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Summary & Conclusions — Various experimental designs
for estirnating the number of faults in a systemn are studied in-
cluding:

i, removal of each fault as it is detected,

ii. marking of each fault as it is detected,

iit. introduction of a known number of faults into the system
followed by #i or #ii.
A unified framework 13 developed for comparing these designs;
it also produces simplified estimators having high efficiency rel-
ative-to maximum likelihood estimators. The designs are com-
pared in terms of

- statistical accuracy,

« the number of failures that need to occur to achieve a given
accuracy.
On the basis of these comparisons, some general recommenda-
tions are made on the level of seeding as well as the choice of
removal or recapture designs. When the testing effort is suili-
cient so that roughly two thirds of the faults are detected, the
removal-design is preferred over the recapture-design, and there
are no gains from seeding. However, this conclusion depends
on assigning unit cost to all fault detections, which might not
always be reasonable.

1. INTRODUCTION

Acronyms
ML  maximum likelihood

MLE ML estimator
MG martingale
MGE MG estimator
ZMMG zero-mean MG
Notation

v unknown number of undetected faults
N, number of failures during {0, ¢]
A, failure intensity at time ¢
(for a homogeneous population)

As(t)
tj

T
F

P

W,

o [:c_]
x

tailure intensity for fault 4 at time ¢
time of failure j :
proportion of seeded-faults relative to v in
the system
# « v: number of ‘seeded’ faults added to
the code
number of times fault ¢ is detected in [0, £]
increment of N;(£) in [t,¢ + di] |
number of new faults detected in [0, €]
number of known faults detected in [0, ¢]

- number of known faults in the program at

time ¢
1 T
s / Ay dit: average failure intensity
¢

A .
—, a known function

A 1
i
/ fs ds; note that F, =+
0 -
Pr{a real fault is detected in time t}: E {%J

A+ Fy: for a recapture experiment
1—exp(—A- F;): for a removal experiment
‘capture effort’

(1 +8)- P sexpected number of faitures
divided by v

M,
E[V—I—S]

‘history’ of the experiment up to time #

s-expectation, conditional on F;

a ZMMG stochastic process

‘conditional mean-derivative’ matrix of dG

‘conditional variance’ matrix of dG,

information matrix obtained by integrating
DEx V7t % Dy

a conditionally non-ranclom matrix

standard deviation of r.v. =

l—=x
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Nomenclature

. Failure: An incorrect output.

» Fault: Some defect in the code which, under at least one
set of conditions, produces a failure.

- Removal experiment: As each fault is detected, it is cor-
rected. Only detection-times are recorded.

- Recapture experiment: Both ‘detection times’ and ‘lo-
cation of the fault’ are recorded. Thus, revisits of the same
fault can be identified. Faults are corrected, and a counter
is inserted to record the number of re-visits

- Fault seceding or fault injection: A known number of
faults are inserted into the program. Both ‘detection
times’ and ‘location of the fault’ are recorded. This is
first suggested in [16]; see also [23].

« Relative efficiency: Reciprocal of the ratio of the stan-
dard deviations of two estimators, - «

Let there be an unknown number, v, of faults in a com-
puter program. The program is executed for a total time
7, perhaps under a range of conditions, to simulate the
operating environment. Failures occur on N, occasions at
times:

0 <ty <hg <L iy, <
The failure times until detection of fault ¢ are positive r.v.
with hazard rate A;(t).

This paper estimates v in the presence of the nuisance
parameters A;(f), and examines how efficiently this can be
achieved under the experimental designs in section 2.

The A;(t) being unknown makes v difficult to estimate.
Recapture & seeding experiments are aimed at enhancing
knowledge of A;{t) by establishing a baseline population of
known faults against which the number of failures can be

- calibrated.

The main purpose of this paper is to compare these
designs  in terms of statistical & practical efficiency.
Throughout, we concentrate on estimation of v for given
testing effort; rather than, say, the mean test-time until a
given number of faults remain. Estimating v is an impor-
tant and separate problem, eg, in the clean-room software
testing strategy [7, 17, 21].

Some faults will always remain, and the level of faults
in released software are typically hetween 1 and 10 faults
per 1000 lines of code [16].

