
High-Performance Com uting for Vision
CHO-LI WANG, PRASHANTH B. BHAT, AND VIKTOR K. PRASANNA, FELLOW, IEEE

Invited Paper

Vision is a challenging application for high-peqormance
computing (HPC). Many vision tasks have stringent latency
and throughput requirements. Further, the vision process has a
heterogeneous computational projile. Low-level vision consists
of structured computations, with regular data dependencies.
The subsequent, higher level operations consist of symbolic
computations with irregular data dependencies. Over the years,
many approaches to high-speed vision have been pursued. VLSI
hardware solutions such as ASIC’s and digital signal processors
(DSP’s) have provided good processing speeds on structured
low-level vision tasks. Special purpose systems for vision have
also been designed. Currently, there is growing interest in
using general purpose parallel systems for vision problems.
These systems offer advantages of higher performance, software
programmability, generality, and architectural flexibility over the
earlier approaches. The choice of low-cost commercial-off-the-
shelf (COTS) components as building blocks .for these systems
leads to easy upgradability and increased system life.

The main focus of the paper is on effectively using the COTS-
based general purpose parallel computing pla@orms to realize
high-speed implementations of vision tasks. Due to the successful
use of the COTS-based systems in a variety of high pe~ormance
applications, it is attractive to consider their use for vision
applications as well. However, the irregular data dependencies in
vision tasks lead to large communication overheads in the HPC
systems. At the University of Southern California, our research
efforts have been directed toward designing scalable parallel
algorithms for vision tasks on the HPC systems. In our approach,
we use the message passing programming model to develop
portable code. Our algorithms are spec$ed using C and MPI. In
this paper, we summarize our efforts, and illustrate our approach
using several example vision tasks.

To facilitate the analysis and development of scalable
algorithms, a realistic computational model of the parallel system
must be used. Several such models have been proposed in the
literature. We use the General-purpose Distributed Memory
(GDM) model which is a simple but realistic model of state-of-the-
art parallel machines. Using the GDM model, generic algorithmic
techniques such as data remapping, overlapping of communication
with computation, message packing, asynchronous execution, and
communication scheduling are developed. Using these techniques,
we have developed scalable algorithms for many vision tasks.

Manuscript received October 15, 1995; revised March 18, 1996. This
work was supported by NSF, ARPA, and AFOSR.

C.-L. Wang is with The University of Hong Kong, Hong Kong (e-mail:
clwang@cs.hku.hk).

P. B. Bhat and V. K. Prasanna are with the Department of EE-Systems,
University of Southern California, Los Angeles, CA 90089-2562 USA (e-
mail: prabhat@ halcyon.usc.edu and prasanna@ganges.usc.edu).

Publisher Item Identifier S 0018-9219(96)04992-4.

For instance, a scalable algorithm for linear approximation has
been developed using the asynchronous execution technique.
Using this algorithm, linear feature extraction can be peqormed
in 0.065 s on a 64 node SP-2 for a 512 x 512 image. A serial
implementation takes 3.45 s for the same task. Similarly, the
communication scheduling and decomposition techniques lead to
a scalable algorithm for the line grouping task. We believe that
such an algorithmic approach can result in the development of
scalable and portable solutions for vision tasks.

I. INTRODUCTION
Computer vision has applications in a wide variety

of fields such as vehicle navigation, medical diagnosis,
aerial photo interpretation, and automatic target recogni-
tion, among others. Some of these applications involve
interaction with a human, and must complete within a
few seconds. Other applications require a machine to act
in real time, such as in automatic vehicle guidance. The
maximum tolerable latency here is typically less than a
fraction of a second. Most vision tasks are computationally
intensive, involving complex processing. Thus for practical
implementations of vision tasks to be possible, high
performance computing support is essential.

Parallel processing is an attractive approach to satisfy
the computational requirements of vision applications [45].
High levels of performance and fast turnaround times
seem promising with general purpose parallel machines.
However, simply replacing existing computing platforms
with parallel machines does not guarantee that the stringent
latency and throughput requirements of vision tasks will
be met. To realize the full potential of parallel machines,
efficient software is an important component. Parallel pro-
grams for the vision tasks must be developed. Although
compiler technology is rapidly evolving, currently available
parallelizing compilers can provide only limited support
in automatically generating efficient parallel code from
serial vision algorithms. This is because the computational
characteristics of vision tasks are different from the struc-
tured number crunching computations that arise in most
other grand challenge applications. A significant fraction of
vision tasks consists of extensive symbolic computations,
and therefore has irregular run-time data dependencies.
Further, vision computations are heterogeneous, utilizing

0018-9219/96$05.00 0 1996 IEEE

PROCEEDINGS OF THE IEEE, VOL. 84, NO. I , JULY 1996 931

http://halcyon.usc.edu

techniques from a variety of disciplines such as signal
and image processing, advanced mathematics, and artificial
intelligence. It is therefore necessary to manually develop
suitable parallel algorithms for vision computations.

The heterogeneity in vision tasks also arises because
vision computations proceed in distinct phases [42]: low-
level, intermediate-level, and high-level. The processing
at each level has different computational characteristics.
Low-level processing is mostly iconic, with regular and
structured computations. The input to this stage is a two-
dimensional (2-D) image array of pixels, representing the
observed scene. Operations are performed on pixels using
image data in the neighborhood of these pixels. At the
higher levels, however, the operations performed on an item
often have irregular data dependencies. Processing at these
levels is performed on objects that are groups of features
extracted at the lower level. On account of these complex
and heterogeneous computational requirements, vision has
been identified as a grand challenge application for high
performance computing [20].

Several engineering factors also restrict the options in
choosing computing platforms for vision applications. For
example, many vision tasks arise in the context of robotic
applications. Computing platforms for these applications
must be easily embeddable on robot vehicles. Small sizes
and low power requirements are important in such situa-
tions. A further consideration is that robotics applications
require placing the computing resources in hazardous sur-
roundings.

