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Nonadiabatic geometric quantum computation using a single-loop scenario
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A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally,
a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for
geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop
method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the
nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in
other physical systems.
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Quantum computers have been attracting more and momaultiloop schemg8,10,11, in which the evolution is driven
interests as they are illustrated to be capable of tackling efey the Hamiltonian along several closed loops. The dynami-
ficiently certain problems that are intractable for classicalal phases accumulated in different loops may be canceled,
computers [1]. Significant progress has recently beenwhile the geometric phases are added.
achieved in the field of quantum computing. Nevertheless, |n this paper, we propose a simple single-loop scheme to
there are still many difficulties and challenges in physicalrealize a set of universal quantum gates based nonadiabatic
implementation of quantum computation. The infidelity of geometric phase shifts. In this scheme, the dynamic phase
quantum gates is one of them; to suppress the infidelity to @an be removed in the designed cyclic evolution, with only
acceptable level is essential to construct workable quantuithe geometric phase being accumulated in gate operations.
logical gates in a scalable quantum computer. Recently, @omparing with the existing multiloop geometric approach,
promising approach based on geometric phd2eg]] was  the present scenario may simplify the gate operation and
proposed to achieve built-in fault-tolerant quantum gateshorten the gate-operation time, which appears to be a dis-
with higher fidelities[5-10 since the geometric phase de- tinct advantage for experimentally implementing geometric
pends only on the global feature of the evolution path and iguantum computation.
believed to be robust against local fluctuations. The geomet- Before we present our scheme, let us first summarize how
ric quantum computatiq®QC) and its physical implemen-  to construct a single-qubit gate using cyclic evoluti§hs].
tation were addressed for NMR systerf&9], Josephson For a qubit system, consider two orthogonal cyclic states
junctions[6,10,, and trapped ion§7]. |,y and |¢), which satisfy the relation U(7)|i)

Theoretically, under the so-called adiabatic condition, one- exp(+iy)|4.), wherey is the total phase accumulated and
can construct a pure geometric phase quantum gate based @) is the evolution operator of a cyclic evolution withas
an adiabatic geometric phag8]. However, the adiabatic he periodicity. We can write|y,)=e7%2 cosy/2|1)
condition is not satisfied in many realistic cases because thgei(¢/2> siny/2| 1) and |¢_>:_e—i<¢/z) siny/2|1)
long operation time is required, and thus it is hard to experi= ¢(¢/2) cosy/2| 1), where(y, ¢) are the spherical coordi-
mentally realize quantum computation with adiabatic evolu,ates of the state vector on the Bloch sph@ig. 1), |1) and
tions, particularly for solid-state systems whose decoheren € ) are the two eigenstates of tzecomponent of the spin-
time is quite short. To overcome this disadvantage, it was ;> operator(a,/2) and they constitute the computational

proposed to use the nonadiabatic cyclic geometric pffs&e  aqis for the qubit. For an arbitrary input state denoted as
phasé to construct geometric quantum gat@s1Q. These

gates have not only the faster gate-operation time, but also z
intrinsic geometric features of the geometric phase. For a
nonadiabatic cyclic evolution, the total phase difference be-
tween the final and initial states usually consists of both the
geometric and dynamical phases. Therefore, to get the nona- -
diabatic geometric phase, we need to remove the dynamical
component. An interesting idea is to choose the cyclic evo-
lution in dark state§7]: dark states have a zero energy ei- C D| 1
genvalue for the effective Hamiltonian, and thus its dynami- ’
cal phase will always be zero during the evolution. Another X
useful method to remove the dynamical phase is a so-called

FIG. 1. The closed path ABCDA for the geometric single-qubit
gate. The BC and DA are on the geodesic paths on which the dy-
*Electronic address: zwang@hkucc.hku.hk namical phase is always zero.
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|y =a| ) +a | ) with a,=(i| ¥,), after the cyclic evo- 12
lution for the |¢,) (|¢r_)) state, the output state is/,.y