2. SOME EXPERIMENTAL DESIGNS

Assumptions

A. Times hetween failures caused hy faults are s-inde-
pendent and exponentially distributed.

B. Each fault is equally likely to be detected:
Alf) = M.

C. No new faults are created when a fault is corrected.

D. The failure intensity is uniform in timel: X = A.

Various devices are available to the tester to make these
assumptions more likely to be satisfied. For instance,
restarting the code from a different part of the program
makes #A more likely, while if #B is questionable, faults

1 T'his is a common assumption.

can be classifled, either before or after testing, into more
homogeneous groups. Assumptions #A — #C are used
throughout. Assumption #D is used only where stated
explicitly. '

For a removal experiment, the available data are
{Nr,t1,... ,tn,}. Under assumptions #A - #D, the MLE
v is derjved in [12] and asymptotic properties are treated
mathematically in [22]. Because the MLE is often un-
stable, alternative estimates have been suggested (3, 13].
Other references are [4, &, 11, 14]. The underlying diffi-
culty with the removal method is that information about
v and A is largely confounded in the data, rather sim-
ilar to the way n and p are partly confounded in the
binomial(n, p) distribution [19]. This suggests modifying
the experiment so thai separate information on X becomes
available.

In the recapture approach, as the experiment progresses,
the number of revisited faults provides separate informa-
tion on A since, at any morent, the number of previously
visited faults is known. Both MLE and moment- based
estimators for v are derived in [18], assurning equal failure
intensity for detected & undetected faults. However, in a
different context, this estimator for » had been given 30
years earlier in [6]. Simulation studies [26, 27] showed that
infinite estimates of ¥ occur with very small probability.

For the fault-injection method [16], detection of the
known number of injected faults provides separate infor-
mation about A. Inits original formulation, both seeded &
real faults are corrected & removed as they are detected.
MLE based only on the total nurnbers of seeded & real
faults detected, not on their times, have been derived [5].
If the failure intensities for seeded & real errors have a
known, constant ratio then estimators based on an MCGE
equation perform satisfactorily [25].

The recapture & seeded faults approaches can be com-
bined [10]: faults, either sseded or real, are marked {and
possibly removed) and the numbers of first-visits and re-
visits to both types of faults are recorded. Basically, think
of the marked real faults as being added to the known
number of seeded faults in the program. Estimation &
minimization of anticipated debugging time was studied
in [10], but not estimation of ».

It is interesting to explore the difference in the perfor-
mance of the recapture & removal methods for various
amounts of seeded faults. For each type of experiment, es-
timators are studied which minimize standard error within
a derived classes of estimators for » in a continuous time
setting. The statistical accuracy of some simpler MGE
are compared to MLE for the same design. The relative
efficiencies of the different designs are compared by the in-
formation in the optimal MGE equations [15]. The details
are given in the appendix. ‘Comparison by information’ is
equivalent to ‘comparison by standard deviation’ for large
v. Of course, in practice ¥ might not be sufficiently large
for the asymptotic resnlts to apply; thus the results of a
simulation study are reported to confirm the results for
finite parameter values.
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V 3. INFERENCE VIA
OPTIMAL ESTIMATING EQUATIONS

This section uses assumptions #A — #C, but not #D.

- The framewcrk is general enough to include removal,
recapture, and seeding experiments. The total faults com-
prise ‘S injected or seeded faults’ and ‘v real faults’. Fach
{N;(s) : 0 < s <7} is a continuous time counting process
with jumps of size +1.

Pr{dN;(t) = 1| F} = A, dt. (1)

Also A, = A+ fi, where fOT f; dt = 1.

The N; failures observed in [0, ¢] comprise ‘U; previously
unknown real faults’ and ‘K; = Ny — U; known (seeded or
previously detected) faults’. Then

Et[dUt] = )\t . (V — Ut)dt, Et[th] = )\t . Mt (I:t, (2)

dUy, dK; denote the increments of Uy, K in [t,2 -+ df]. In-
crements are generated from the ‘v — U; undetected’ and
‘M, detected’ {marked or seeded) faults in the program
and thus are s-independent, conditional on F;. Define

dGl = CEUt b At * (I/ - Uf,) dt,

ng = th - At . Mt dt;

it follows that dGy = (dG1,dG2)T are MG differences, and
functions of the unknown parameter 3 = (¥, A¢). For any

conditionally non-random 2 x 2 matrices Wy, the stochastic
integral '

t
H, = f W, dC. (3)
0

is a 2-dimensional ZMMG with respect to F.
The matrices (A-5) in the general theory are:

