythms that can coexist with a stable quiescent
network state.

At a synapse presynaptic firing results in the release of
neurotransmitters that cause a change in the membrane con-
ductance of the postsynaptic neuron. This postsynaptic cur-
rent may be written

Istd = svs − vdustd, s10d

wherev is the voltage of the postsynaptic neuron andvs is
the membrane reversal potential. The variableu corresponds
to the probability that a synaptic receptor channel is in an
open conducting state. This probability depends on the pres-
ence and concentration of neurotransmitter released by the
presynaptic neuron. The sign ofvs relative to the steady state
resting potential,vss, determines whether the synapse is ex-
citatory svs.vssd or inhibitory svs,vssd. In this paper we
will regard the post-synaptic conductance as a train of pulses,
each one induced by the arrival of a presynaptic action po-
tential at a timeTmsmPZd:

ustd = o
m

hst − Tmd. s11d

The arrival times are calculated according to a voltage jump
condition in the presynaptic neuron, which we shall take to
occur as the neuron makes a transition from the left to right
branch of thev nullcline. The shape of the post synaptic
conductance is given by the functionhstdshstd=0,t,0d. So
that simple geometric arguments can be used we shall con-
sider on/off type synapses of the form

hstd = gsQstdQsa−1 − td. s12d

Herea−1 is the duration of a rectangular pulse,gs its strength
andQstd is a Heaviside step function. We shall also focus on
the case of strong inhibition so thatvs−v<vs, (i.e., we drop
the effects of shunting). For a globally coupled network ofN
neurons we consider the natural extension

FIG. 2. (Color online) The phase-plane for the modified McK-
ean model, withv nullclines plotted forI =0 andI =−4. Also shown
is a rebound spike created by removing inhibition from the rest state
with I =−4. m=0.01, wsxd=4 logs1+x/4.75d and other parameters
as in Fig. 1.

CLUSTERING THROUGH POSTINHIBITORY REBOUND… PHYSICAL REVIEW E 70, 011908(2004)

011908-3



I istd = −
J

N
o
j=1

N

o
m

Qst − Tj
mdQsa−1 − t + Tj

md, s13d

whereJ=−gsvs.0 andI istd is interpreted as the input to the
ith neuron, withi =1, . . . ,N.

For a globally coupled network the symmetry to permu-
tations implies the existence of a homogeneous solution.
This could either be a homogeneous fixed point(HFP), in
which all neurons in the system remain at rest or a homoge-
neous limit cycle(HLC), in which all neurons oscillate syn-
chronously. This latter solution is what we shall refer to as a
single cluster state. It is also possible that other cluster states
will arise through a process of spontaneous symmetry break-
ing. The most symmetric cluster states will be ones in which
there areM clusters, each consisting ofN/M fully synchro-
nized neurons, with a nonzero phase difference between each
cluster. We might more properly call this a splay-cluster state
as we would expect the phase difference between any two
groups to be an integer multiple of 2p /M. Note that we may
also interpret the HLC as a 1-cluster state.

First let us consider the construction of a globally syn-
chronous state(a single cluster). If a cluster is released from
inhibition and makes a transition from the left to right branch
then inhibition is immediately reinstated. The cluster evolves
on the right-hand branch until it jumps back to the left on
reachingw0. By assumption it is still in the inhibited state
and will evolve on the left-hand branch until it is released
from inhibition (when the synapse turns off). Hence, the con-
dition for the existence of such a solution is that the value of
w at the jump from left to right branches be lower than the
minimum value of thev nullcline without inhibition(when
J=0). The period of oscillation is simply the duration of the
synapsea−1, so that a critical value ofa may be defined in
terms of the minimum period of oscillation. This minimum
period is simply the time spent on the left and right branches
when the jumping off point(from left to right branches) is
equal tow1. Since the dynamics forw is piecewise linear it is
a simple matter to calculate these times and obtain a condi-
tion on a asa,1/sDLs−Jd+DRd where

