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Summary & Conclusions ~ Various experimental designs 
for estimating the number of faults in a system are studied in- 
cluding: 

i. removal of each fault as it is detcctod, 
ii. marking of each fault as it is detected, 

iii. introduction of a known number of faults into the system 
followed by #i or #ii. 
A unified framework is developed for comparing these designs; 
it also produces simplified estimators having high efficiency rel- 
ative to maximum likelihood estimators. The designs are com- 
pared in terms of 
. statistical accuracy, 
. the number of failures that need to occur to achieve a given 

accuracy. 
On the basis of these comparisons, some general recommonda- 
t,ians are madc on the level of seeding as well as the choice of 
removal or recapture designs. When the testing effort is sua-  
cicnt so that roughly two thirds of the faults are detected, the 
removal-design is preferred over thc recapture-design, and therc 
are no gains from seeding. However, this conclusion depends 
oq assigning unit cost to all fault detection$, which might not 
always be reasonable. 

1. INTRODUCTION 

Acronyms 
ML maximum likelihood 

MLE ML estimator 
MG martingale 

MGE MG estimator 
ZMMG zero-mean MG 

Notation, 
U 

Nl 
At 

unknown number of undetected faults 
number of failures during [0, t] 
hilure intensity at  time t 

(for a homogencous population) 

A i ( t )  failure intensity for faulr. i at time t 
t j  time of failure j 
0 proportion of seeded-faults relative to  U in 

5‘ B .  U: number of ‘seeded’ faults added to 

Nc(t) number of times fault i is detected in [0, t] 
dNi( t )  increment of Ni( t )  in [t,t + dt ]  

Ut number of new faults detected in [0, t] 
Kt number of known faults detected in [0, t ]  
Mt . number of known faults in the prograin at 

t imet  

’ lT dt:  average failure intensity 

the system 

the code 

x 
ft x, At a known function 

Ft it fa ds ;  note that F7 == 7 

Pt Pr{a real fault is detected in time t } :  E - 

A .  Ft: for a recapture experiment 
1 - exp(-A. Ft): for a removal experiment 

(1 + 6’). P,: *expected number of failures 

[7j 
P, ‘capture effort’ 

T~ 

divided bv U 

mt 
‘history’ of the experiment up to time t 
*expectation, conditional on Ft 
a ZMMG stochast,ic process 
‘conditional mean-derivative’ matrix of dGt 
‘conditional variance’ matrix of dGt 
information matrix obta.ined by integrating 

a conditionally non-random matrix 
standard deviation of r.v. z 
1-x 

DT x h-’ x Dt 
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Nomenclature 
. Failure: An incorrect output. 
. Fault: Some defect in the code which, under at least one 

set of conditions, produces a failure. 
. Removal experiment: As each fault is detected, it is cor- 

rected. Only detection-times are rccorded. 
~ Recapture experiment: Both ‘detection times’ and ‘lo- 

cation of the fault’ are recorded. Thus, revisits of the same 
fault can be identified. Faults are corrected, and a counter 
is inserted to record the number of re-visits 
. Fault seeding or fa.ult injection: A known number of 

faults are inserted into the program. Both ‘detection 
times’ and ‘location of the fault’ are recorded. This is 
first suggested in 1161; see also [23]. 
. Relative efficiency: Reciprocal of the ratio of the stan- 

dard deviations of two estimators. 4 

Let there be an unknown nuniber, v, of faults in a com- 
puter program. The program is executed for a total time 
T ,  perhaps under a rangc of conditions, to simulate the 
operating environment. Failures occur on N, occasions at 
times: 

The failure times until detection of fault i are positive r.v. 
with hazard rate &(t) .  

This paper estimates U in thc presence of the nuisance 
parameters Xi ( t ) ,  and examines how efficiently this can be 
achieved under the experimental designs in section 2. 