_ A V*Ut
Dt—_(o Mt )'ftdt,
v—-U, 0
= ( 0 MJ'A'f‘dt‘ )

Substituting optimal weights {A-4) into (3), gives the op-
timal estimating equations:

/T(y—Us)*1 dUs=A-7 (5a)
0O

NT=)\-/ {v—U,+ M) fs ds (5L}
0

from observing the system up to time 7. The Lh.s. of (5a)
is simply written

1 1 - 1

—_ ...+——'-"‘"‘
v r/—1+ v—Ur+1

which depends only on U, and not on the actual times’

that these events occur. This is approximated by
log(¥) — log(v — Ur) as v — oo

For a counting process X; with intensity function -+, the
log-likelihood function is [1]

£ . &
f log(vs) dX, —f s ds.
0 0

The failure intensity for the counting process U; is
Yt = )\t . (V - Ut), and for Kt is Tt = Ar, J Mt.

It is then simple to show that the optimal estimating
equations (5) are identical to the likelihood score equa-
tions. Conditions under which such models are asymp-
totically Gaussian are in {22]; these conditions are easily
established for the Uy and K, as ¥ — 00. The estimators
solving (5) are MLE.

The information {A-3) in the optimal equation is
L= (6)

T

()\fDT(V —~Ug)7t fs ds T
T AT (v~ Us + M) - fe ds)

By the Law of Large Numbers,
[ 2 Ut

— exp(—A- F)
and so .
oo exp(A-T) — 1.

: v
Similarly,

M,
v+ S
my of marked faults at time ¢; thus

—  the {design dependent) s-expected proportion

. v
L, — na (1 —exp(—A-T))

S T
+—-/ femsds aswv— oc. {7
Ao
The Var[#] is the top left element of the inverse of (6).

4. A SIMPLER CLASS OF ESTIMATORS
Eq (5b) involves f;. The linear combination

dGe = A1 M, dGy — A\ (v — Uh) dGa
= Mf, de; - (U -—.Ut) th (8)

depends only on v. Eliminating an unknown nuisance pa-

rameter has been used successfully in several closely re-

lated contexts [24, 27]. Apply W; as in {A-2), and equate

to (; the implied estimator is

I W+ (M, dU, + U, dK,)

T W, dK, ©

Dvg =

This is an MG estimator. When the weights are functions

of v, (9} can be used recursively to solve the estimating

equation.

By judicious choice of weight function, the stochastic
integrals in (9) can be made independent of the capture-
times, and depend only on the final U/, K, M;. This

" jmplies that the estimator, and its distribution, are com-

pletely robust to time heterogeneity in A;. In other words,
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assumption #D is not required for. this family of estima-
tors. The cost of this robustness is measured by comparing
the asymptotic variance of £yg with that of the MLE. Us-
ing the general theory in the appendix with p = 1, the
optimal 1 x 1 weights W, are

1
T =U) (v =T+ M) _
The optimal information (A-3) for this optimal simplified
estimator is

Wt*

T A M,
* = fod 10
L fo AT RN ATS YA Rk (10)
A-{1+8) 7 exp(A -« Fg) «my,
- v o exp(—A«Fy)+ (1 +8)m, fs ds

The asymptotic variance, the reciprocal of (12}, is again
of order ».

5. INFERENCE FROM
SEEDED REMOVAL EXPERIMENTS
For the removal approach, M; = § — K;. The optimal
estimating (5b) becomes

%=(V+S)'T‘[Na-fs ds (11)

which depends on the f; and ¢;. This not only complicates
the computation of Prpy but means that a form for f,
must be assumed (eg, assumption #D imposes fy = 1).
Nevertheless, if f; does not systematically increase with
t then the integral in (11) is little affected by the precise
form of f;. When f, = 1 and S = 0, then this estimator
(12) was given in [3]. It may be infinite with appreciable
probability when & = 0 or when S is small (simulations

not reported).
Under assumptions #A & #B,
E[My] = § -exp(—A- Fi) which implies that