=U(y,x, ®)|¥in), where

€7 cog +e7sitX  iei4 sin y sin y y
U= 2 2 )
ie?sinysiny  €7sirfZ +e” cogZ !
2 2 X
(1)
If ever we can let they be a pure geometric phase, this FIG. 2. The evolution paths on the Bloch sphere for a geometric

gate is a geometric quantum gate because it depends only tmo-qubit gate. When the qubiitis in the statd 1), the statdyn),
the geometric phasg (and the initial coordinates of the state completes a cyclic evolution on the ABCDA. If the qubits in the
|4,)) under the operation, even though an input state of &tate|]), the [¢.), can be manipulated either to evolve along the
superposition of the two cyclic states may have a nonzerdBE or to be unchanged.
dynamical phase after the gate operation; this feature is a
distinct merit in the proposed geometric quantum gates. The . B . . -icosy —isiny
discussions on the robustness of the proposed geometridJ(y) = H4me Hamg H2mg 'H171=< :
gates can be found in Rdfl2].
We now illustrate schematically how to realize the above ©)
pure geometric phase gate. In Fig. 1, we plot a cyclic evolu=|-
tion path (ABCDA) on the Bloch sphere surface; a qubit
state corresponds a point on it. Note that the state vecto(rl)'A . Il K hi f uni |
along the BC and DA curves takes the geodesic path on thg S IS well known, to achieve a set of universal quantum

—-isiny 1icosy

his is indeed a geometric gate with=y9=—(=/2) in Eq.

Bloch sphere. The dvnamical phases accumulated on the ates, we need to construct two noncommutable single-qubit
Wo cur\?es aré alwa 35/ Zer0 Sir?ce the AB and CD curves ar tes and one nontrivial two-qubit gate. Once we choose, for
symmetric with resp))/ect to.the X-Y plane, when the state xample,y=m/4 and x=m/3 in Eq. (3), respectively, it is
vector evolves along the two curves as indicated in Fig. 1stra|ghtforward o verify thal)(x,=m/4) and U(x,=/3)

the dynamical phases should be canceled exactly in the pre‘Lé,".[e noncqmmutmg. Therefore, the two noncommu;able_
ence of az-axis magnetic field. smgle-nglt gates can be constructed based on nonadiabatic
At this stage, we choose the point A in Fig. 1 to be thegeometric phases.

It is also interesting to note that the loops corresponding
|#.). In order to ensure that the stakg,) (|y)) evolves to x=0 and y==/2 are very special, on which dynamical

cyclically, with the accumulated dynamical phase being zero hases are always zero; thus they are intrinsically geometric

we mar_upl_JIate _the_ magne_tlc field as foIIo_ws. A CorlStantglosed paths. Obviously, the corresponding two geometric
magnetic fieldB is first applied a_long tha_aX|s_ du_nng _the guantum gates —io, and -ioy) are also noncommuting as
time ;= (/2w). The corresponding Hamiltonian in this pe- & z X

riod may be written asi,=(u/2)B-0=(w/2)0,, wherew We now turn to achieve a nontrivial two-qubit gate. Let us
=uB. Next from the point B, the magnetic fiel} is chosen  ;nsider a typical two-qubit system, like NMRL3], de-

along thex axis during m,=(m/wp) With w,=puBy, and the  geriped by the following Hamiltonian with a simple interac-
Hamiltonian becomebl,=(w,/2)oy. Then from the point C, o petween two qubits:

the magnetic fieldB is reapplied to thez axis during the ) )
period 7= /2w, andHy=(w/2)o,. Finally, we choose the H = (0,07 + w0, + 1050712, (4)

magnetic fieldB, along they axis for 7,=m-2y/wy, and  here 5 and b denote two qubits, respectively, addis a

thus Hy=—(w,/2)ay. In this series ofr, 7, 7, and 7, the coupling constant. If we apply an accessory fielgto the
|ﬁ+>letatﬁ evr?lves a'znfg tTle paths AB, ﬁC, CD, and _DAAonqubitawith w,=(w,—mJ), then the effective Hamiltonian of
the Bloch sphere, and finally retrns to the starting point Atqpe™ " oinit 3 will  become  Hy=(w- . m3)0%/2

form asmgle_ qup. The dynamical phase accumulated in th'sé(thqu)aalz, in which + corresponds to up and down
cyclic evolution is written as z

states of the qubib. When the qubib is in the statg 1)y,
n n H,=mJo%; while if the qubitb in the statd | ),, H,=0. This
_ B By s cD cD important property can be used to realize a controlled two-
Y= JO (W BH [/ Bt JO (P=PHg[y™2)dt. (2) qubit gate based on nonadiabatic geometric phases using the
similar scenario as that used in Rgt3].