DR =
1

g1
logSA1 − g1w1

A1 − g1w0
D , s14d

DLsId =
1

g0sId
logSA0sId − g0sIdw0

A0sId − g0sIdw1
D . s15d

Now let us turn our attention to anM-cluster state. In such a
state we may imagine that there is a phase relationship be-
tween clusters such that at any given time there is a constant
level of inhibition given byI =−J/M (apart from the times of
measurezero where transitions occur). To maintain this con-
stant level requires that just before release from inhibition all
M clusters evolve on the left-hand branch. A single cluster
then evolves on the right hand branch and makes a transition
back to the left-hand branch before inhibition terminates. In
this way there are againM clusters on the left-hand branch
(each feeling an inhibition of −J/M) when the next cluster
makes a transition to the right-hand branch. The total period
of oscillation is simplyM multiples of the duration of syn-

aptic inhibition, which is also equal to the time spent on the
left and right branches over a single orbit. Hence, using an
identical argument as for the 1-cluster state we obtain a con-
dition on a=asMd as

asMd ,
M

DLs− J/Md + DR
. s16d

Moreover, since we have assumed that only one cluster can
make the jump from left to right branch we also have that

asMd .
M − 1

DLs− J/Md + DR
. s17d

In Fig. 3 we plot these critical curves forM =1, . . . ,5 as a
function of the strength of inhibition. We see that for smalla
(slow synapses) there is a critical value ofJ above which a
1-cluster(HLC) state can be found. Moreover, with increas-
ing J one sees windows ofa values whereM-cluster states
can exist. From this figure it is also apparent that there is
co-existence of cluster states. For example withJ=7 we see
that it is possible to find a region ofa values where there is
co-existence of theM =1 andM =2 states. Moreover with an
increase inJ anda it is possible to find a region of parameter
space whereM =2 andM =3 can coexist. A further increase
in a leaves onlyM =3 as a possibility, and with a large
enough choice ofa no clusters are possible. Note that the
HFP is a trivial solution that exists for alla and J. Direct
numerical simulations of a Hodgkin-Huxley network are
found to be consistent with the qualitative predictions of this
analysis. Quantitative predictions are not expected as our
theory has been developed in the singular limitsm→0d,
which does not hold for the standard parameter set of the
Hodgkin Huxley model(given in the Appendix). However,
an increasing quantitative agreement between theory and nu-
merics is obtained with an(artificial) decrease in the capaci-
tance of the Hodgkin-Huxley model, as expected. In Fig. 4
we show simulations ofN=120 Hodgkin-Huxley neurons,
illustrating the coexistence of a 1-cluster and 2-cluster state.
With an increase in the strength of inhibitionJ and choosing
a faster synapse it is possible to find a coexisting 2-cluster

FIG. 3. (Color online) A plot of the critical curvesasMd as a
function ofJ (i.e., synaptic speed vs synaptic strength), defining the
regions of existence forM-cluster states. Here we choosewsxd=x
and all other parameters as in Fig. 2. Note the coexistence of states.

CHIK, COOMBES, AND WANG PHYSICAL REVIEW E70, 011908(2004)

011908-4



and 3-cluster state, as predicted from the trend seen in Fig. 3.
This is illustrated in Fig. 5.

In the next section we turn to a different mechanism of
post inhibitory rebound that relies on a novel ionic current,
not present in the Hodgkin-Huxley model.

III. A REBOUND CURRENT

The response properties of thalamocortical relay neurons
are greatly influenced by a low-threshold, transient Ca2+ con-
ductance known asIT. When this conductance is evoked,
Ca2+ entering the neuron via T-type Ca2+ channels causes a
large voltage depolarization known as the low-threshold
Ca2+ spike (LTS). Conventional action potentials mediated
by fast Na+ and K+ (delayed-rectifier) currents often ride on
the crest of an LTS resulting in aburst response(i.e., a tight
cluster of spikes). When a thalamocortical relay neuron is

depolarized (above roughly −60 mV), the low-threshold
Ca2+ current inactivates with a time constant of,20 ms. In
this situation, further depolarization of sufficient magnitude
will evoke a train of action potentials(tonic firing) that is
independent ofIT. However, when a relay neuron is hyper-
polarized (below roughly −65 mV), the low-threshold cur-
rent de-inactivates with a time constant of,100 ms. In this
situation release from inhibition results in a post inhibitory
rebound response consisting of an LTS and a cluster of 2–10
spikes. A minimal model of this process has been developed
by Smithet al. [20] based around intracellular recordings of
relay neuron responses to sinusoidal current injection. This
minimal “integrate-and-fire-or-burst”(IFB) model was con-
structed by adding a slow variable(representing the de-
inactivation level ofIT) to a classical leaky integrate-and-fire
(IF) neuron model[21] and is able to quantitatively repro-
duces salient features of relay neuron response properties in
both burst and tonic modes[20,22].