System cost is another consideration. In scientific com-
puting environments, a single computing resource is shared
by several applications. While this could lead to longer
computing times, the costs incurred by each application
are reduced. However, the stringent timing constraints
associated with vision tasks often require that systems be
dedicated entirely to a single task. Many vision applica-
tion environments cannot afford these high system costs

Several efforts have been directed toward providing high
speed computing support for vision [4], [5] , [21], [41],
[53], [55]. A brief summary of leading research efforts in
parallel computing for vision can be found in [63]. These
efforts can be grouped into three categories, based on the
nature of computing platforms they utilize: single chip (or
board level) VLSI processors, specialized vision systems,
and general purpose parallel machines.

I) VLSI Processors: Accelerator boards consisting of
VLSI processing elements are well-suited for structured
computations. These VLSI processors therefore yield
excellent performance for low-level vision processing.
The accelerators implement the computations in hardware,
resulting in high-speed execution. For instance, VLSI chips
for convolution and other low-level operations have been
developed.

VLSI processors can also be programmable. Digital sig-
nal processors (DSP’s) are an example of programmable
VLSI processors. A DSP chip has an instruction set, and
can execute any program composed of valid instructions.

~631,

Due to this flexibility, efficient support for different tasks
can be provided. Although VLSI processors perform well
on structured computations, their architecture is not well
suited for the irregular tasks in high level vision. Complete
vision systems based on these components have therefore
not been designed.

2) Specialized Vision Systems: Specialized vision sys-
tems are computing platforms specially designed to
suit the requirements of vision tasks. The architectural
features match the computational characteristics of vision
processing. However, the architecture is adequately general,
enabling efficient implementation of a variety of vision
tasks. An example is the image understanding architecture
(IUA) [64]. This architecture has three different layers of
computational engines that suit the requirements of low,
middle, and high-level vision tasks.

However, practical considerations make the special-
purpose approach less attractive. Specialized machines
tend to have a rather complex architecture, leading to
considerable design and development effort. New operating
systems, compilers, and other systems software must be
developed for the special architecture. This design effort
would result in higher system development costs. Many
application scenarios cannot afford to use such expensive
systems.

3) General Purpose Parallel Machines: Recent commer-
cial parallel machines, such as the IBM SP-2, Meiko CS-2,
Intel Paragon, SGI Power Challenge, and Cray T3D, have
been successfully used for a variety of high performance
applications. They offer hundreds of Gigaflops of comput-
ing performance. These machines are not designed for any
specific application, but are meant to be general purpose
systems. Most of them have a similar architecture consisting
of processing elements, each with a local memory module,
interconnected by a high speed network. These systems
offer several advantages over the VLSI processors and the
specialized vision systems:

Cost effectiveness: A wide range of application do-
mains use the same general purpose machines. The
larger volume of production leads to lower system
costs as compared to the specialized systems.
Programmability: The general purpose machines are
easily programmable. Availability of programming en-
vironments enable rapid and easy development of
efficient software. VLSI processors do not provide
these advantages.
Portability: Standard communication libraries such as
the Message Passing Interface (MPI) [39] have been
defined and implemented efficiently on many parallel
machines. Application software developed using these
libraries can be ported from one parallel machine to
another without extensive modifications.

This paper focuses on methodologies for the efficient
utilization of general purpose parallel computing platforms
for vision applications. In developing high-speed paral-
lel solutions on these platforms, the following issues are
important:

932 PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7, JULY 1996

Accessing the network incurs large software over-
heads. The interconnection network hardware typically
consists of high bandwidth and low latency links.
However, the time spent in executing the relevant
operating system routines is an order of magnitude
larger than the hardware latencies. By accounting for
this overhead in the algorithm design process, faster
solutions can be developed.
Due to this expensive network access operation, most
computations should ideally use data located in the
local memory of the processor. Locality enhancing
transformations such as data partitioning and mapping
schemes are necessary to achieve good performance.

These issues can be handled either through compiler
transformations or through careful algorithm design.

a) Compiler transformations: In this approach, an op-
timizing compiler transforms a sequential user code into
an efficient parallel code for a target architecture. This
simplifies the task of the end-user, since no special efforts
are necessary to generate efficient parallel code. On the
other hand, the user does not have complete control over
process scheduling, data layout, and data movement op-
erations. Performance conscious users can optimize their
code to some extent by providing compiler directives. Data
parallel compilers allow users to specify initial data layouts.
However, they yield good performance only when large
amounts of data are processed in a structured manner.
Currently, the compiler-based approach achieves good per-
formance in parallelizing loops, especially in cases where
regular data dependencies exist between the computations
[2]. Recently, compilers have been developed that can auto-
matically exploit optimal mixes of data and task parallelism,
based on the particular application program and target
platform combination. However, this effort has focused
on applications that have a static and predictable com-
putation structure [56]. Most high-level vision operations
contain extensive symbolic operations, and therefore lack a
structured and regular data access pattern. Automatic (com-
piler based) parallelization of these computations would
therefore result in load imbalances and poor processor
utilization.

b) Design of efJicient algorithms: Contrary to the
compiler-based approach, the user is in complete control
of the parallelization process. The user designs efficient
parallel algorithms, and then develops explicit parallel
code for them. During the algorithm design phase, the
parallelization overheads are carefully analyzed and it is
ensured that these overheads are not significant. Parallel
programs are developed using a high level programming
paradigm. The message passing paradigm has been widely
used on account of its excellent support for process control
and data movement between processes. Message passing
standards such as MPI [39] have been defined, making
it convenient to develop portable code. We believe that
this is a promising approach to the design of high speed
parallel solutions to vision applications. In the following
sections, the issues in pursuing this algorithmic approach
are discussed in detail.

A primary goal of analyzing the parallelization overheads
during the algorithm design phase is to design scalable
solutions. Scalability ensures that the overheads due to
parallelization do not dominate the performance gains. A
scalable algorithm can thus realize increasing speed ups
as larger parallel system configurations are utilized. Many
algorithmic techniques have been developed to eliminate
or reduce the parallelization overheads. Examples of these
techniques include data partitioning and mapping, load
balancing, and schemes to hide communication latencies.