The &(t)  being unknown makes v difficult to estimate. 
Recapturc 8z seeding experiments are aimed at  enhancing 
knowledge of X i ( t )  by establishing a baseline population of 
known faults against which the number of failures can be 
calibrated. 

The main purpose of this paper is to compare these 
designs in terms of statistical & practical efficiency. 
Throughout, we concentrate on estimation of v for given 
testing effort; rather than, say, the mean test-time until a 
given number of faults remain. Estimating Y is an impor- 
tant and separate problem, eg, in the clean-room software 
testing strategy [7, 17, 211. 

Some faults will always remain, and the level of faults 
in released software are typically between 1 and 10 faults 
per 1000 lilies of code [16]. 

0 < t l  < 12 < .  , . < t N ,  < 7. 

2. SOME EXPERIMENTAL DESIGNS 
Assumptions 

pcndent and exponentially distributed. 
A. Times between failures caused by faults are s-inde- 

B. Each fault is equally likely to be detected: 

C. No new faults are crea,ted when a fault is corrected. 
D. The failure intensity is uniform in time’: At = A. 
Various devices are available to the tester to make these 

assumptions more likely to be satisfied. For instance, 
restarting the code from a different part of the prograin 
makes #A more likely, while if #B is questionable, faults 

A&) = A t .  

‘This is a coininon assumption 

can be classified, either before or ;after testing, into more 
homogeneous groups. Assumptions #A - #C are used 
throughout. Assumption #D is used only where stated 
explicitly. 

For a removal experiment, .the available data are 
{N7, t l , .  . . , tN , } .  Under assumptions #A ~~ #D, the MLE 
v is derived in [12] and asymptotic properties are treated 
mathematically in [22]. Because the MLE is often un- 
stable, alternative estimates have been suggested [3, 131. 
Other references arc 14, 8, 11, 141. The underlying diffi- 
culty with the removal method is that information about 
v and X is largely confounded in the data, rather sim- 
ilar to the way n and p are partly confounded in the 
binomial(n, p )  distribution [19]. This suggests modifying 
the experiment so that separate information on X becomes 
available. 

In the recapture approach, a s  the experiment progresses, 
the number of revisited faults provides separate informa- 
tion on X since, at any moment, the number of previously 
visited faults is known. Both MLE and moment- based 
estimators for v are derived in [MI: assuming equal failure 
intensity for detected & undetected faults. However, in a 
different context, this estimator for v had been given 30 
years earlier in 161. Simulation studies 126, 271 showed that 
infinite estimates of v occur with very small probability. 

For the fault-injection method 1161, detection of the 
known number of injected faults provides separate infor- 
mation about A. In its origina,l formulation, both seeded & 
real faults are corrected & removed as they are detected. 
MLE based only on the total numbers of seeded & real 
faults detected, not on their times, have been derived [5]. 
If the failure intensities for seeded & real errors have a 
known, constant ratio then estimators based on an MGE 
equation perform satisfactorily 1251. 

The recapture & seeded faults approaches can be com- 
bined [lo]: faults, either seeded or real, are marked (and 
possibly removed) and thc numbers of first-visits and re- 
visits to both types of faults are recorded. Basically, think 
of the marked real faults as being added to the known 
number of seeded faults in the program. Estimation & 
minimization of anticipated debugging time was studied 
in [lo], but not estimation of v. 

It is interesting to explore the difference in the perfor- 
mance of the recapture & removal methods for various 
amounts of seeded faults. For each type of experiment, es- 
timators are studied which minimize standard error within 
a derived classes of estimators for U in a continuous time 
setting. The statistical accuracy of some simpler MGE 
are compared to MLE for the same design. The relative 
efficiencies of the different designs are compared by the in- 
formation in the optimal MGE equations 1151. The details 
arc given in the appendix. ‘Comparison by information’ is 
equivalent to ‘comparison by standa,rd deviation’ for large 
U. Of course, in practice L, might not be sufficiently large 
for the asymptotic results to apply; thus the results of a 
siniula.tion study are reported to confirm the results for 
finite parameter values. 