In more detail the IFB model is given by

Cv̇ = − gLsv − vLd − gTsv − vTdhQsv − vhd + I , s18d

ḣ = H− h/th
− v ù vh,

s1 − hd/th
+ v , vh.

s19d

The voltage variable is subject to reset, limd→0+ vsT n+dd
=vreset, and refractoriness

T n = infht uvstd ù vu ; t ù T n−1 + tRj, s20d

wherevu is the firing threshold andtR is recognized as an
absolute refractory period. Here,gL is a constant leakage
conductance andvL the leakage reversal potential. The low-
threshold Ca2+ current is given byIT=gTsv−vTdhQsv−vhd.
The slow variableh represents the de-inactivation of the low-
threshold Ca2+ conductance. All parameter values for the IFB
model may be found in the Appendix. An example of the
response of this model neuron to an inhibitory step input is
shown in Fig. 6. This nicely illustrates the sort of rebound
response that can be elicited upon release from inhibition.
Such a response can only occur if the duration of inhibition
is sufficiently long and its strength sufficiently great.

Once again we wish to probe the conditions for a network
of neurons to support clustered states, using straightforward
mathematical analysis. Since IFB neurons possess an ideal-
ized version of the slow T-type calcium current such an
analysis naturally complements existing numerical studies of
more detailed biophysical networks. In particular we are
thinking of the work of Golomb and Rinzel[10], who inves-

FIG. 4. (Color online) Direct numerical simulations of a net-
work of N=120 Hodgkin-Huxley neurons, showing the coexistence
of a 1-cluster(top) and a 2-cluster(bottom) state fora=0.1 andJ
=20. In the top trace all of the neurons in the globally coupled
network synchronize. In the bottom figure(with a different set of
initial conditions) the network splits into two equally sized clusters
that oscillate in antiphase.

FIG. 5. (Color online) Direct numerical simulations of a net-
work of N=120 Hodgkin-Huxley neurons, showing the coexistence
of a 2-cluster(top) and a 3-cluster(bottom) state fora=1.25 and
J=200. In the top figure the network has split into two clusters that
oscillate in antiphase. In the bottom figure the network has split into
three equal sized groups, such that the phase difference between
clusters is uniformly distributed on the circle.

FIG. 6. (Color online) Response of an IFB neuron to a hyper-
polarizing current step. Note that upon release from inhibition there
is a post inhibitory rebound response consisting of aburstof spikes.
Herevss denotes the steady state of the neuron.
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tigate cluster states with a mixture of numerical simulations
and Floquet theory. Although the networks they investigate
are not ideally suited to a mathematical study, important
progress in this direction has been made by Rubin and Ter-
man [23]. These authors consider an idealized model of a
neuron with a generic rebound current and show how a net-
work with global coupling may be analyzed using techniques
from geometric singular perturbation theory. Although we
have had success with a geometric approach in the last sec-
tion we shall now show how the IFB model is exactly
soluble, under some reasonable assumptions, so that we do
not have to work in some singular limit. In fact we will
explicitly construct cluster states in the limit of slow synaptic
responses. However, unlike the last section we will be able to
work with both shunts and an arbitrary shape for the postsyn-
aptic conductance.

For postsynaptic currents of the form(10) and(11) which
are determined in terms of a set of spike times, there is a
simple way to swap to a firing rate description if the synaptic
interactions are slow. Since this is already a necessary con-
dition for post inhibitory rebound within the IFB framework
we work under this assumption and write the synaptic con-
ductance at theith neuron in a globally coupled network as

uistd =
1

N
o
j=1

N E
0

`

hst8dfsv jst − t8dddt8. s21d

A more detailed discussion of the derivation of this model
can be found in[24], suffice to say thatfsvd is to be inter-
preted as the firing rate of an IFB neuron andv j =vshj ,ujd is
the steady state of thej th presynaptic neuron given by

vsh,ud =
gLvL + gTvThs+ gsvsu

gL + gThs+ gsu
. s22d

The variables is a switch such thats=1 if vsh,ud crossesvh

from below ands=0 if v crossesvh from above. If the firing
rate is dominated by the refractory mechanism then it is
natural to take the instantaneous firing rate asfsvd=tR

−1Qsv
−vud. It is in this case that the model admits to an exact
solution.

