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Summary & Conclusions - Estimating the number of 
faults in a computer program is important in software debug- 
ging. A martingale equation is used to estimate the number 
of faults in removal-debugging by assuming a known propor- 
tionality constant between the failure rate of a ‘newly detected 
fault’ and a ‘seeded fault’. The sensitivity of the assumption 
is examined, and the results are generalized to allow an un- 
known proportionality. The information of the proportionality 
is shown to be crucial in the precision & availability of the es- 
timates. It is advisable to obtain the information about the 
proportionality constant from external sources in order to im- 
prove the efficiency of the method in this paper. 

1. INTRODUCTION 

Acronyms and Abbreviations 
StdDev standard deviation 

ZMM zero-mean martingale 

Notation’ 
3-t 
v 

D 
A t ,  Pt 

uu-7 Mu- 

ut, Mt 

history of the process during [0, t] 
number of real faults in the system 

number of seeded faults (known) 
failure intensity for [real, seeded] faults 
number of [real, seeded] faults 

detected/removed in [0, U) 
number of [real, seeded] faults 

detected/removed in [0, t]  
zero-mean martingale 
variation process of Ut,  M t  

(parameter of interest) 

‘Other, standard notation is given in “Information forcReaders 
and Authors” at the rear of each issue. 

d R ,  see (2) 

R,* LtWu- d R ,  
0 Xt/Pt: proportionality 

Av(6) 
SD(6) 

r 

average of the 2000 simulated values 
StdDev of the 2000 simulated values 
termination time of the experiment 

Software debugging usually focuses on estimating the 
number of indigenous faults. A computer software with U 
unknown distinct faults is made to work in a given period 
of time r. During r,  the software is examined with a con- 
trolled input of data, and any fault in the output data is 
recorded. This is the data-domain approach in [2], where 
it is assumed that, - all indigenous faults are detectable. - the number of such faults is constant throughout the 

- the time framework is continuous, - no two faults can be\detected at the same time. 

period of examination. 

All faults are removed upon detection and thus the re- 
liability of the software increases with time. A traditional 
model [6] assumed all faults have a constant failure rate 
with respect to  time. Likelihood estimates are available in 

Ref [lo], however, approaches the problem differently. 
A known number D of ‘seeded’ faults are inserted 
randomly into a computer program before the debugging 
process begins; see also [ll]. The program then consists of 
both ‘real’ and ‘seeded’ faults with failure rates possibly 
dependent on time. By assuming a known constant pro- 
portionality, 0, between the failure rates of the two types 
of faults, [12] derived a martingale estimator for U. The 0 
measures how alike the indigenous and seeded faults are. 
The more alike they are, the closer is 0 to 1; 0 > 1 (0 < 1) 
suggests that failure rate of the seeded fault is smaller 
(larger) than the real fault. A misspecification of B would 

[7, 81. 
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lead to serious bias in the resulting estimates of v. A 
careful examination and clear understanding of how the 
estimates of v behave when 8 is misspecified, is therefore 
highly desirable. The estimation procedure for v when 8 
is unknown, has not been studied in the literature. Thus, 
this paper: 

assesses the sensitivity of the U estimates to misspecifi- 
cation of 8, 

proposes a new method to estimate v when no infor- 
mation of 8 is available, by using martingale estimating 
equations. 

- Section 2 derives the estimators for v for a known 8. 
. Section 3 provides the estimators for v and 8. 
- Section 4 investigates the sensitivity of the estimators 

from section 2 to misspecification of 8 and gives simulation 
results for estimating v and 8 simultaneously. 

- Section 5 discusses the limitations of the method of the 
estimating equation in estimating the number of faults in 
removal debugging. 

Assumptions 

at the beginning of the experiment. 
1. A known number of faults, D ,  is seeded in the system 

2. At and ,Bt can be time-dependent. 
3. 8 need not be known. 
4. The same failure intensity is applied to each type of 

fault in the system. 
5a. Faults are removed (without introducing new faults 

or affecting the existing faults) immediately after detec- 
tion. 

5b. Faults are detected/removed one at  a time. (This 
allows a continuous time formulation). 

