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Abatract- Fuzzy-Attribute Graph (FAG) 
was proposed to handle fuzziness in the pat- 
tern primitives in structural pattern recog- 
nition. FAG has the advantage that we can 
combine several possible definition into a sin- 
gle template. However, the template require 
a human expert to define. In this paper, we 
propose an algorithm that can, from a num- 
ber of fuzzy instances, find a template that 
can be matched to the patterns by the origi- 
nal matching metric. 

. 

I .  INTRODUCTION 
Fuzzy set theory was first introduced by Professor 
L. A. Zadeh in 1965 [l] and is used as a formal 
mathematical tools to investigate problems pertain- 
ing to uncertainty, ambiguity and vagueness. It can 
be applied on concepts that has no exact boundary 
between membership and nonmembership and the 
change is gradual rather than abrupt. 

There are two approaches in pattern recognition 
- the decision-theoretic and structural approach. In 
decision-theoretic approach, the pattern is repre- 
sented by a series of “features”. Somehow the object 
is transformed to a feature vector, and the classifi- 
cation is done in the feature space, using either a 
discriminant function, or Bayes classifier. In struc- 
tural approach, the object is represented by its struc- 
tures. Tsai and Fu [2] proposed to use attributed 
graph in structural pattern recognition. The graph 
representation provide much richer structural con- 
tent than grammatical approach, where a string is 
assumed. Although high-dimensional grammar can 
be used, this will be very complicated. Another pos- 
sibility is to use a Guarded Grammar [3] which can 
fulfill most function of the high dimensional gram- 
mar while retaining simplicity. 

It is the author’s belief that human perception 
is achieved by finding recognizable subpatterns in a 
complex scene and then compose a meaningful pic- 
ture from these subpatterns. During this match- 
ing process, we have some definitions of the subpat- 
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terns, which by itself, is not fuzzy. However, each 
instance of this definition is fuzzy. Hence we are 
matching a non-fuzzy template with fuzzy objects. 

The attributed graph proposed do not contain 
any fuzzy information. Hence the author proposed 
an extension, which is called Fuzzy-Attribute Graph 
( F A G )  [4]. Also, some nice properties of FAG has 
been derived. In this paper, we further present 
an algorithm for learning templates from several 
instances of FAGS, and hence present a complete 
framework that can be used in structural pattern 
recognition. 

11. FUZZY-ATTRIBUTE GRAPH 

Attributed graph was introduced by Tsai and Fu [2] 
for pattern analysis. I t  gives a more straightforward 
representation of structural patterns. The vertices 
of the graph represent pattern primitives describing 
the pattern while the arcs are the relations between 
these primitives. However the pattern often possess 
properties that are fuzzy in nature and it has been 
extended to include fuzzy informations into the at- 
tributes. 

In a fuzzy-attribute graph, each vertex may have 
attributes from the set 2 = { t i l i  = 1,. . .,I}. For 
each attribute z i ,  it  may take values from S i  = 
{s i j  Ij = 1, . . . , Ji}. The set of all possible attribute- 
value pair is 2, = { ( z i ,  &)li  = 1, . . . , I} where &, 
is a fuzzy set on the attribute-value set S i .  A valid 
pattern primitive is just a subset o,f L, in which each 
attribute appears only once, and II represent the set 
of all those valid pattern primitives. 

Similarly, each arc may have attributes from the 
set F = { f i l i  = 1 ,  . . . , I t )  in which each fi may 
take values from = { t i j l j  = l,....,J,’}. La = 
{ ( f i I & , ) l i  = 1, ..., I‘} denotes the set of all pos- 
sible relational-attribute value pair, where &, is a 
fuzzy set on the relational attribuke-value set x. A 
valid relation is just a subset of La in which each 
attribute appears o ~ l y  once. The set of all valid 
relation is denoted 8. 
Definition 1 A Fuzzy-Affn’bute Graph ( F A G ) ,  
over L = (tu , E , )  with an underlying graph struc- 
ture H = ( N , E )  is defined to be an ordered pair 
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@,A), where v-= ( N , 8 )  is called a fuzzy vertex 
set and A = ( E ,  6) is called a fuzzy arc set and 