LLOYD ET A L  EBrIMAl'ING THE NUMBER OF FAULTS: EFFICIENCY OF REMOVAL, RECAPTURE, AND SEEDING 371 

3. INFERENCE VIA 
OPTIMAL ESTIMATING EQUATIONS 

This section uses assumptions #A - #C, but not #D. 
The framework is geiiera,l enough to include removal, 

recapture, and seeding experiments. The total faults com- 
prise 'S injected or seeded faults' and 'U real faults'. Each 
{N,(s)  : 0 5 s 5 T }  is a contiiiuous time counting process 
with jumps of size +1 

Pr{dN;(t) = 1 I Ft} = At dt. (1) 

Also At = A. ft, where J,' ft  d t  = 1. 
The Nt failures observed in [0, t ]  comprise 'Ut previously 

unknown real faults' and 'Kt  = Nt - Ut known (seeded or 
previously detected) faults'. Then 

Et[dVt] = A t .  (w - Ut)&, (2) 

dUt,  dKt denote the increments of Ut, Kt in [t,t + dt]. In- 
crements are generated from the 'w - Ut undetected' and 
'Mt detected' (marked or seeded) faults in the program 
and thus are s-independent, conditional on Ft. Define 

Et[dKt] = A t .  Mt dt, 

dG1 = dUt - A t .  ( U  - Ut) d t ,  
dGz = dKt - At . Mt dt; 

For a counting process X t  with intensity function 7t. the 
log-likelihood function is [l] 

The failure intensity for the counting process Ut is 
Tt = At . (U - Ut), and for Kt is 7t = At . Mt. 

It is then simple to show that the optimal estimating 
equations (5) are identical to the likelihood score equa- 
tions. Conditions under which such models are asymp- 
totically Gaussian are in [22]; these conditions are easily 
established for the Ut and Kt ,  as  w + 00. The estimators 
solving (5) are MLE. 

I* = 

The information (A-3) in the optimal equation is 

By the Law of Large Numbers, 
w - Ut 

~ + exp(-A.Ft) 
U 

and so 
exp(X. T )  - 1 

I I ,1  --f I ,  

it follows that dGt = (dG1, dG2)T are MG differences, and 

conditionally non-random 2 x 2 matrices Wt, the stochastic 
integral 

functions of the unknown parallleter ia = (U, A t ) .  For any Mt + (design dependent) proportioll 
U + S 
mt of marked faults at time t ;  thus; 

U I' 4 - . (1 - exp(-A. 7 ) )  Ht = it W, dG, (3) 2 2  A2 

+ ;. lT f s .  rn, d s  as U + w. (7) is a 2-dimensional ZMMG wit,]' respect to Ft. 

The Var[i.] is the top left element o f  the inverse of (6). The matrices (A-5) in the general theory are: 

A U-Ut  
D t = - ( o  Mt ) . f t d t .  4. A SIMPLER CLASS OF ESTIMATORS 

Eq (5b) iiivolves f t .  The linear combination 

dGt = A,' . Mt dG1- A,' . (U - Ut) dGz 
= ( V D U ,  it) ft dt. (4) 

Substituting optimal weights (A-4) into (3),  gives the op- = Mt dUt - (U - Ut) dKt (8 )  

depends only on w. Eliminating an unknown nuisance pa- 
rameter has been used successfully in several closely re- 
lated contexts 124, 271. Apply Wt as in (A-2), and equate 
to 0; the implied estimator is 

timal estimating equations: 

i T ( U  - u3)-' dU, = A ' T (5a) 
,.7 

from observing the system up to time T .  The 1.h.s. of (5a) 
is simply written 

This is an MG estimator. When the weights are functions 
of U, (9) can be used recursively to solve the estimating 
equation. 