6. Uu-, Mu- are measurable with respectLto 3u-.. 

2. MARTINGALE ESTIMATING EQUATION 
Assumptions 

7. Ut and Mt are right-continuous so that both 
dUt = Ut - Ut- and d M t  = Mt --Aft- take only the values 
0 or 1. 

8. The model uses multiplicative intensity with A t  = 
4 

This section uses notation similar to that in [12].  Con- 
sider a bivariate counting process {Ut, Mt; t E [0, TI}. By 
Doob-Meyer decomposition, each equation in ( 1 )  is ZMM 

8 . ,& for all t .  

[ I ,  141. 

Ut = Ut - A,. (V - Uu-) d u  (1) I" 
Mt  = Mt - Jd' Pu . ( D  - Mu-) d u  

The Ut and M t  are orthogonal: 
( U ,  M ) t  = 0. 
Consider the martingale difference: 

d R u  = ( D  - Mu-) dUu - 8 ' (v - Vu-) dMu 

with E{dRul.F,-} = 0 [12].  Consequently the stochastic 
integral: 

= l' Wu- . [(D - Mu-) dUu - 8 .  (U - Uu-)dMu];  

Wu- is any locally bounded and predictable process with 
respect to Fu-, and is a ZMM. Equate ( 2 )  to zero and 
evaluate it at  time T ;  then a class of estimators for v is 
obtained: 

I' Wu- [(D - Mu-) dU, + 8 .  U,- dMu]  

8 .  1' Wu- d M u  
v, = (3) 

which depends on the choice of Wu-. For the simple weight 
function, Wu- = 1: 

1' [(D - Mu-) dUu + 8 .  U,- d M u ]  
U1 = 

e . M ,  

(f - 1 )  . I ' ( D  - Mu-)  dUu 

M, 
= D' + (4) 

i' [ ( D  - Mu-) dUu +Uu- d M u ]  

MT 
U' = 

Dr is the estimator of v when 8 = 1 with the condition 
At = Pt for all t. Hence, by (4), when Dr is used to es- 
timate v, but the intensity of seeded faults is smaller or 
larger than real faults; ie, 

At 
Pt 

8 = - > 1 o r < l ,  

it leads to over-estimation or under-estimation of U. This 
effect from misspecification of 8 using (4) is examined fur- 
ther by a Monte Carlo study in section 4. 

On the other hand, Wu- can be chosen optimally to 
minimize the size of s-confidence bounds for the estimator 
for U. An optimal estimating equation for U for known 8 
is [12]: 

(D - Mu-) dUu - 8 .  (v - Uu-) d M u  
= 0 (5) 

The optimal estimator i, is then the solution of (5) with 
an approximate standard deviation: 

StdDev(D) = Q l ( t ) / Q 2 ( ~ ) ;  

( D  - Mu-)2 dUu + (i, - Vu-)' dMu 
QI,(t) 

For 8 known, both the simple weight, 91, and the optimal 
weight, D, perform satisfactorily [12].  
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3. UNKNOWN e 
I When 0 is unknown, two weight functions can be chosen 

in (2) such that the resulting estimators of U and 8 are the 
most s-efficient (optimal) among the estimators derived 
by other weight functions. These two ‘optimal’ weight 
functions are [3]: 

1 
(v - uu-). [(D - M ~ - )  + e .  (U - U,-)] 
for estimating v; 

1 
, e .  [(D - M ~ - )  + e .  (v - uU--)1 

for estimating 8. 

Both of these weight functions are non-decreasing and put 
more weight on the later part of the experiment. Details 
of the theory of choosing the optimal weights for a given 
martingale difference of dimension k are in the appendix; 
also see [5]. Substitute these optimal weights into (2), and 
evaluate them at t = T :  

(D - Mu--) dUu - 8 .  (v - Vu-) dM, 
; ( 6 )  

6 and 8 can then be obtained by solving (6 )  & (7) to their 
mean, zero, simultaneously. 

To measure the precision of the estimates, proceed as 
follows. Let 
v = (v, 0)’ 

R(v)  = (R;(7-),R;(T))’. 

A Taylor’s series expansion of R(v) at v = +, gives: 

R(v) FZ R(+) +RI(+) . (v - +I 
RI(+) first derivative of R(v) evaluated at  +. 

The error for this approximation is 0 ((v - 0)2) ,  which is 
negligible when D is sufficiently close to v. Then, equiva- 
lently, 

Thus a measure of the dispersion of ($ - v) is: 

[RI ( + ) I  - 1 v (+ ) [RI (+)I -T 
A-T = transpose of the inverse of matrix A 
V(+) = dispersion matrix of R ( C ) .  
Before computing (8), note that: 

Thus the estimated variance-covariance matrix for (+ - v)’ 
can be computed from (8) by replacing all the unknown 
parameters with the corresponding estimates. 