Thus the algorithmic approach consists of the following
steps:

Analysis of the computation and communication
characteristics of the algorithm. This analysis can help
identify the bottlenecks that would restrict scalability
of the parallel solution.
Application of the appropriate algorithmic technique
to overcome these bottlenecks, resulting in a scalable
algorithm.

support the analysis phase and to evaluate the al- _. .~

gorithmic techniques, an analytical representation of the
parallel system is necessary. A computational model is such
a representation. It consists of parameters to represent the
computing power of the nodes, hardware communication
delays incurred in the network links, and software over-
heads in interfacing to the communication modules, among
others. Several popular models for general purpose parallel
computer systems are in use [14], [18], [27]. In choosing
among these, a trade-off must be made between accuracy
and simplicity. An accurate model can provide realistic
and reliable estimates of overheads and execution times.
However, the analysis becomes increasingly complicated,
restricting applicability to only simple systems.

Many different techniques can be developed with the
assistance of such an analytical model. A common goal of
these techniques is to reduce overheads in parallelization of
the applications. Data mapping techniques help to reduce
the frequency of access to remotely located data. On the
other hand, techniques such as overlapping communication
with computation hide these overheads. Load balancing
techniques lead to efficient utilization of all the computing
nodes.

Our approach to high performance computing for vision
is based on the algorithmic approach. The models and
techniques developed by us result in efficient and scalable
parallel solutions to many vision tasks. These results are
discussed in Section IV.

The rest of the paper is organized as follows-Section I1
summarizes the computational nature of vision tasks. In
Section 111, we describe the architectural features of cur-
rent general purpose parallel machines, and also survey
the popular computational models. Section IV details our
algorithmic approach of utilizing these parallel machines for
vision computations and summarizes some performance re-
sults. Section V concludes the paper, where future research
directions are identified.

WANG ef al.: HIGH-PERFORMANCE COMPUTING FOR VISION 933

11. THE NATURE OF VISION COMPUTATIONS

To develop efficient parallel algorithms for vision, it is
important to understand the computational characteristics
of vision tasks. In this section, we summarize the salient
features of vision computations.

A. Computational Characteristics

Vision tasks have a heterogeneous computational profile.
The early phases consist of structured computations with
localized data access patterns. This regularity is absent in
the later phases, where extensive symbolic computations are
performed. From a computational perspective, the vision
process is generally divided into three distinct phases [42].

In the low-level processing phase, the raw input image
is processed to extract primitive features, such as edges.
The input image is represented as a 2-D array of pixels.
Most of the pixel operations in this phase are performed
using image data in the neighborhood of the pixels. The
communication pattern is local and processing across the
image is uniform. Such algorithms are easily parallelized.

In the intermediate-level processing phase, low-level fea-
tures are grouped into a hierarchy of increasingly complex
and more abstract descriptions. For example, edges are
grouped into curves, curves into surfaces and surfaces into
objects. These elements are combined into pairs, triples and
larger structures, so the number of alternatives can grow to
be very large. Of the many combinatorial groups possible,
only some are meaningful. Efficient techniques are needed
for forming and evaluating the groups.

In the high-level processing phase, the descriptions gen-
erated at the intermediate level are interpreted for finding
semantic attributes of an image. This includes the task
of object recognition and generation of inferences from
collections of objects. Processing at this level tends to
be highly irregular though the number of data objects is
smaller. Typical algorithms consist of graph matching and
rule-based analysis.

Thus it can be seen that the computations constitute a
mix of varied methodologies. The regular data flow present
in low-level processing is absent at the higher levels. A
wide variety of data structures and representations are
also employed. In low-level processing, imagelike arrays
are used. Typically, input data sizes are in the range of
1 K x 1 K pixels of data with each pixel represented by 16 b.
As the computation proceeds, structures such as linked lists
are used. Data is often organized in the form of complex
data structures, and data accesses make extensive use of
pointers.

The computations consist of both integer-based numerical
operations and symbolic manipulations. Many of the high-
level symbolic computations do not have localized data
access patterns. This results in large communication over-
heads, when the computations are parallelized. In executing
these high-level tasks, the flow of control and the load
distribution on the processors are often unpredictable at
compile time. Parallel algorithms, data partitioning and
mapping methods, and load balancing strategies are needed

to result in useful speed-ups. Load imbalances can arise
since irregular triangular meshes are sometimes used to
approximate surfaces of arbitrary topology. Often the tech-
niques employed are not fixed, but evolve over a period of
time. Thus reprogrammability is also required.

Most of the past work in the area of parallel processing
for computer vision has addressed the use of parallelism
for problems in low-level and some geometric problems in
the interface between image processing and image under-
standing [43]. Design of parallel techniques for individual
problems in low-level processing seems to be reasonably
well understood [47]. However, this is not true of the higher
level tasks. Implementations of these tasks on state-of-the-
art parallel machines do not offer the performance levels
demanded by interactive or real-time modes of execution.

Thus, vision tasks are computationally complex mainly
because of their irregular dependencies, frequent inter-
processor communication, and heterogeneous operations.
These characteristics are different from the number crunch-
ing tasks in scientific applications, where the complexity
arises primarily due to the large number of operations to
be performed on extensive amounts of data. Most real
vision applications use images whose sizes are atmost a
few thousand pixels on each side. Larger parallel systems
do not automatically yield higher speed ups for vision ap-
plications, as they do for many of the scientific applications.
High processor efficiency for the irregular vision tasks is
therefore difficult to achieve.

B. Example Vision Tasks

We illustrate the computational aspects of vision pro-
cessing through some representative tasks. The examples
chosen include tasks from low, middle, and high-level
processing.

1) Segmentation: Segmentation identifies the line seg-
ments in the image, taking the 2-D pixel array as input.
This is one of the first steps in most vision applications.
During later stages, these segments can be further grouped
into more complex shapes.

Segmentation techniques fall into two classes: edge-based
and region-based. In edge-based techniques, “edgels” which
represent local intensity discontinuities are first detected.
They are then “linked” to form curves which may be further
approximated by straight lines or other primitives such
as B-splines [43]. In region-based techniques, regions of
homogeneous intensity (or color) are found and then their
boundaries are detected.