5 N .-* fi is called a fuzzy vertex interpreter, 
d E + 6 is called a fuzzy arc interpreter. 

This definition also applies when there are non- 
fuzzy attributes, since a crisp set (non-fuzzy) can 
always be represented as a special case of fuzzy set. 
Example 1 When we use FAG to represent Chi- 
nese characters, each node of the graph will rep- 
resent a stroke, and the relation between the n- 
odes are represented by the edges. Each stroke may 
have two different attributes STROKE-TYPE and 
LENGTH. The attributes for relations between the 
nodes are JOINT-TYPE, VERT-REL and HORI- 
REL. The values that can be taken in each of the 
attributes are, 

: 

: 

{STROKE-TYPE} = {Vertical, Horizontal, 
Slant45, Slant135) 

{LENGTH} = {Long, Short} 
{ JOINT-TYPE} = { T-from, T-into, Ht, 

Cross, Parallel} 
{ VERT-REL} = { On-top-of, Below-of, 

No- vert -re1 at e} 

{ HORI-REL} = { Left-of, Right-of, 
No- hori-rela te} 

Using these attributes and values, we can construct 
a FAG to represent a Chinese character. A typical 
fuzzy vertex set and fuzzy arc set. is given below, 

iil = {(STROKE-TYPE, {O.T/Vertical, 
0.85/Slan t45,O .O 1 /Horizontal, 
O/Slan t l 3 5 } ) ,  (LENGTH, { O.G/Long, 
O/Short })} 

and, 

$1 = {(JOINT-TYPE, {0.7/T-frorn, O.G5/Cross, 
O/T-into, O/Ht, O/Parallel}), (VERT-REL, 
{ 0.9/ On- top-of , O/ Below-of , 
0.25/Nc-vert-relate}), (HORI-REL, 
{0.2/Left-of, 0.4/Right-of, 
0.77/ No-hori-rela t e} ) } . 

The FAG data structure is general enough to be 
applied to  most objects in typical recognition prob- 
lems. The fuzzy attributes are used to handle those 

fuzzy properties as well as non-fuzzy enumerable at- 
tributes. For those attributes with continuous val- 
ues, such as height of a man, we can easily abstract- 
ed out the fuzzy concepts such as tall and short, 
and represent them in fuzzy sets. This is what is 
performed by human being. 

111. A RECOGNITION FRAMEWORK BASED ON 
FA G 

In this section, we will describe a framework of gen- 
eral pattern recognition system based on the FAG. 
Before going further, the author would like to reit- 
erate his view that human perception is based on 
recognizing some identifiable parts from a complex 
scene, and then based on these identified parts, re- 
construct the whole picture. Also, the ideal objects, 
or the definition of the object is not fuzzy a t  all. It 
is an instance of this definition that is fuzzy. The 
whole approach is based on these views. 

The following is a generalization of the approach 
from the author's original application on Chinese 
character recognition [4] First of all, we define a 
set of small subpatterns (similar to syntactic pat- 
tern recognition). The definition of these subpat- 
tern is represented in a Hard (non-fuzzy) FAG or 
HFAG, which is a FAG which all fuzzy set crisped, 
i.e. with membership of either 0 or 1. These are 
used as the matching templates. The pattern to be 
matched is represented as FAG. The fuzzy graph is 
then matched against the non-fuzzy graph to deter- 
mine whether there is a matching found. One prob- 
lem that immediately follows is the way to define a 
matching. 

To derive the matching formula, we first notice 
that the FAG representation has some meaning be- 
hind it. Actually, the membership value of a fuzzy 
set can be interpreted as the compatibilityof a mem- 
ber and its properties. Consider the following exam- 
ples of a fuzzy vertex set, 

where Si  is the i-th attribute and s;j are the at- 
tribute values. This can be interpreted as 

vertex vi possesses property si, with truth 
value pi ls ,  ( s i j ) .  