6
1+96
Substituting into (6) & (7}, this leads to
v-(1+6) PP
(L+6)-P2— P, . log(P,)
P=1—exp{—\ F;)
= Pr{a fault leads to failure by time ¢}.

my = exp(—A+ ;) -

(12)

Var(Dgem) =

For the simplified estimator fyq, two possibilities for the
weights are:
B 1

{S‘*Kg}’(l/*Uf,),

. 1
(O TRy

W/ leads to the explicit estimator

5
S—K,

Wi

I}MG:UT'KT'

WY gives the optimally weighted estimator (9) which de-
pends on the event times, Neither requires assumption
#D. The variance {10) of the opiimal MG estimator is

ve(1+90)
¢+ (exp(her)—1)
v (140, D, .

| = i P, {13)

Since ¢ appears in the denominator of (13), but not

in (12),+it follows that for small 6, even the optimal MG
estimator is extremely inefficient compared to MLE. In-
deed, when & = 0, the estimator (9} is undefined because

dK; =0 for all ¢.

Var[iyg) =

08 0.8 10

relative efficiency

0.4

T T T T T
an 0.2 0.4 LY 08 12

mean captures per raal eror

Figure 1: Efficiency of MG relative to MLE vs Capture Effort
For removal experiment with various seeding proportions.

Figure 1 shows the ‘relative efficiency of fpmy compared
to Py’ against P., which measures the capture effort
(mean fraction of faults removed). For P, < 0.5, and for
more than 8 = 0.2 seeded faults introduced, the simple
estimator is greater than 90% efficient compared to ML.

. INFERENCE FROM
SEEDED RECAPTURE EXPERIMENTS
In the recapture approach, the number of marked faults
increases with each real fault: M, = S + U;. Hence the
mean proportion of marked faults at time ¢ is
1 —exp{—A- F)
N 1+46

which leads to

my

v-(1+6)
(1-+8) (exp(A-7)~1) = AT

Var[Pruc] = (14)
The ML equations (5} are easy to solve since, on sub-
stituting M, = § + U,, the second equation becomes
Ny = A-{v+ 8) -7, and substituting this into the first
equation gives

-

N,
— _1 e kil .
/0(1/ U~ du, S

(15)
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When S = 0, (15) reduces to the standard recapture esti-
mator [6, 18],
For the simplified MGE, (9), consider optimal weights

Wi = for which the optimal estimating equation

V*Ut

G, = 0 simplifies to

T8+ U
0o V—Us

U, = K. (16)

This equation is identical to the MLE (16). A similar
result was found in [2] for the experiment with no seeding.
The estimator (16) does not depend on the failure times
nor on f;. It follows that the MLE for a seeded recapture
experiment is valid without assumption #D.

7. REMOVAL OR RECAPTURE?
Special Assumption

E. Each failure has a unit cost, whether the correspond-
ing fault is real, injected, known, or unknown.

From (12) & (14), it is easily verified that

+ Var[vrpum| = Var[Prec],

- both reduce with more seeding.

However, different designs can involve different costs. In
general, the cost is a function of the

- total time T,

- number of failures observed,

- unavoidable cost of correcting faults.

Estimation accuracies of the designs are compared, adjust-
ing for assumption #I5. Other cost functions could lead to
different quantitative conclusions. But since ‘recapture’
and ‘high levels of seeding’ imply that ‘faults known al-
ready’ will continually be identified, some kind of tradeoff
of cost and accuracy can always be anticipated.

Recapture experiments improve precision by providing
marked faults from which X is separately estimated. If
no seeds are present, this is the only source of separate
estimation of A and we anticipate the gains from recapture
to be large. If there is already a large proportion of seeds,
then adding further seeds by ‘not removing known faults’
does not gain much. The cost of recapture is that there are
more fault detections per unit time. For a sufficiently high
seeding rate then, the costs of recapture could outweigh
the benefits. '

The mean number of detections is
v« (14 0) .« Py, for removal experiment,
v {14 8]+ X7, for recapture experiment.
Let r, be these quantities divided by v the mean number
of failures per real fault. We could compare estimators by
plotting standard error against vy on the same plot. With
the same intention, the asymptotic variances in {12), (14)
can be expressed as explicit functions of ry; then
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25 30