It should be noted that the segmentation step, while
relatively easy, can consume significant computational re-
sources. The amount of data to be handled here is rather
large compared to the subsequent stages. It is not untypical
for about 25% of the total application processing time to
be devoted to this step. For both approaches above, the
initial processing is iconic (image like) and consists of local
neighborhood operations. This step is easily parallelized on
virtually any architecture. However, the later steps, such
as that of line finding, require the conversion of iconic

934 PROCEEDINGS OF THE IEEE, VOL. 84, NO. I , JULY 1996

representations into symbolic lists. These operations are not
so straightforward to parallelize.

2) Perceptual Grouping: In perceptual grouping, lower
level features, such as lines and curves, are grouped into
successively more complex and abstract features such as
surfaces and parts of objects. These methods typically
rely on geometric and other symbolic relations between
the lower level features. Perceptual grouping techniques
typically follow a “hypothesize, select, and verify’’ par-
adigm. Initially, grouping hypotheses are formed based
on some geometric relations such as parallelism or sim-
ple symmetries. A large number of hypotheses may be
generated at this step. Then stronger, but computationally
more expensive, measures are used to select among the
competing hypotheses. Finally, the selected hypotheses are
“verified” based on all available image evidence [34].

Parallel implementation of such grouping operations is
complicated as the computations are mostly symbolic,
and not homogeneous for all features. The communication
pattern is data dependent and irregular. At the hypothesis
formation stage, a large number of hypotheses can be
generated due to the combinatorial nature of the process.

3) Object Recognition: Object recognition consists of
matching observed descriptions with stored models in
a database. Often, moving objects must be visually
tracked. Object recognition requires matching of attributed
graph structures. Commonly used techniques are those of
subgraph isomorphism and of maximal cliques. However,
purely graph theoretical techniques are not sufficient to
capture the variability that is inherent in observed scene
descriptions. Apart from these techniques, some heuristic
criteria need to be incorporated. Parallel implementations
of such techniques have been reported [29].

Thus the above examples illustrate the differences in
computational characteristics of vision tasks at low, mid-
ddle, and high levels.

111. HPC SYSTEMS: ARCHITECTURE AND MODELS
This section describes the architectural characteristics,

programming aspects, and performance issues of current
generation high performance computing platforms. With
this knowledge, the reader will be able to easily appreciate
the role of the algorithmic techniques to be presented in
Section IV.

A. The Architecture of HPC Systems

Traditionally, vector supercomputers have been the plat-
forms of choice for high performance computing applica-
tions. Advances in semiconductor technology are rapidly
changing this scenario. The performance of microproces-
sors as well as the capacity of memory chips have improved
tremendously in recent years. These components are used
in the large uniprocessor workstation market, resulting in a
corresponding decrease in their cost. The ready availability
of these low cost building blocks has led to their use in
parallel computing systems as well. Several commercial
general purpose parallel machines such as the IBM SP-

2, Gray T3D, TMC CM-5, and Intel Paragon have been
designed around these commercial-off-the-shelf (COTS)
components. All these parallel systems have a similar archi-
tecture consisting of three main components: 1) Computing
nodes based on state-of-the-art processor chips and DRAM
modules, 2) a low-latency high-bandwidth network that
interconnects the computing nodes (the network typically
consists of high speed point-to-point links and routing
switches), and 3) a network interface that couples each
computing node to the network [14].

The COTS-based parallel systems provide several advan-
tages over the monolithic vector supercomputer systems:

The architectural configuration is flexible. The system
can be easily expanded to include additional processor
and memory modules into the system.
The system can be easily upgraded to incorporate tech-
nological advances. As faster processors and memory
components become available, existing modules can
be replaced with the new components. The existence
of standard hardware interfaces makes this especially
easy.
The available memory bandwidth scales with the sys-
tem size. This is because the system memory is par-
titioned into several modules, each with its set of
memory ports. The number of memory modules in-
creases with the system size and so does the number
of memory ports.

The COTS-based systems also offer advantages over
single instruction multiple data (SIMD) stream architec-
tures. SIMD systems consist of a central unit that fetches
and interprets instructions and then broadcasts appropriate
control signals to a number of processors operating in
lock step. The architecture also consists of a high-speed
network for interprocessor communication. The Connection
Machine CM-200, the MasPar MP-2, and the forthcom-
ing Cray 3/SSS Super Scalable System are examples of
SIMD systems. Many applications with an embarrassingly
parallel computational profile perform well on these sys-
tems. However, not all high performance applications are
of an embarrassingly parallel nature. The generality, low
cost, and increasing performance levels of 3 2 4 and 64-b
processors make the COTS-based systems very attractive.
High-performance systems are therefore converging toward
a multiple instruction multiple data (MIMD) stream archi-
tecture designed around the COTS components.

B. An Architectural ClassiJication

The COTS-based MIMD systems are powerful platforms
for many HPC applications. Several classification schemes
can be used for the MIMD systems. We base our scheme
on factors that affect the achievable performance. We clas-
sify the MIMD HPC systems based on three architectural
features:

Memory partitioning: Based on the organization of
the physical memory modules, MIMD HPC systems
can be classified into two classes. Systems in the
distributed memory category are organized with a

WANG er al.: HIGH-PERFORMANCE COMPUTING FOR VISION 915

memory module situated physically close to each pro-
cessor module. The centralized memory systems are
organized with all the memory modules situated at a
single location.
The distributed memory systems offer potentially bet-
ter memory access performance, especially in large
systems. If many of the memory accesses by a proces-
sor can be satisfied at the local memory module, the
interconnection network is accessed only occasionally.
On the other hand, the centralized memory systems do
not scale well to large system sizes. Since all memory
accesses contend for the same interconnection network,
it can lead to degraded memory system performance.
In distributed memory systems, the partitioned nature
of the memory modules implies that some portions
of the system memory can be accessed directly by a
processor, while accesses to other portions of memory
require use of the interconnection network. Many
distributed memory architectures provide additional
hardware support for remote data access, in the form of
intelligent network interfaces. The interfaces can trans-
fer blocks of data between memory modules without
processor intervention.