By judicious choice of weight function, the stochastic 
integrals in (9) can be made independent of the capture- 
times, and depend only on the final U,, K,, MT. This 
implies that the estimator, and its distribution, are com- 
pletely robust to time heterogeneity in At. In other words, 

1 1 1  -+ -  + . . . +  w 11-1 u-U,+1 

which depends only on U, and not on the actual times 
that these events occur. This is approximated by 
log(w) - log(w - U,) as U + w. 
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assumption #D is not required for this family of estima- 
tors. The cost of this robustness is measured by comparing 
the asymptotic variance of CMG with that of the MLE. Us- 
ina the aeneral theory in the appendix with p = 1, the 

W; gives the optimally weighted estimator (9) which de- 
pends on the event times. Neither requires assumption 
#D. The variance (10) of the optimal MG estimator is 

,_ "I I - .. 
optimal 1 x 1 weights Wt are 

wl" = 
I 

(V - Ut) . (V - Ut + Mt) 

v. (1 + v j  
8 .  (exp(X. T )  - 1) 

Var[i&~] = 

The optimal information (A-3) for this optimal simplified 
estimator is 

I' = lT (v - U , ) .  (U - U, + M a )  

Since 0 appears in the denominator of (13), but not 
in (12);it follows that for small 8, even the optimal MG 

X.M* (10) estimator is extremely inefficient compared to MLE. In- 
deed, when B = 0, the estimator (!J) is undefined because 

' f a  ds 

The asymptotic variance, the reciprocal of (12), is again 
of order U. 

5. INFERENCE FROM 
SEEDED REMOVAL EXPERIMENTS 

For the removal approach, Mt = S - Kt. The optimal 
estimating (5b) becomes 

- (v + S) . T - N, . fs ds (11) LT N, 
X 
_ -  

which depends on the fs and t,. This not only complicates 
the computation of CREM but means that a form for f, 
must be assumed (e.9, assumption #D imposes ft 1). 

dKt = 0 for all t. 

Nevertheless, if ft 'does not systematically increase with 
t then the integral in (11) is little affected by the precise 
form of ft. When fa F 1 and S = 0, then this estimator 
(12) was given in [31. It may be infinite with appreciable 
probability when s = 0 or when s is small (simulations 
not reported). 

E[M,] = S. exp(-X . Ft) 

8 mt = exp(-X. Ft) . __ 1 + 8 '  
Substituting into (6) & (7), this leads to 

Var(CREM) = 

Pt = 1 - exp(-X. Ft)  

Figure 1: Efficiency of MG relative to M L E  ws Capture Effort 
For removal experiment with various seeding proportions. 

Figure 1 shows the 'relative efficiency of ; R ~ M  compared 
to oMQ' p,, which meaS,lreS the capture effort 
(mean fraction of faults removed). For P, 5 0.5, and for 
more than 0 = 0.2 seeded faults introduced, the simple 
estimator is greater than 90% efficient compared to ML. 

Under assumptions #A & #B, 
which implies that 

6. INFERENCE FROM 
SEEDED RECAPTURE EXPERIMENTS 

In the recapture approach, the number of marked faults 
increases with each real fault: Mt = S + U,. Hence the 
mean proportion of marked faults at time t is 

v .  (1 + 8 ) .  P, . p, 
(1 + B )  ' P; - P T .  log2(P,) (*') 

1 - exp(-X . Ft) 
= Pr{a fault leads to failure by time t } ,  m t =  1 + 8  

For the simplified estimator CMG, two possibilities for the which leads to 
weights are: 

1 
(S - Kt)  . (U - Ut)  ' w; = 

1 
W' - 

~ ( ~ - U t ) . ( v + s - N t )  

Wl leads to the explicit estimator 

(14) 
U ' ( 1 f B )  Var[f&~c] = 

(1 + 6'). (exp(X. T )  -- 1) - A .  T '  