To match between the definition and the pattern, 
one would like to check the truth value of the fol- 
lowing statement: 

template H possess property sij A N D  pat- 
tern G possess property s,, 

and this can be obtained by the following fuzzy ex- 
pression 

p'riS, ( s i j  1 * PG,, (s i j  
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Now, when we consider over all values for an at- 
tribute, we would like to take disjunction over all 
values, for the attribute Si,  

like to have a mechanism such that the definition 
can be derived from a set of fuzzy examples. In this 
section, we will try to  describe such an algorithm 
that can learn the template by showing the system 
examples. This is not a trivial “learning from ex- 
ample” problem as the examples is fuzzy in nature, 
and the result should be A-monomorphic with all 
the fuzzy examples. 

tempLate H possess property sil A N D  pat- 
tern G p o y s a  property S i 1  OR 
tempkate H poasess property si2 A N D  pat- 
tern G poseess property si2 OR ... 

This is for one attribute and we can repeat this 
for all attributes by taking conjunction over them. 
Hence we have the following definition: 

Definition 2 Let GI and G 2  be two FAGs with the 
same underlying graph HI = ( N I ,  El)  of GI bei_ng 
monomorphic to the underlying graph H2 of G2. 
The degree of matching y is defined as 

7(&, 6 2 )  = A a(i7 h ( i ) )  
iEN1 

A p(e l ( i , j ) ,  e ? ( h ( i ) ,  h(j))) 
( i  , j  )E E1 

where h(i)  is the vertex in G 2  that matches vertex 
i in GI, and e k ( i , j )  is the arc joining vertices i and 
j in G k .  
The value a(i, j )  is the matching between vertex i 
and vertex j and is obtained as 

I J r  
a ( i , j )  = A V { (pdlS, , ,  (Smn) A ~.i~~,,, (SPnn))} 

where &s, is the fuzzy set of the attribute si of 
graph k, k = 1,2. 
Similarly, the value P ( e i , e j )  is the matching be- 
tween arc ei and arc e,  and is obtained as 

m=l n=l 

where &Ti is the fuzzy set of the attribute Ti of 
graph k, k = 1,2. 

The degree of matching so defined has its physical 
meaning which corresponds to the logical expression 
above. This logical expression is both intuitive and 
understandable and in fact it has some very nice 
property that makes it very useful in pattern recog- 
nition. 

IV. LEARNING FROM EXAMPLES OF FAGs 
When using the above described framework, one can 
notice that the template should be defined by the us- 
er. In the previous section, we have discussed how 
matching can be achieved between a fuzzy instance 
and the non-fuzzy definition. This definition was 
provided by human experts. However, we would 

Theorem 1 Given a FAG 8, and a HFAG H, 8 is 
&monomorphic with H iff for each nodal attribute 

and for each relational attribute f i ,  3tij E Ti such 

The proof follows directly from the definition of A- 
monomorphic. 

zi ,  3sij E Si such that p ~ s , ( s i j ) A ~ i . j s l ( ~ i j )  2 A 

that P G ~ ,  ( t i j )  A ~ f i , , . ~ ( t i j )  2 A. 

This theorem, although simple, allows us to con- 
sider each attribute (whether it is nodal or relation- 
al) individually. Hence the following discussion will 
be concentrated on the learning of a single attribute, 
and the result can then be combine together back 
to form the template. 
Definition 3 Consider a set X = {zili = 1,.  . . , n}. 
The extyded product 0 between two fuzzy subset 

and Y2 of X is defined as 
n 

o % = V (ppl(zi) A Pp, , ( z i ) )  
i= 1 

Definit ion 4 ?I and ?2 are said to be A-matched 
if o F-2 2 A. 

With the help of theorem 1 we can now rephrase 
the problem to a simpler form: Consider a set X = 
{zili = 1 , .  . . , n}. Given a set of fuzzy subset of X ,  x, i = 1 ,  . . . , m, we are going to find the_smallest set 
Z X (i.e. lZl is smallest) such that 2, the-fuzzy 
set representation of 2, is A-matched with x , i  = 
1, . . , , m. This is for one attribute and we repeat 
this for all nodal and relational attributes. 

Definition 5 Given a universe X = {zil i  = 1,. . . , n } .  
A polynomial form P is a summation of the form 

m 

where xk is a product of any number of xi’s,  and 
ah are constants. 