Because(y/A®|H,|4/®)=—(y°P|H;[¢P), the accumulated e first consider the controlled qubiitto be in the state
dynamical phasey?=0. Meanwhile, the geometric phase, |1),. As shown in Fig. 2, we choose the arctic point on the
which is half of the area enclosed in the path spanned by thBloch sphere as thi/,) state of qubita (point A in Fig. 2,
Bloch vector, is found to be(r/2). As a result, the designed i.e., |¢,),=|T).. In the first step, a magnetic fieRlis applied
evolution operator for any input state reads on the qubita along they-axis and the interaction is turned
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b periment[14] where a line-selective pulse is us@d ensure
that the effective field can be applied on the qublty sat-
isfying the resonant condition only if the quittdtin the state

a \U/ |1)). Therefore, for the operatiaion the qubita for the case
| 1)) corresponding to the path ABCDA in Fig. 2, we have

FIG. 3. Schematic diagram of a nonadiabatic two-qubit gate. i00o0
The output state of the qub# depends on the state of controlled

i 0 i 0O
qubit b. U= s 010l ©6)
off. The effective Hamiltonian of the qubit is H(1) 0 00 1

=way/2. After the timer, =7/ 2w, the state of qubia is in o o N ]

the state(v2/2)(|1)a+|1)s) (point B). Then, the magnetic This is a nontrivial conditional geometric phase gate
field is removed and the interaction is turned on for the timeubi) [8,11]. Moreover, when the qubd is manipulated as
7,=1/2). The effective Hamiltonian of the qubi in this N Fig- 1(for the casq),), we can achieve a more general

period is H(2)=mJo%. After this evolution along the path controlledU gate as

BCD in Fig. 2, the state changes t6v2i/2)(||)a=|1)a)- 00

Next, we turn off the interaction again and apply the mag- , Ut 00

netic field along they axis as in the first step for the time U,= 0010 (7)
m3=7/2w, the final state of qubita becomes the state

e'™2|1), From the whole process described above, it is 0001

clearly seen thafy,), has experienced a cyclic evolution Finally, we wish to clarify that the robustness of the pro-
with the cIoseg path ABCDA on th?_BmCh sphere: posed geometric gates will depend on the state accurately
[Tha— (V212)([)a+[1)a) = (= 2i12)(|Da=[1)a undergoing a cyclic excursion, which may be perturbed by
N —iﬁ/z|T>a_ Fhe fluctuatior)s in rather strong control field;. Nevertheless,
The total phasey=—=/2 is just the geometric phase shift in most experimental systems, the effective fields can be con-

accumulated because the evolution path is geodesic and tH lled with high accuracy, particularly.in NMR—Iikg systems,
dynamical phase is zero. where the effective fields to appear in Hamiltonigh are

Next we consider the qublitto be in the staté] ). As we just the oscillating frequencies of the nucleus and the applied
indicated before, the effective Hamiltonian of the quiin pulses; these frequencies can be controlled very accurately.
the above second periag is zero[H(2)=0]. Thus, theli,) Therefore, serious errors in the control fields may be avoided

. L] +/a . -
takes the eVOIUtiOdT>a4\(\“§/2)(|l>a+|T))a“|l>a under 1N many experimental systems. Even though there may be

the above operation process. The evolution path on the Bloc ome unavoided noises in control fields, the proposed geo-
sphere corrgs ondspthe ABE ath. on whigh o dvnamic etric gates are still robust against certain types of noises

P : P path, o dy .a(!Iue to the nonuniformity of the control parameter, as illus-
phase is accumulated. As a result, we have the time evolutlolrp

. ated in Ref.[12].
operatorU,(7) for the present two-qubit system, such that In conclusi[on? we have proposed a single-loop scheme to

Ua(n)] el 16 =€ ™4 1al s Ua(D] )l =€ 1)ol T, construct a set of universal quantum gates based on nonadia-
Ua(n)[ el Do=[ el Do, and Up(n)[ 1)l Ls==[1)el Do 1IN patic geometric phases. Comparing with the existing multi-
the basis of 1),| )by [ 1al or [Tl Do [ 1al D, the matrix loop methods, our scheme using the singleloop to remove the
form of the evolution operator of this two-qubit system is dynamical phase is interesting and valuable in physical

written as implementation of geometric quantum computation because
i 00 O it may simplify the gate operation and shorten the gate-
. operation time. The present scheme is applicable to NMR
0 i 0O ; . -
U,= ] (5) systems and may be feasible in other physical systems,
0 00 -1 which would stimulate experimental interests in implement-
0 01 O ing nonadiabatic geometric quantum computation.

Since the output state of the qubitdepends on the state =~ We are grateful to J. Du and Q. Han for helpful discus-
of the qubitb, as shown in Fig. 3, it is seen that the abdle  sions. This work was supported by the RGC Grant of Hong
obviously denotes a nontrivial two-qubit gate. Kong (HKU7114/02B, the URC fund and the CRCG Grant

Alternatively, if the effective field on the qubié can be of HKU, the NSFC under Grant Nos. 10204008 and
turned off once the qubib in the ||) state,H,=0 in the 10429401, and the NSF of Guangdong under Grant No.
whole process, as that can be manipulated in the NMR ex321088,.
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