* Address space organization: MIMD HPC systems can
be further classified based on the memory management
scheme. In shared address space systems, the memory
is logically organized as a single address space. A
processor can access any location of the memory
using read and write operations. In private address
space systems, each processor can directly access
only its local memory module, which it controls.
Access to a remote memory location requires explicit
interaction and communication with the appropriate
remote processor.
When distributed memory systems are logically orga-
nized as shared address space systems, remote memory
modules appear to a processor as portions of its ad-
dress space. This organization results in a nonuniform
memory access (NUMA) characteristic, with some
portions of the address space having lower access
times than other portions. In the centralized memory
systems, hardware always supports a shared address
space organization.
Interprocessor coupling: Based on the physical prox-
imity between the individual processing nodes, we
distinguish between loosely and tightly coupled archi-
tectures. Loosely coupled architectures typically con-
sist of independent uniprocessor systems, connected
together with additional network links. Tightly coupled
systems are typically organized as a single “box,”
which contains all the processor and memory modules
interconnected by a special purpose interconnection
network. A workstation cluster is an example of a
loosely coupled architecture, while a massively parallel
processor like the Cray T3D is an example of a tightly
coupled architecture.
The degree of interprocessor coupling must often be
considered during the algorithm design phase. Interac-

MIMD Architectures

I

Distributcd Memory Centralized Memory

Private Address Shared Address Shared Address

Loosely Tightly Loosely Tightly Tightly
Coupled Coupled Coupled Coupled Coupled

Myrinet based CM-5 SCI based GRAY T3D SGI Power Challenge
systems sp.2 systems Conuex SPP

Fig. 1. Classification of current HPC systems.

tions between processors are “expensive” in a loosely
coupled system. These systems are therefore better
suited for coarse grain parallel solutions. Algorithmic
techniques to hide overheads in interprocessor interac-
tion are particularly important in these systems.

Fig. 1 shows our classification scheme. We identify ex-
amples of each class at the bottom of the figure. Some of
these examples are discussed in further detail next.

Workstation clusters interconnected by high-bandwidth
low-latency networks are proving to be a low-cost approach
to high performance systems. A typical example, Myrinet,
consists of three main components: computing elements,
namely the workstations, the network, consisting of links
and switches to route data, and network interfaces between
the workstations and network links. The network interface
consists of a special processor that can transfer blocks of
data, once transfer parameters are specified. This feature
allows for the overlap of computation and communication
in this loosely coupled system. One-way message laten-
cies of 100 p s and bandwidths of 255 Mbls have been
observed in a Myrinet-based system interconnecting Sparc
workstations [9].

Examples of distributed-memory, private-address-space,
tightly-coupled systems are the Thinking Machines CM-5,
IBM SP-2, Intel Paragon, and Meiko CS-2, among others.
A CM-5 system contains between 32 and 16 384 processing
nodes (PN’s). Each node is a 32 MHz Sparc processor
with upto 32 Mbytes of local memory. The PN’s are
interconnected by three networks: a data network, a control
network, and a diagnostic network. The data network
provides point-to-point data communication between any
two PN’s. Communication can be performed concurrently
between pairs of PN’s and in both directions. The data
network is a 4-ary fat tree, whose bandwidth continues
to scale linearly up to 16384 PN’s. The control network
provides cooperative operations, including broadcast, syn-
chronization, and scans (parallel prefix and suffix). The
control network is a complete binary tree with all the PN’s
as leaves. Each partition consists of a control processor, a

936 PROCEEDINGS OF THE IEEE, VOL. 84, NO. I, JULY 1996

collection of processing nodes, and dedicated portions of
the data and control networks [58].

The Scalable Coherent Interface (SCI) standard specifies
the implementation and operation of a shared address
space, distributed memory system [51]. A SCI system
consists of interconnected processor and memory nodes.
The basic interconnection topology is that of a ring. How-
ever, other topologies can be realized using switches.
SCI supports cache coherence in hardware, with a dis-
tributed directory-based coherence protocol. Unidirectional
point-to-point links with differential signaling, as well as
distributed cache sharing lists enable scalable performance.
SCI can be used in the design of loosely coupled or tightly
coupled systems. Bus interfaces and switches based on SCI
allow for several workstations to be connected together as a
distributed memory, shared address space, loosely coupled
system [16].

The Cray T3D [13] and the Convex SPP [12] are ex-
amples of distributed memory, shared address space, and
tightly coupled systems. Each processing element (PE)
of the T3D consists of a processor, local memory, and
additional support circuitry. Two PE’s form a node and
share a network interface. The nodes are organized in a
three-dimensional (3-D) torus topology. Hardware access
to remote memory is provided by the support circuitry and
the block transfer engine (BTE), which is situated on the
network interface module. The BTE’s can transfer large
chunks of data between memory modules. The destination
processor can then access the data from its local memory.
The support circuitry allows the processor to directly access
remote memory, without making additional copies in the
local memory module. The T3D also has other unique
features, such as a cache which can be invalidated by a
user command.

The centralized memory category has representatives
only in the tightly coupled shared address space subclass.
The Silicon Graphics PowerChallenge system is a typical
example. It consists of up to 18 processing nodes (MIPS
RSOOO) interconnected with a single system bus. All ac-
cesses to memory take place over the system bus [54].
Centralized memory systems do not scale to large system
sizes. Our efforts toward high performance vision systems
have therefore focused on distributed memory systems.

C. Parallel Programming Models

Several models of parallel computer systems have been
proposed in order to design, use, and effectively reason
about these systems. These models can be broadly classified
as machine, architectural, computational, and programming
models [22] . Machine models are specific to a particular
machine and characterize execution of low level (assem-
bly language) code. Architectural models characterize the
features of a class of machines with a similar architecture.
System organization details such as memory partitioning
and interconnection network topology are addressed. While
both these models are useful for efficient algorithm design
on a particular target machine, they are not suitable for

portable algorithm design. We therefore do not consider
them in further detail.

Computational models provide an abstract view of a class
of computers, while accurately reflecting costs of operations
on these machines. We discuss computational models in
Section 111-D.

Programming models are a high level representation of
a computer system’s operation. They describe the system
in terms of the semantics of a particular programming
language. While a computational model describes memory
as a sequence of locations, a programming model will
describe it in terms of data structures [22]. A parallel
programming model essentially contains abstractions
for representing parallel computational activities, as
well as for communication and interaction between
the parallel activities. Hardware and system software
layers on a parallel platform together implement these
abstractions.