The ML equations (5) are easy to  solve sinre, on sub- 
stituting Ms = S + U,, the second equation becomcs 
N, = X . (v + S) . T ,  and substituting this into the first 
equation gives 



LLOYD ET A L  ESTIMATING THE NUMBER OF FAULTS: EFFICIENCY 01: REMOVAI., RECAPTURE, AND SEEDING 173 

When S = 0, (15) reduces to the standard recapture esti- 
mator [6, 181 

For the simplified MGE, (9), consider optimal weights 

wl" = 

Gt = 0 simplifies to 

for which the optimal estimating equation 

This equation is identical to the MLE (16). A similar 
result was found in [2] for the experiment with no seeding. 
The estimator (16) does not depend on the failure times 
nor on ft. It follows that the MLE for a seeded recapture 
experiment is valid without assumption #D. 

7. REMOVAL OR RECAPTURE? 

Special Assumption 

E. Each failure has a unit cost, whether tlie correspond- 
ing fault is real, iujected, known, or unknown. 

From (12) & (14), it is easily verified that 
' Var[VREM] >_ Var[kEC], 
. both reduce with more seeding. 

However, different designs can involve different costs. In 
general, the cost is a function of the 
. total time r, 
. number of failures observed, . unavoidablc cost of correcting faults. 

Estimation accuracies of the designs are compared, adjust- 
ing for assnmption #E. Other cost functions could lead to 
different quantitat,ive conclusions. But since 'recapture' 
and 'high levels of seeding' imply that 'faults known al- 
ready' will continually be identified, some kind of tradeoff 
of cost and accuracy can always be a,nticipa,ted. 

R.ecapture experiinents iniprove precision by providing 
marked faults from which X is separately estimated. If 
no seeds arc present, this is ihe only source of separate 
estimation of X and we anticipate the gains from recapture 
to be large. If there is already a large proportion of seeds, 
then adding further seeds by 'not removing known faults' 
does not gain much. The cost of recapture is that there are 
more fault detections per unit time. For a sufficiently high 
seeding rate then, the costs of rccapture could outweigh 
the benefits. 

The mean number of detect,ions is 
w .  (1 + 8) . P7, for removal cxperiment, 
w .  (1 + 8) . X .  r, for recapture experiment. 
Let T~ be these quantities divided by w: the mean number 
of failures per real fault. We could compare estimators by 
plotting standard error against T~ on the samc plot. With 
tlie same intention, the asymptotic variances in (12), (14) 
can bc expressed as explicit functions of rt; then 

L 
0 0  0.2 O I  0,e 0.8 t , D  

mean c*p,ursr PO, redl sno, 

Figure 2: Effort-Adjusted Relative Efficiency of 'Removal 
Compared t o  Recapture' Experiment for Various Seeding Pro- 
portions 

Figure 2 shows the relationship (17), over 0 < T~ < 1; 
note that rt can be larger than 1. Each curve corresponds 
to a specific seeding proportion, 0, labeled as percentages. 
The corduence near rt = 0.75 is interesting and unantic- 
ipated. When rt < 0.75, recapture-sampling is preferred 
to removal-sampling, for small amounts of seeding. As the 
seeding increases, this superiority reduces; when 8 = 50% 
tlie relative efficiency is very close to 1 for all values of re ,  

8. THE EFFECTS OF SEEDING 
After expressing (12) in terms of rtr 

is the relative efficiency for a removal experiment with 
seeding 8 compared to  no seeding, adjusted for equal mean 
number of failures. The corresponding expression for the 
recapture experiment is 

exp(rt) ~ 1 - rt 
e x p ( L ) - 1 - - '  rt 

1 + R  (1 + S ) Z  

Figure 3 plots the logarithm of these relative efficien- 
cies (18) for various proportions of 6'; figure 3a shows the 
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removal cxperiment, and figure 3b shows the recapture ex- 
periment. In each case, the relative efficiency of seeding 
compared to no seeding is plotted against 8, each curve 
corresponding to a particular rt .  For small capture ef- 
fort, extreme efficiency gains are achieved by only a small 
amount of seeding. 