2.0

retative etficiency
1.8

1.0

0.5

0.0

mean captures par real arror

Figure 2. Effort-Adjusted Relative Efficiency of ‘Removal
Compared to Recapture' Experiment for Various Seeding Pro-
portions

alirme]
a[Prem|

(17)

(1+6). [rfk(é’-l—ﬂ)-logz (h 1::9)]
R AR Kexp (T%) - 1) L (1+6)2 —n]

TFigure 2 shaws the relationship (17), over 0 < r: < 1;
note that r; can be larger than 1. Each curve corresponds
to a specific seeding proportion, 8, labeled as percentages.
The confluence near r; = 0.75 is interesting and unantic-
ipated. When r, < 0.75, recapture-sampling is preferred
to removal-sampling, for small amounts of seeding. As the
seeding increases, this superiority reduces; when 6 = 50%
the relative efficiency is very close to 1 for all values of r;.

8. THE EFFECTS OF SEEDING
After expressing (12) in terms of 7y,

altrrm; 9)

olbrm; 8 = 0] (18)

(6 +7) - [r} — 7, - log* (7))

’Ft N ’f‘? — (9+’F¢) -log2 (1 — 1—%)}

is the relative efficiency for a removal experiment with
seeding ¢ compared to no seeding, adjusted for equal mean
number of failures. The corresponding expression for the
recapture experiment is

exp(ri) — 1~
o e ) o1 T
1+8 (1492

Figure 3 plots the logarithm of these relative efficien- .
cies (18) for various proportions of 8; figure 3a shows the

(19)
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removal experiment, and figure 3b shows the recapture ex-
periment. In each case, the relative efficlency of seeding
compared to no seeding is plotted against &, each curve
corresponding to a particular v¢. TFor small capture ef-
fort, extreme efficiency gains are achieved by only a small
amount of seeding.

For the removal experiment, when the capture effort is
around 70%, seeding has very little effect — the extra
precision of seeding is almost exactly outweighed by the
extra detection costs.

For the recapture experiment, the main differences are
that the:

- efficiency gains are not nearly as large (note the different
scales on the y-axis)

+ point where seeding has little effect is at the lower cost
of about 60%.

R : ’ 0a
&
g
= =4 -
2 < 7 e.r
= \\"_.——_—__——_——‘
3
o
2 .
kil
= o8
g .,
o 7 05
N
ax
az
a1
a | ;
=1

6.0 0.2 0.4 0.8 0.8 1.0
saading proponion

a. Removal Experiment

_ o

12

0.8

leq relative efficiency

0.8
1

04

T T T T
0.0 02 0.4 0.8 0.8 1.0

saeding proporiion

b. Recapture Experiment

Figure 3: Logarithm of Relative Efficiency of Seeded vs Un-
seeded Experiment For Various Seeding Proportions and Var-
ious Total Design Costs

9. SIMULATION STUDY

A simulation was performed to validate the asymptotic
variance formulae (12), (14). All the asymptotic efficiency
comparisons are based on these formulae, validation of
which also validate the efficiency comparisons.

Table 1 relates to recapture and removal experiments
with v = 400 and various values of # and A - £. Each cell
compares the theoretical standard error computed from
(14) with the observed standard errvor of the 500 simulated
realizations of Prpo. There is good agreement hetween
theoretical and observed for both recapture and removal
experiments, except for small values of § and X - #. Un-
der the latter conditions, the distribution of ippc is more
skewed; thus we anticipate information (based on a lin-
ear approximation to the estimating equation) to be a less
accurate estimator of the true variability. There is a de-
creasging trend in standard error as @ increases and as A -t
increases. For large capture effort X - ¢, increasing seeding
from # = 0.5 to & = 1.0 produces only modest reduction in
standard errors, but would involve the detection of many
more faults.

The MLE of v can break down when 8 = (0 the likeli-
hood is maximized at infinity. For the recapture experi-
ment this occurs only when there are no recaptures at all,
which is extremely improbable. For the removal experi-
ment, this occurs whenever the removal-rate appears to
increase in time rather than decrease; see [13, 20] for sam-
pling in discrete time. The possibility of such breakdown
persists in the seeded experiments but occurs with smaller
frequency. The proportions of simulations where break-
down occurred are given in parentheses. Further simula-
tion results (not shown here) suggest that the asymptotic
results for a smaller » are less accurate.