The existence of standard programming models permits
architecture independent programming. Software developed
in accordance with a programming model is portable across
all platforms that support this model. The commonly used
parallel programming models are the data parallel, shared
memory, and message passing models.

I) The Data Parallel Model: A data parallel program
looks similar, to a sequential program, with additional
compiler directives. Parallel threads execute the same
program, although they operate on different portions of
the problem data space. The directives are guidelines for
partitioning the data elements, and for distributing them
on to the processing elements. Primitives such as shift,
transfer, etc. are used for interprocess communication.
The data parallel programming model is suitable for
structured parallel applications, where a large number
of data elements are processed identically. Although
the data parallel programming model matches the SIMD
architectures closely, it can be implemented on the MIMD
architectures as well. Unlike in the SIMD systems, the
computations execute with a coarse granularity. They
synchronize at intermediate points, rather than at every
step. This is referred to as the single program multiple data
(SPMD) mode of execution. A number of data parallel
languages are in use, such as HPF [23] and Fortran D
[IO].

2) The Shared Memory Model: In the shared memory
programming model, processes communicate through a
common logical address space. A variable written to by
one process can be read by any of the other processes, with
the same variable name. This paradigm is thus very similar
to the sequential programming paradigm. It has therefore
been considered to be easy to understand.

The multiple processes can execute asynchronously,
each performing different functions. This model is
therefore applicable to a wider and more general class of
problems than the data parallel model. New processes can
be dynamically forked and terminated at any point in a
program. Loop iterations can also be executed in parallel
across a set of processes. In a self-scheduling loop, each

WANG et al.: HIGH-PERFORMANCE COMPUTlNG FOR VISION 937

process is assigned a chunk of loop iterations. The first
process which completes its work requests a new chunk.
This continues until all the iterations are complete.

Often, portions of the shared data space must be acces-
sible to only one process at a time. This is the mutual-
exclusion problem. Several schemes have been developed
to ensure this functionality. Examples are semaphores [151
and monitors [24]. These schemes require a process to
obtain exclusive access rights before it executes the critical
portion of code.

3) The Message Passing Model: In a message passing
program, parallel processes execute with private copies
of code and data. Each process can perform a different
function, or can perform identical computations on different
data. When intermediate results computed by the individual
processes must be combined, explicit interaction between
the processes must take place. One process “sends” a
message containing the necessary information, and the
other process “receives” it. Collective communication
operations involving multiple processes are also feasible.
Apart from such a message-based interaction, the contents
of a process’s data space are not accessible to other
processes. For efficient execution, the programmer carefully
partitions the data space between the processes so as to
reduce the number of exchanged messages. The message
passing model thus provides versatility and a higher degree
of control in tuning parallel code for enhanced performance.

Programming using the message passing model has been
considered to be tedious and error-prone as compared to
the shared memory style. Several message passing libraries
such as the Parallel Virtual Machine (PVM), the Message
Passing Library (MPL), and CMMD have been developed
[8], [26], [S7]. These libraries consist of functions for thread
creation and termination, sending and receiving messages
between threads, and for collective communications such as
broadcast, gather, and scatter. To enable the development
of portable message passing programs, the MPI standard
[39] has been recently defined.

4) Hybrid Programming Models: We have primarily used
the message passing model in programming our vision
applications. The versatility of this model and the provi-
sion for task parallelism are especially important for the
irregular problems arising in intermediate and high level
vision, which have only limited amounts of structured data
parallelism.

The shared memory programming style is considered to
be simple and elegant. However, this programming model
often does not offer adequate flexibility when performance
sensitive optimizations are to be made. A hybrid of the
shared memory and message passing styles often offers ben-
efits of both performance and programming ease. Consider
the simple example of vector reduction by summation using
shared memory programming. If a single shared variable is
used to store all the intermediate results, updating the shared
variable must be done using a lock. This would result in
excessive idle waiting at the lock. Instead, a private variable
could be used in each of the parallel processes to store
partial results, as is typical in the message passing model.

All the partial results can be then combined only at the
final stage.

The message passing model can also be simplified by
incorporating ideas from the shared memory style. Data
communication in the message passing model requires the
programmer to identify both the sending and receiving
processes, and to insert appropriate communication calls in
both of them. From the programmer’s view, communication
requires synchronization between the communicating pro-
cesses. “Active Messages” [17] is a deviation from this style
and provides asynchronous message passing. For instance,
to send a message from one node to another, the sending
node initiates a “put” operation. This creates a message
consisting of the data, its destination node and address,
and the address of a user level handler. The message
is then sent to the destination node, where it interrupts
the processor and starts the handler routine. The handler
simply reads the data from the message and stores it into
the destination address. At a later point, the process on
the destination node reads this data which is now simply
another variable in its private address space. This scheme
thus decouples the sending and receiving processes, and
obviates the need for synchronization between them. It
is necessary for the sending process to know the address
layout of the destination process. This requirement is met
by programs executing in the single program multiple data
(SPMD) mode, where all the processes have a uniform code
image. The Cray T3D also supports a similar asynchronous
style of communication in its SHMEM library [S2].

D. Computational Models

A computational model is an analytical representation of
a computer system. For a parallel system, the computational
model consists of parameters to represent the computing
power of the nodes, hardware communication delays in-
curred in the network links, and software overheads in
interfacing to the communication modules, among others.
Using the model, the designer can predict the performance
of an algorithm-architecture pair, and also identify bottle-
necks in achieving scalable parallel performance.

An effective model must balance conflicting requirements
of simplicity, accuracy, and broad applicability. Simplic-
ity allows for easier analysis, but the model should also
accurately represent the salient features of the system
architecture and enable realistic predictions to be made.
Details specific to a small set of machines should be
omitted, so that the model can be applied to a wider class
of architectures.

A number of parallel computational models have been
proposed and studied in the last 20 years. Some of these
models are discussed next.

I) The Parallel Random Access Machine (PRAM): The
PRAM model [18] is one of the earliest and most widely
used computational models. It represents an ideal parallel
machine with P processors and a single shared memory
of unbounded size. Any processor can access any memory
location with no access latency. All the processors operate
with a common clock and synchronize at every step.