For the removal experiment, when the capture effort is 
around 70%, seeding has very little effect - the extra 
precision of seeding is almost exactly outweighed by the 
extra detection costs. 

For the recapture experiment, the main differences are 
that the: 
. efficiency gains are not nearly as large (note the different 

scales on the y-axis) 
. point where seeding has litt,le effect is a t  the lower cost 

of about 60%. 

/ 

. 0 1  & ' ; ;  

0 ,  

0.0 0 2  0.4 0,s (1.8 1.0 

reedinQ P"PQ"8an 

a. Removal Experiment 

0.0 0 2  0.4 0 8  0 8  I O  

***ding Proronlon 

b. Recapture Experiment 

Figure 3: Logarithm of Relative Efficiency of Seeded US Un- 
seeded Experiment For Various Seeding Proportions and Var- 
ious Total Design Costs 

9. SIMULATION STUDY 
A simulation was performed to validate the asymptotic 

variance formulae (12), (14). All the asymptotic efficiency 
comparisons are ba,sed on these formulae, validation of 
which also va,lidate the efficicncy comparisons. 

Table 1 relates to recapture and removal experiments 
with v = 400 and various values of 6' and X . t. Each cell 
compares the theoretical standard error computed from 
(14) with the observed standard error of the 500 simulated 
realizations of CREC. There is good agreement between 
theoretical and observed for both recapture and removal 
experiments, except for small values of 8 and X . t. Un- 
der the latter conditions, the distribution of ~ . E C  is more 
skewed; thus we a,nticipatc information (based on a lin- 
ear approximation to the estimating equation) to be a less 
accurate estimator of the true variability. There is a de- 
creasing trend in standard error as 6' increases and as A .  t 
incremes. For large capture effort A .  t ,  increasing seeding 
from B = 0.5 to 8 = 1.0 produces only modest reduction in 
standard errors, but would involve the dctection of many 
more faults. 

The MLE of Y can break down when 6' = 0: the likeli- 
hood is maximized at infinity. For the recapture experi- 
ment this occurs only when there are no recaptures at, all, 
which is extremely improbable. For the removal experi- 
ment, this occurs whenever t,he removal-rate appears to 
increase in time rather tha,n decrease; see [13, 201 for sam- 
pling in discrete time. The possibility of sucli breakdown 
persists in thc seeded experiments but. occurs with smaller 
frequency. The proportions of simulations wlicre break- 
down occurred are given in parent.heses. Further sinmla- 
t,ion results (not shown hem) suggest, tha,t the asymptotic 
results for a smaller U are less accivate. 

All these comparisons depend on B = - as well as T~ 

which is a function of thc t o t d  hazard X . t .  In the context, 
of continuing software development, there is some prior in- 
formation on both U and X before a cycle of testing begins. 
There is no reason why X should cha,nge from cycle to cy- 
cle; thus previous estimates could be used. The remaining 
faults could be estimated by the previous estimate minus 
the numper of corrections reported by the repair team. 
The (C, A) can suggest an optimal design strategy for the 
testing team. 

Another measure of system reliability is the mean time 
to failure, fi = U .  A. It would useful to measure the effi- 
ciency of the different designs for inference on f i ;  however 
the precision of inference on p is much higher than for U ,  
because of the negative correlation of est,irnates of I /  & A. 