Generalizing the choice of section II we shall consider the
case thath is the Green’s function of a differential operator
L:

Lhstd = gsdstd. s23d

The equations of motion for the conductances then take the
differential form

Lui =
gs

N
o

j

fsv jd. s24d

The HFP of the system is given byu=gsfsvd with h=0,
while the HLC satisfiesLustd=gsfsvstdd. More general
M-cluster splay states are described by

Lui =
gs

M
o
k=1

M

fsvkd, i = 1, . . . ,M , s25d

whereui now represents the dynamics of one element in a
synchronized cluster. We shall focus on the particular case
that hstd is a so-called alpha-functionhstd=a2te−at, so that

L = s1 + a−1]td2. s26d

We first consider the construction of the HLC. This can be
done by considering a closed orbit of periodD and param-
eterizing the solution in terms ofD, the time spent above the
rebound thresholdvh, D+, and the time spent above the firing
thresholdvu, Du. For convenience we choose an origin of
time such that att=0 v crossesvh from below. Assuming that
only the most recent burst is influential the HLC takes the
explicit form ustd=gsQst ,minst ,Dudd /tR, where

Qst,ad =E
0

a

hst − t8ddt8=e−ast−adf1 + ast − adg − e−atf1 + atg,

s27d

and

hstd = 5h̄e−t/th
−

0 ø t ø D+

h̄e−D+/th
−
e−st−D+d/th

+

+ 1 −e−st−D+d/th
+

D+ , t , D,

s28d

with

h̄ =
1 − e−sD−D+d/th

+

1 − e−D+/th
−
e−sD−D+d/th

+ . s29d

Note that outside their natural domains we periodically ex-
tend ustd and hstd. The three unknownsD ,D+,Du may then
be found by the simultaneous solution of the three equations
vsDud=vu, vsD+d=vh, and vsDd=vhsD.D+d. Here, vstd
=vshstd ,ustdd using (22) ands=1 for tP f0,D+g and is zero
otherwise. In Fig. 7 we plot the results of such a calculation.
This compares extremely well with results obtained from
direct numerical simulation. In Fig. 8 we show a plot of
activity for a network of sizeN=100, which illustrates the
rapid approach of random initial data to the HLC(for the
same parameters as in Fig. 7). Figure 9 shows the time evo-
lution of just one of the neurons in the network.

Further numerical simulations of this model with varying
a andgs show that the three most common attractors seem to
be the HFP, HLC, and 2-cluster state. This is not to say that
larger M-cluster states do not exist or are not stable, but
rather that they may have relatively small basins of attrac-
tion. This observation has already been made by Golomb and
Rinzel in their studies of more detailed biophysical networks
(with slow T-type calcium currents). So although it is easy to
generalize the calculation of the HLC to M-cluster splay
states by writinguistd=ust− iD /Md for i =0, . . . ,M −1 with
hstd given by (28) and
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ustd =
1

M

gs

tR
o
k=0

M−1

Qst − kD/M,minst − kD/M,Dud, s30d

we shall only focus on the caseM =2 for the above reason.
As before solutions are determined in a self-consistent fash-
ion by demandingvsDud=vu, vsD+d=vh andvsDd=vh. A plot
of a 2-cluster state is shown in Fig. 10. Once again there is
excellent agreement with direct numerical simulations,
which we illustrate with the aid of Fig. 11.

To establish the stability of theM-cluster states one could
pursue the approach of Golomb and Rinzel[10] and apply
Floquet theory. Indeed having the periodic orbits in closed
form is an added bonus for such an approach, as in many
models they would only be available numerically. However,
we make the important observation that M-cluster states
come in pairs, with solutions annihilating in a saddle-node
bifurcation under variation of system parameters. Hence, by
tracking around these saddle-node bifurcations in parameter
space we may determine the existence regions for stable
M-cluster states. Within these regions a stable and unstable
M-cluster state would co-exist. The result of such a calcula-
tion is shown in Fig. 12. This clearly highlights the fact that
for slow synapses and sufficiently strong coupling the
(stable) HFP, HLC, and 2-cluster state can coexist. With in-
creasinga the system can no longer support a HLC and
prefers a 2-cluster state, although with further increase ina
only the HFP is found. The borders of existence were found
to agree extremely well with direct numerical simulations,
although in practice is was hard to find examples(starting
from random initial data) of a 2-cluster state coexisting with
a HLC.

IV. DISCUSSION

In this paper we have considered clustering in globally
coupled networks of nonoscillatory neurons with inhibitory
synaptic connections. A generic mechanism for the genera-
tion of such rhythms is that of postinhibitory rebound. To
distinguish between the effects of anode break excitation and
rebound currents we have analyzed a mathematically trac-
table neuron model from each of these two classes. For an-

FIG. 7. (Color online) A plot of the explicit HLC solution with
a=0.05, gs=2.0, andvs=−100. For these parameters we findD
=112.9,D+=26.4, andDu=11.5.

FIG. 8. (Color online) A plot of the voltage for a network of
N=100 neurons. Bright colors denote high activity and dull colors
low activity. All parameters as in Fig. 7. Note the rapid approach to
a HLC from random initial data.