All these comparisons depend on 8 = — as well as ¢

which is a function of the total hazard A- t.VIn the context
of continuing software development, there is some prior in-
formation on both v and A before a cycle of testing begins.
There is no reason why A should change from cycle to cy-
cle; thus previous estimates could be used. The remaining
faults could be estimated by the previous estimate minus
the number of corrections reported by the repair team.
The (1},5\) can suggest an optimal design strategy for the
testing team.

Another measure of system reliability is the mean time
to failure, 4 = v - A, It would useful to measure the effi-
ciency of the different designs for inference on y; however
the precision of inference on p is much higher than for v,
because of the negative correlation of estimates of v & A

APPENDIX
Martingale Estimating Functions

Consider a stochastic process that develops in time. Gy
is any r.v. depending only on data up to time #; dGy

-meagures the change in Gy In [¢,¢ + df). Gy is ZMMG if

E. denotes s-expectation, conditional on F;. The process
G, is an accumulation of mean-zero finite-variance r.v.
More generally, let dGy = (dG1,... ,dGg)" be a martin-
gale difference of dimension k. For each ¢ let Wy be a px k
‘weight’ matrix which depends only on data up to time 1.
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Table 1: Comparison of Theoretical & Observed Standard Faults in the Recapture & Removal Experiments, » = 400

6 Aot 0.2 0.4 0.8 0.8 1.0 1.2 1.4 16 1.8
Recapture
o | It 137 660 424 307 236 189 155 13.0 111
se(i) 107 67.6 444 311 235 189 1588 136 112
(35%) (2%)
0.1 7| 100 550 380 283 222 180 150 126 10.8
se(#) | 99.8 618 389 284 223 179 154 132 110
(6%)
0.5 I 674 421 308 240 195 182 137 118 10.2
se(f) | 7TLO 436 305 248 198 163 141 120 105
1.0 Y| s74a 870 277 220 181 152 130 113 9.8
se(#) | 581 371 273 928 183 150 132 114 99
Removal
0 [ /I7T| 737 248 128 795 542 393 .26.7 232 185
se() 111 98.8 829 704 B42 422 307 243 196
(54%) (48%) (37%) (1%) (6%) (1%)
0.1 /17" 139 889 643 486 378 209 241 196 16.2
se() 108 876 654 488 386 296 249 208 17.1
(32%) (L%  (3%) (%) {(1%)
0.5 I 734 488 371 208 245 206 174 148 127
se(?) | 75.0 508 372 300 252 204 177 150 129
1.0 IV 600 401 307 249 208 176 151 13.0 11.3
se(f) | 613 396 304 254 208 168 150 127 113

Note: The % shown in parentheses are the proportion of the 500 simulations which failed to provide a finite estimate.

The se{’) was based on successful simulations.

Then, conditional on F;, these matrices are non-random;
thus '
1
Hy = / W, dG, (A-2)

0

is a p-dimensional ZMMG, When d(y depends on an un-
known parameter 3 of dimension p, then the solution 3
of Hy = (18 a generalization of the ‘method of moments’
estimation. Details of both finite sample and asymptotic
theory of such estimators are in [9]. They establish mild
conditions under which I} / Z(ﬁt — f3) converges to multi-
variate standard Gaussian variable where the p x p random
matrix I; is the information in H;. In the partial ordering
of matrices, I; is dominated by ‘

t

It =./ DY x vl x D, (A-3)
o .

The W, which achieves this bound is

Wy = DF < v (A-4)

Dy and V; are respectively & x p and k x k random matrices
with entries
8dG;

%; (A-5)

Dm=Et[ ] Viy = B [dG, dGy).

The optimal set of equations is
t

H::f DT x vl xda, =0.
0

Amongst the family of estimating functions given by (A-
2) for given d(?;, the H} has maximal s-correlation with
the true likelihood score function, and in some of these
applications will actually recover the score function. The
asymptotic variance matrix of fi;“ is the inverse of {A-3).
The Dy and V; may be replaced by their s-expectations in
(A-3) whenever

and converge to 1. Estimators can then be

t Vi
E;[Dy] B[V
compared via comparisons of their (non-random) asymp-
totic information matrices. :
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