93X PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7 , JULY 1996

The PRAM model has been criticized as being unrealistic,
since it does not address memory latency and memory
contention issues. Some variations of the PRAM consider
overheads due to contention at a single memory location.
For instance, there are variations of the PRAM model
based on whether simultaneous reads or writes to a single
location by multiple processors is permitted. However,
contention can also occur at memory ports. In distributed
memory machines, the number of memory locations in
a module is much larger than the number of memory
ports to the module. The PRAM model does not account
for such contention at a memory port. Accordingly, the
PRAM model is not ideally suited for efficient algorithm
design on distributed memory architectures. For instance,
efficient data layout and data remapping techniques cannot
be designed using this model.

2) Network Model: The network model represents the
overheads due to specific topological organizations of the
processors, such as rings, trees, meshes, and hypercubes
[33]. Communication is allowed only between directly
connected processors; other communication is explicitly
forwarded through intermediate nodes. In current HPC sys-
tems, however, the hardware network latency is negligible
in comparison with the software overheads. The network
model does not capture this trait accurately.

3) Bulk Synchronous Parallel (BSP) Model: The BSP
model [59] represents a distributed memory machine in
terms of processor/memory modules, an interconnection
network, and a synchronizer which performs barrier
synchronization. Computations consist of a sequence of
supersteps. In each superstep, every processor is allocated
a task consisting of some combination of local computation
steps, and send and receive operations. A message sent at
the beginning of a superstep can only be used in the
next superstep, even if the length of the superstep is
longer than the message latency. After each period of
L time units, a barrier-style synchronization is performed
to determine whether the superstep has been completed by
all the processors. If it has, the machine proceeds to the
next superstep. Otherwise, the next period of L units is
allocated to the unfinished superstep. The value L must be
carefully chosen based on the network capability and the
amount of computation in the algorithm.

The model provides a restricted framework for algorithm
designers to hide communication latency by overlapping
computation and communication. However, it assumes spe-
cial synchronization hardware, which may not be available
on many parallel machines [14].

4) LogPModel: The LogP model is a general purpose
model for distributed memory machines [14]. The model
has four parameters: L (latency), o (overhead), g (gap), and
P (number of processors). The processors work asynchro-
nously and communicate by point-to-point messages over
a network. A message from a processor takes L + 20 time
to reach the destination processor, where L represents the
hardware latency and 20 represents software overheads at
the network interfaces of the sending and receiving pro-
cessors. The network is assumed to have afinite capacity,

such that at most messages can be in transit from any
processor or to any processor at any time.

The L o g P model does not assume special hardware sup-
port to synchronize processors. All collective operations are
done by point-to-point message passing. The basic LogP
model assumes all messages are of small size, containing a
word (or small number of words). This assumption is true
in the case of only a few parallel machines (e.g., CM5)
that allow the use of low level communication primitives
in user code. Moreover, software overheads such as end-
to-end flow control, packet sequencing to preserve in-order
delivery, and buffer management are not considered.

5) Postal Model: The postal model assumes a fully con-
nected distributed memory system architecture [7]. The
model is similar to the LogP model in the sense that a
communication latency X is associated with each commu-
nication step. If at time t processor p sends a message M
to processor q, then processor p is busy sending message
M during the time interval [t,t + 11, and processor q
is busy receiving message M during the time interval
[t + X - 1, t + A]. The communication latency X is used to
capture both the software and hardware overhead costs. In
the postal model, the term message refers to an atomic piece
of data (e.g., a packet) communicated between processors.
A message cannot be broken into smaller pieces at the
sending processor, at the communication network, or at the
receiving processor.

6) The Block Distributed Memory (BDM) Model: The
BDM model [27] characterizes a distributed memory ar-
chitecture with a hybrid programming model. The pro-
gramming model assumes a NUMA shared address space.
Access to a remote memory location requires the program-
mer to copy the block of memory containing the desired
data to a portion of the local memory module. The actual
data movement is the same as in the message passing
programming model. However, the programmer need not
issue a send operation in the sending process. This transfer
appears to the programmer as a block copy from one region
of the shared address space to another.

The cost incurred in the data transfer is modeled using
parameters representing memory latency, communication
bandwidth, and spatial locality. The cost of accessing a
remote location is 7 + ma, where 7 is the maximum latency
for a requesting processor to receive a packet consisting of
m consecutive words, and 0 is the rate (time per word)
at which a processor can inject a word into the network.
The same cost (7- + ma) is incurred even if a single word
is moved. Thus the model encourages the use of spatial
locality. The capability of interconnection networks to hide
memory latency is modeled by pipelined prefetching. IC
prefetch read operations issued by a processor can be
completed in T + kma time.

7) The GDM Model: The GDM model captures the fea-
tures of the general purpose parallel systems organized
as distributed memory machines with a message pass-
ing programming model. This model has been used in
1471-[49], [60], [62]. The high-bandwidth, low-latency in-
terconnection network in these machines can be modeled

WANG ef al.: HIGH-PERFORMANCE COMPUTING FOR VISION 939

as a complete graph since the network hardware latencies
are relatively small in comparison with the large software
overheads in message passing [28]. The model consists
of two parameters. The startup time, Td, includes the
software and communication protocol overheads. This is
associated with each communication step. The transmission
rate, r d , represents the time taken to transmit a unit of
data.

Point-to-point communication of a message of size m
between a pair of processors takes Td + mr<l time. Further,
a permutation of data elements among the processors,
assuming that each processor has m units of data for
another processor, also takes T d + mr,i time. Many HPC
systems provide support for overlapped communication and
computation with an additional communication processor.
The main processor only spends T d time to activate the
communication processor. Further data transmission is han-
dled by the communication processor, during which time
the main processor can continue with its computations. To
perform a global operation such as a broadcast, a bamer
synchronization, or a reduction operation (sum, min, max,
prefix sum, etc.), rg time is required. The model assumes
rg is a constant, if the machine has a control network
dedicated to performing fast global operations, i.e., CM-5
[32]. Otherwise, the operation is implemented using point-
to-point communication primitives, rg = O((log P)Td),
where P is the number of processors.