FIG. 9. (Color online) Voltage trace for one of the neurons in
Fig. 8, showing good asymptotic agreement with the analytically
calculated orbit of Fig. 7.

FIG. 10. (Color online) A plot of the 2-cluster state witha
=0.1. Other parameters as in Fig. 7. For these parameters we find
D=99.1,D+=53.7, andDu=6.4.
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ode break excitation we considered a reduction of the
Hodgkin-Huxley model to a form that we have identified as
a modified McKean model. Analysis of cluster states was
performed in some singular limit(where there is a separation
of time scales). Regions for the existence of splay cluster
states as a function of synaptic speed and strength were
found to be in good qualitative agreement with the full
Hodgkin-Huxley model(away from the singular limit). The
main conclusion being that slow synapses and weak coupling
(above some cut-off) favor small numbers of clusters, while
an increase in speed and strength favors larger numbers of
clusters. For the analysis of a neuron with an explicit ionic
rebound current we chose the IFB model. For the case of
slow synapses and a firing rate response dominated by a
refractory process we have shown how to construct splay
cluster states for a broad class of synaptic shunting models.
Direct numerical simulations show that, in contrast to the
mechanism of anode break excitation, either a coherent glo-
bal oscillation or an antiphase rhythm is preferred. One ma-
jor similarity between the two mechanisms is that the single
cluster state is generated for very slow synapses(for some
sufficiently strong coupling). Although, for simplicity, we
have focused on the construction of the most symmetric clus-
ter states(splay clusters), the techniques we have described
are ideally suited for the study of less symmetric states and
even partially clustered states. Because of the underlying
simplicity of the models we have developed it is also pos-
sible to pass over to the case of structured interactions. The
results of such an analysis will be presented elsewhere.

For both mechanisms it is also an interesting issue as to
whether cluster states are robust to noise. For networks uti-
lizing anode break excitation as the means to generate
rhythms this has been explored in a previous paper[25].
Here it was shown that the effect of weak additive Gaussian
noise is basically twofold:(i) causing a neuron to switch
between different clusters, and(ii ) causing the whole system
to switch between different cluster states if the system is
inside a multistable regime. Moreover, for large networks
and moderate noise, it is possible for the system to support a
form of coherence resonance[26] (whereby a rhythm is
noise induced and would be absent without noise). Similar
effects have been observed in model networks with a slow
T-type calcium current[10,27]. In an extension of their origi-
nal work on clustering, Golomb and Rinzel[28] have also
numerically explored the issue of heterogeneity and found
both partially synchronized and partially antisynchronized

states. It remains an open problem to extend the techniques
of this paper to heterogeneous systems.
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APPENDIX

For the Hodgkin-Huxley mode the six functionstXsvd and
X`svd, XP hm,n,hj, are obtained from fits with experimental
data. It is common practice to write

tXsvd =
1

aXsvd + bXsvd
, X`svd = aXsvdtXsvd, sA1d

for XP hm,n,hj where

amsvd =
0.1sv + 40d

1 − expf− 0.1sv + 40dg
, sA2d

ahsvd = 0.07 expf− 0.05sv + 65dg, sA3d

ansvd =
0.01sv + 55d

1 − expf− 0.1sv + 55dg
, sA4d

bmsvd = 4.0 expf− 0.0556sv + 65dg, sA5d

bhsvd =
1

1 + expf− 0.1sv + 35dg
, sA6d

bnsvd = 0.125 expf− 0.0125sv + 65dg. sA7d

All potentials are measured in mV, all times in ms and all
currents inmA per cm2. We use the following parameter val-
ues:m=1 mF cm2, gL=0.3, gK=36, gNa=120, VL=−54.402,
VK =−77, andVNa=50.

For the IFB model we use the parameter setvu

=−35 mV, C=0.2 mF/cm2, gL=0.0354 mS/cm2, vreset
=−50 mV, vh=−70 mV, th

−=20 ms, th
+=100 ms, gT

=0.07 mS/cm2, vT=120 mV, andtR=5 ms.

FIG. 11. (Color online) A plot of the voltage for two neurons in
a network ofN=100 neurons. All parameters as in Fig. 10. Note the
rapid approach to a 2-cluster state from random initial data, show-
ing good asymptotic agreement with the analytically calculated or-
bit shown in Fig. 10.

FIG. 12. (Color online) Parameter borders encompassing re-
gions of stable HLC and 2-cluster states in thesa ,gsd plane. Other
parameters as in Fig. 7. Note that the HFP is stable everywhere.
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