For each fuzzy set ? on the universe X ,  we can 
rewrite ? in the polynomial form 

n 

i = l  

where each Xi’s is a singleton. 

610 



Definition 6 The f-product between two polyno- 
mial form PI and P2 is another polynomial for- 

m Q = PI 8 PZ such that if P I  = C a k ~ k  and 
m 

k = l  
m' 

PZ = a i X &  , then 
i= l  

m m' 

Q = r x m i n ( a k ,  aL)xilyj 

with the convention that x i x ,  = x i ,  and 

a l X  + a2X = max(a1 ,  a 2 ) X  

i = l  j = 1  

Example 2 

(0.511 4- 0.312 4- 0.713) 8 (0.321 + 0.222 + 0.8113) 
= (0.311 4- 0.222 0.723) 4- (0.211122 + 03x1112) 

-k (0.51113 -k 0.32123) 4- (0.322113 -I- 0.21223) 
= 0.311 -k 0.212 0.723 0.321X2 4- 0.521X3 + 0.32223 

Theorem 2 Let ?I and ?2 be two fuzzy sets with 
polynomial forms PI and P2 respectively, and Q be 
the f-product 

m 

k = l  

Then the HFAG f i k  constructed form the k-th term 
akxk such that 

is ak-matched with both 91 and p2. 
Proof: Note that PI and P2, the polynomial form of 

and ?Z contain only single xi's in the summation. 
Let PI = Cy='=, aixi and P2 = Cy=l u i x i .  Then for 
a term containing x i x ,  in the product (note that 
x1 = x 1 x 1 )  with a coefficient b i j ,  

bij  = max(min(ai, a i ) ,  min(aj, U;)) 

Hence, 

(PAk ( X i )  A PPI ( X i ) )  v (PI?, ( X j )  A PP, ( X j  )I 
= P P ~  ( z i )  V ~9~ ( x i )  
= max(ai,aj) 2 b i j  

The same argument applies to ?2. Hence the result. 
It can easily be seen that the above argument can 

be extended to more than two F7s. From theorem 
1 we can separate the learning into individual at- 
tributes for nodes and relations. Theorem 2 allow 
us to find the attribute for individual attribute. It 
can be further noted that we can delete intermediate 
terms which has a value < A .  

Definition 7 The A-cut of a polynomial form P = c aiXi is another polynomial form PA = c biX; 
n n 

i = l  i = l  
such that 

0 otherwise 

Theorem 3 The A-cut operation is distributive with 
respect to f-product, i.e. 

PlX 8 P2X = (Pl 8 P2)X 

From definition 6, it can be seen that any term 
that contains a coefficient < A will produce another 
term which is < A in the summation. This will be 
discarded after the A-cut operation. Hence we can 
ignore any terms that contain coefficients < A. 

With this theorem, we can delete all intermediate 
terms with coefficient < A during the multiplication 
process. This will prune off all those unpromising 
terms. Taking this into account, we have the follow- 
ing algorithm for finding the "smallest" templates. 

Algorithm 
Repeat the following steps for each nodal and rela- 
tional attributes. 

(1) Represent the fuzzy set of the attribute of all 
training samples in a polynomial form, namely, 
P l ,  P2, . . * ,  pn. 

(2) Assign A-cut of PI to Q. 
( 3 )  Find the f-product Q +- A-cut of (Q 8 P2) 
(4)  Repeat step 3 until all input samples exhausted 
(5) Find the term with smallest number of xi's  and 

with coefficient 2 A. 

Finally, construct a HFAG from these term. 

The complexity of this algorithm is O(71m2~) for 
each attribute where n is the number of examples 
and m is the number of attribute-values within the 
attribute. For each multiplication, one of them is 
originally a FAG and its polynomial form contain 
only m terms. The other have at  most 2" terms. 
Hence each step take no more than m2"'. Also note 
that the value of m is fixed and is usually very s- 
mall, for example 5 10. In our previous example, 
the STROKE-TYPE attribute actually contain on- 
ly 4 values, i.e. m = 4 and m2m = 64. Hence the 
algorithm is essentially linear with respect to the 
number of training examples. Finding the smallest 
term is also constant (in this case O(am)). 