4. SENSITIVITY-ANALYSIS AND SIMULATION 
Notation 

Av(SD(t)) 

Coverage 
, 

P 

Prop 

average StdDev(5) of the 2000 
simulated trials 

proportion of the estimate in each 
simulated trial lies between the 
95% s-confidence limits 

the stopping criterion 

based on ( 6 )  - (7). 

fraction of the seeded faults removed: 

fraction of failures in solving for v and 8,  

Assumption 

a homogeneous Poisson process. a 

. (when 0 is known) the sensitivity of D1 in (4) to mis- 
specification of e, 

9. The failure intensities for real and seeded faults follow 

Monte Carlo methods are used to examine 
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- (when 8 is unknown) the performance of the optimal 
estimators for v and 8 obtained from (6) - (7). 

Table 1 gives the simulation results for the effect of a 
misspecified 8 with v = 400 and D = 100. The simulation 
size is 2000. The true value is in column #l. The four 
computed statistics computed are: 
Av(D), SD(D), Av(SD), Coverage. 

When 8 is larger than the true value, U is under- 
estimated. Though it gives a smaller standard error, the 
coverage was very unsatisfactory: 

On the other hand, when 8 is smaller than the true value, 
v is over-estimated. The coverage was also not satisfactory. 

Performance of v for a correct value of 0 improved as 
P increased from 0.5 to 0.9. The coverage is satisfactory 
with 95% level. 

Table 2 gives the simulation results of estimating v and 8 
simultaneously. When the removal proportion is not large 
(ze, P = 0.5) the failure proportion in solving for v and 
8, based on (6) - (7) was about 0.44. With a large p ,  the 
performance of D was acceptable. Performance improved 
with a large value of D.  We have included the estimate of 
v for a known 8 in table 2. The standard deviations of U 
were much smaller than the ones derived from an unknown 
value of 8. Knowing 8 is crucial in solving for v using the 
martingale equations. 

Table 1: Simulation Results for v with 8 Known and the 
Effect of  Misspecification 

( v = 400, D = 400 ) 
( ij + trial value of e, cov + Coverage ) 

p = 0.5 

6 Av(i/) SD(D) Av(SD(D)) Cov 
True 8 = 0.5 

.3 640.0 101.0 99.2 .23 

.4 494.7 76.3 

.5 408.0 61.5 59.2 .94 
1.0 238.0 31.8 29.5 .02 
1.5 184.9 22.0 19.8 .OO 

74.2 .85 , 

True 8 = 1.0 . 

.5 700.2 95.7 94.5 .01 

.8 478.0 60.0 58.2 .84 
1.0 406.0 48.0 46.2 .94 
1.5 314.5 31.9 30.5 .25 

22.9 .02 2.0 272.8 23.9 

True 8 = 1.5 
.5 911.7 119.1 119.4 .OO 

1.0 525.0 59.1 57.3 .38 
1.5 405.0 38.5 37.2 .94 
1.7 378.7 33.6 32.6 .82 
2.0 360.7 28.1 27.5 .51 

5. DISCUSSION 
The sensitivity of i.1 is analyzed for a misspecified 8. 

Any misspecified value leads to either overestimation or 
underestimation of v. The information of 0 is therefore 
important in, 

- searching for the solution of v from the estimating equa- 
tions, 

- determining the precision of the estimates. 

The use of estimating equations to estimate D and 6 
simultaneously performs satisfactorily only if the removal 
proportion is large. 

During removal debugging of a computer software, it is 
advisable to obtain more information about 8 from some 
external sources or prior knowledge such that (5) can be 
used; (5) provides reliable information for v. Another op- 
tion is to insert seeded faults as alike as possible to the 
real faults so that 0 can be taken as 1. Otherwise, a suf- 
ficient removal proportion of faults is necessary before the 
number of real faults can be estimated together with 8 
by using ( 6 )  - (7). To decide whether this sufficiency is 
reached, one could keep debugging until the estimates can 
be obtained which still provide reasonably good coverage 
of the corresponding true values. This topic is discussed 
further in [4, 9, 131. 
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p = 0.9 
6 Av(D) SD(fi) Av(SD(6)) Cov 