APPENDIX 
Martingale Estimating Functions 

Consider a. stochastic process that develops in timc. Gt 
depending only on da,ta up to time t;  dGt 

S 
1 )  

is any r.v. 
measures the changc in Gt in [t, t -1 d t ) .  Gt is ZMMG if 

Et[dGt] = 0, Et[dG:] < CO; (A-1) 

Et denotes s-expectation, conditional on Ft. The process 
Gc is an accumulation of mean-zero finite-va.riance r,v. 
More generally, let dGt = (dG1, , dGk)" be a, martiii- 
gale difference of dimension k .  For each t let Wt be a, p x k 
'weight' matrix which depends only on data up to time t. 
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Table 1: Comparison of Theoretical & Observed Standard Faults in the Recapture & Removal Experiments, U = 400 

0 - 

0 

0.1 

0.5 

1.0 
- 

0 

0.1 

0.5 

1.0 
- 

X . t  
~ 

Jil" 

d F  

Jrl" 
m 

se(o) 

se(3) 

se(3) 

se(i.) 
~ 

Jit" 

JT;" 

Jil" 
V F  

se(3) 

se(3) 

se(3) 

se(3) __ 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Recapture 

137 66.0 42.4 30.7 23.6 18.9 15.5 13.0 11.1 
107 67.6 44.4 31.1 23.5 18.9 15.88 13.6 11.2 

(35%) (2%)  

100 55.9 38.0 28.3 22.2 18.0 15.0 12.6 10.8 
99.8 61.8 38.9 28.4 22.3 17.9 15.4 13.2 11.0 
(6%) 

67.4 42.1 30.8 24.0 19.5 16.2 13.7 11.8 10.2 
71.0 43.6 30.5 24.8 19.8 16.3 14.1 12.0 10.5 
57.4 37.0 27.7 22.0 18.1 15.2 13.0 11.3 9.8 
58.1 37.1 27.3 22.8 18.3 15.0 13.2 11.4 9.9 

Removal 

737 248 128 79.5 54.2 39.3 29.7 23.2 18.5 
111 98.8 82.9 70.4 54.2 42.2 30.7 24.3 19.6 
(54%) (48%) (37%) (17%) (8%) (1%) 

139 88.9 64.3 48.6 37.8 29.9 24.1 19.6 16.2 
108 87.6 65.4 48.8 38.6 29.6 24.9 20.8 17.1 

(32%) (11%) (3%) (1%) (1%) 

73.4 48.8 37.1 29.8 24.5 20.6 17.4 14.8 12.7 
75.0 50.8 37.2 30.0 25.2 20.4 17.7 15.0 12.9 
60.0 40.1 30.7 24.9 20.8 17.6 15.1 13.0 11.3 
61.3 39.6 30.4 25.4 20.8 16.9 15.0 12.7 11.3 

Note: The % shown in parentheses are the proportion of the 500 simulations which failed to piovide a finite estimate. 
The se(;) was based on successful simulations. 

Then, conditional on Ft,  these matrices are non-random; 
thus 

The optiinal set of equations is 

," 

is a pdimensional ZMMG. When dGt depends on an un- 
known paramekr /3 of dimension p ,  then the solution a 
of Ht = 0 is a generalization of the 'method of moments' 
estimation. Details of both finite sample and asymptotic 
theory of such estimators are in [9]. They establish mild 
conditions under which - 0) converges to multi- 
variate standard Gaussian variable where the p x p  random 
matrix It is the information in Ht.  In the partial ordering 
of matrices, It is dominated by 

1; = pa x v;1 x D,. (A-3) 

The Wt which achieves this bound is 

WT = DT x If-'; (-4-4) 

Dt and vt are respectively k x p and k x k random matrices 
with entries 

(A-5) 

Amongst the family of estimating functions given by (A- 
2) for given dGt, the H: has maximal +correlation with 
the true likelihood score function. and in some of these 
applications will actually recove: the scorc function. The 
asymptotic variance matrix of /3; is the iiiverse of (A-3). 
The Dt and Vt may be replaced by their s-expectations in 
(A-3) whenever 

converge to 1. Estimators can them be vt __ and __ 
Et[Dt] Et[%] 
compared via, comparisons of their (non-random) asymp- 
totic information matrices. 

Dt 
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