V. AN ILLUSTRATIVE EXAMPLE 

Chinese character recognition is a typical example 
that require fuzziness in the description of the pat- 
tern primitives. Each stroke and their relations can 
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I id 11 Horizontal I Vertical I Slant45 I Slant135 
I 1 I1 0.85 I 0.00 I 0.22 I 0.00 

2 
3 
4 

0.83 0.00 0.19 0.00 
0.37 0.00 0.00 0.49 
0.91 0.00 0.13 0.00 

5 
6 

0.84 0.00 0.21 0.00 
0.98 0.00 0.39 0.00 

I id I I  Horizontal I Vertical I Slant45 I Slant135 I 

L 

7 [I 1.00 I 0.00 0.03 0.00 
8 [[ 0.94 1 0.00 0.31 0.00 

1 11 0.00 
2 II 0.00 

0.00 
0.00 0.03 

1 .oo 0.03 0.03 
1 .oo 0.03 0.03 

7 
8 

(b) Stroke 2 

I id [I Horizontal 1 Vertical I Slant45 I Slant135 

(c) Stroke 3 

0.00 0.95 0.08 0.00 
0.10 0.30 0-39 0.00 

Table 1: Membership value of the fuzzy set 
S T R O K E T Y P E  

have fuzzy attribute as described in example 1 of 
section 11. To test the effectiveness of the algorithm 
we try the approach on the character k. Figure 1 
shows 10 samples of the character *. For simplic- 
ity, we only use 1 attribute - the stroke type, for 
illustration. The stroke type may take four values 
- Horizontal, Vertical, Slant45 and Slant135 which 
are the main direction of strokes in a Chinese char- 
acters (two in horizontal and vertical and two in the 
diagonals). They are represented as a fuzzy set. Ta- 
ble l shows the membership values of the fuzzy set 
S T R O K E T Y P E .  

The evaluation of the membership can be found 
in [5] First of all, each character is represented by 

Character 1 Character 2 

Character 3 Character 4 

Character 5 

I I 

Character 7 

I 

Character 6 

Character 8 

Figure 1: A set of training sample used 



a FAG. The FAGs are first matched against each 
other to  find vertex correspondence. This can be 
achieved by a graph matching algorithm proposed 
by A. K. C. Wong [6] After the vertex correspon- 
dence are found, the algorithm can then be applied. 
When applying the above algorithm, taking X = 
0.25, we will get the following result: 

Let H I  VI S and X represent the attribute-values 
Horizontal, Vertical, Slant45 and Slant135 respec- 
tively, and 91, 92 and Q3 be the resultant polyno- 
mial form for the three strokes in the character *. 
We get 

91 = 0.37H + 0.49HX + 0.37HS + 0.39HSX 
9 2  = 0.3V+0.39VS 
9 3  = 0.31H + 0.31HS+ 0.61HX + O.61HSX 

proved that the resultant FAG from the algorithm 
is in fact A-monomorphic to all the learning pat- 
tern. As an illustration, the algorithm was applied 
to 8 character 4. and the above verified. The result 
also match with our definition. 

Finally, the algorithm is linear on the number of 
training samples. Although it is exponential with 
respect to the number of values in each attribute, 
this is usually very small. In our application on 
Chinese character recognition, the largest number 
is 6. Hence this can be assumed to  be a constan- 
t. Thus, an efficient algorithm has been developed 
for the learning of HFAG from a set of examples of 
FA Gs . 
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the pattern. 

Also the template used for matching is a kind of 
definition which should not contain any fuzziness, 
while any “instance” of the template is fuzzy. Hence 
we define the matching between a fuzzy instance and 
a non-fuzzy template. However, we do not want 
to define the template by ourselves. This will be 
very tedious and error prone, especially when we 
have many templates to define, such as in Chinese 
character recognition. We would like to have an 
automatic mechanism to do this instead. 

In this paper, we propose an algorithm which can 
find the smallest template from a set of training 
samples based on the matching met.ric. We have 