True 8 = 0.5 
.3 570.1 50.5 53.0 .03 
.4 462.2 38.0 38.6 .69 
.5 401.3 30.3 30.1 .94 

1.0 304.4 14.4 14.6 .OO 
1.5 286.5 10.9 10.7 .OO 

.5 555.2 36.6 38.5 .OO 

.8 430.5 20.8 20.3 .75 
1.0 400.3 15.0 15.0 .92 
1.5 374.3 8.8 9.3 .28 
2.0 367.1 7.1 7.3 .04 

True 8 = 1.5 
.5 626.9 37.5 41.7 .OO 

1.0 431.0 14.6 13.3 .33 
1.5 400.2 6.7 6.9 .91 
1.7 396.2 5.5 5.8 .80 
2.0 392.9 4.6 4.8 .60 

True 8 = 1.0 

APPENDIX 
Martingale Estimating Functions 

Consider a stochastic process that develops in time. 
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Table 2: Simulation Results for v with an Unknown 8 

( Y = 400, D = 100 ) 
( Cov + Coverage ) 
( Prop + proportion of the simulations which cannot provide estimates for v & 6 based on (6) & (7) ) 

( Underlined numbers represent the result for Y when 8 is known ) 

2) = 0.7 
8 Av(D) SD(D) Av(SD(D)) Cov(v) Av(6) SD(8) Av(SD(6)) COV Prop 

0.5 349.7 114.2 205.8 .74 .7 .31 .42 .96 .28 
401.9 44.1 42.5 - .93 - -  

.38 .41 .97 .06 1.0 418.4 ’ 105.6 124.5 .85 1.1 
401.530.0 29.4 - .93 

1.5 414.1 65.7’ 58.4 .87 1.5 .44 .43 .95 .oo 
- -  401.4 20.7 20.2 - .93 

p = 0.9 
6 Av(D) SD(t)  Av(SD(6)) COV(Y) Av(8) SD(6) Av(SD(8)) COV Prop 

0.5 410.2 97.1 120.2 .84 .5 .17 .20 .96 .08 
- -  400.4 30.2 29.8 - .94 

1.0 405.2 37.1 30.7 .88 1.0 .21 .21 .95 .oo 
400.215.0 15.0 - .92 

1.5 401.1 10.9 9.8 .88 1.5 .25 .24 .94 .OO 
400.16.7 - 6.8 - .91 

Notatzon 
3 t  

Gt 
dGt the change in Gt over [t, t + dt) 
Ht a pdimensional ZMM 
It 

Dt 
L$ 

The weight matrix which achieves this bound is 
history of the stochastic process up to time t 

any r.v. depending only on data up to time t 
Et s-expectation, conditional on the history 3t W:- = DT x K-’. (A-4) 

adG, 
D2,3 = Et {a~,} , K,3 = Et{dG, . dG,}. (-4-5) 

The optimal set of equations is 

H; = / t D F  x V;’ dG, = 0. 

p x p random matrix: the information in Ht 
IC x p random matrix; see entries in (A-5) 
k x IC random matrix; see entries in (A-5) 

The Gt is ZMM if 

Et{dGt} = 0, Et{dGz} < 00 

J O  

Amongst the family of estimating functions (A-2) for 
given differences dGt, the optimized function H: has max- (A-1) 

The Gt is an accumulation of mean-zero finite-variance r.v. 
More generally, let 
dGt = (dG1, ...,dGk)T be a martingale difference of di- 
mension I C .  For each t let 
Wt be a p x k ‘weight’ matrix which depends only on data 
up to time t .  Then, conditional on Ft, these matrices are 
non-r andom; thus 

Ht = lt W,- dG, (A-2) 

When dGt depends on aiipiiknown parameter p of dimen- 
sion p then the solution pt of Ht = 0 is a generalization 
of method of moments estimation. Details of both finite- 
sample and asymptotic-theory of such estimators are in 
[3]. They establish mild conditions under which 
I:” (fit  - p)  converges to multivariate standard Gaussian 
variable. In the partial ordering of matrices, It is domi- 

imal correlation with the true likelihood score function. 
The asymptotic variance matrix of the optimal estimator 

is the inverse of the optimal information matrix (A-3). 
The Dt and can be replaced by their s-expectations in 
(A-3) whenever: 
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