We have used the GDM model as an analytical basis
in the design of high performance parallel algorithms for
vision. The model accurately reflects the performance of
current generation general purpose parallel HPC systems.
It has proved to be an effective model to predict achievable
performance, to guide algorithm design, and to identify
performance bottlenecks for our applications. In the next
section, we present some of our research in this direction
and our experimental results on state-of-the-art systems.

Understand Machine
Characteristics

r# Practlcal Machine
Sires

Iv . AN ALGORITHMIC APPROACH TO HIGH SPEED VISION

As discussed in Section 111-A, current generation COTS
based general purpose HPC platforms offer several ad-
vantages. Desired performance levels can be achieved by
suitably scaling up system size. The architectural similarity
between the systems in this class permits software solutions
to be easily ported from one system to another. To facilitate
easy software development, several programming environ-
ments have been developed for these systems. Currently,
these platforms are widely used for scientific computing
applications.

In developing parallel solutions for vision problems on
these systems, large speed-ups and efficient processor uti-
lization are often hard to realize. This is primarily due to
the irregular communication patterns in vision tasks and
the large communication costs of coarse-grained distributed
memory systems. With the assistance of a computational
model and careful analysis of the overheads, efficient
parallel algorithms for these tasks have been designed. We
discuss this algorithmic approach in this section.

Portable lmplemenlatlonr

Standard)
---e- (C+ Message-Passing

Understand Vlrlon tomputatlonr
Generic Vlrion Problems
Practical Problem Slier I

Design Scalable Algorithms

I 1 I I

Fig. 2. Overview of the algorithmic approach

A. Our Approach

The focus of our approach is on the development of
general algorithmic techniques for generic vision problems,
suitable for the large class of general purpose distributed
memory machines. Fig. 2 shows the key steps in this
approach.

The architecture of the distributed memory machines
is first studied and the salient computation and com-
munication features of these machines are captured in
terms of the GDM computational model described in
Section 11-D. The model constitutes a framework to
design parallel algorithms and accurately predict their
performance. For most distributed memory parallel
machines, the ratio of Td to r d is in the range of several
hundreds to few thousands as shown in Table 1 [3].
A number of generic problems arising in low, in-
termediate, and high level computer vision are then
considered. The computational model is used to design
scalable algorithms for these generic problems and
to analyze their performance. With a known problem
size, we can estimate the overheads and evaluate the
performance of the parallel algorithms without actual
implementation of the algorithms.
We implement our algorithms on distributed memory
machines. The algorithms are programmed using the
message passing programming model (C and explicit
message passing commands such as CMMD in CM-
5 and MPL in SP-2). This programming model offers
the desired amount of flexibility. Recently, we have
been using the MPI message passing standard to ensure
portability of code.

We have developed general techniques along these lines,
and performed scalable implementations of several vision
tasks [l l , [ill, [351-[371, [401, [461-[491, [601-[621.

B. Scalable Portable Solutions

For the developed algorithms to be useful, it is important
that the solutions be scalable and portable. Informally,

940 PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7, JULY 1996

Imbalanced workloads can often occur in vision tasks
when input images with a nonuniform feature distribution
are divided among the processors in a regular way. In such

Intel iPSC/860 1 136-150 1.60-2.86 ,0250 cases, the achievable speed-up is determined by the most

Table 1
Distributed Memory Machines

Communication Parameters of Various

Time in Microseconds
I/clock rate Machine 1 T d T d

Meiko CS-2

Intel Delta
Intel Paragon
nCube-2
TMC CM-5
IBM SP-1
IBM SP-2

10-95 .24-.27 .0250 H11.

85-250 .47-1.14 ,0200 heavily loaded processor. Load balancing techniques reduce
140-180 .40 ,0125 imbalances in the amount of computation to be performed

by each processing node [6], [19]. Data structures such
as line segments and their associated computations are

39-46 .14 ,0148 redistributed among the processors to achieve load balance

60 1.60 .os00
88-260 30-1.00 .0330

240-600 1.14 ,0160

scalability of a parallel system is a measure of its capacity to
increase speedup in proportion to the number of processors.
Thus a parallel algorithm-architecture pair is considered
scalable if the execution time of the algorithm on a machine
with P processors varies as [30]. Scalability ensures that
parallelization overheads do not dominate the performance
gains due to parallel processing, as larger systems are used.

Different definitions of scalability have appeared in the
literature. In [30], isoefficiency is used as a metric of
scalability. Based on this definition, a scalable parallel
system is one in which the efficiency can be kept fixed
as the number of processors is increased, provided that the
problem size is also increased. The isoefficiency function
expresses quantitatively, in terms of the number of proces-
sors, the necessary increase in problem size to maintain the
efficiency constant. A system with a smaller isoefficiency
function is therefore more scalable than a system with a
larger isoefficiency function.

A variety of parallel processing systems are currently in
use. Porting software across different platforms is difficult
due to the use of proprietary parallel programming libraries.
The effort involved in developing efficient parallel pro-
grams suggests the need for software portability between
the systems. The MPI standard [39] has been defined for
this purpose. MPI specifies the semantics and function-
call interfaces of a set of standard library routines. These
routines can be called from Fortran or C programs. Pro-
grams developed using MPI function calls can be easily
ported across platforms that implement the standard func-
tionality. Efficient implementations of MPI are possible by
optimizations at the hardware and systems software level.

C. Parallel Algorithmic Techniques

To develop high performance vision solutions, we design
efficient solutions for some generic vision problems. These
problems arise in many vision applications, and therefore,
efficient solutions to the generic problems lead to efficient
execution of a large class of vision applications as well. We
design scalable parallel algorithms for these problems and
develop portable code for these algorithms using MPI.

We use several parallel algorithmic techniques to design
scalable algorithms. These techniques improve load balance
between the processors, reduce interprocessor communi-
cation overheads, and reorganize data layouts among the
processors.

sition techniques are some of the algorithmic techniques
that reduce overheads in interprocessor communication.

Message vectorization or message packing reduces mes-
sage startup overheads [60]. Several short messages with
the same source and destination are combined and sent as a
single large message block. Although this does not reduce
the total amount of data transferred, the communication
overhead is significantly reduced because the number of
startups is fewer. In current generation parallel machines,
the startup overhead is much larger than the unit transmis-
sion cost.

Decomposition techniques constitute a different approach
toward reducing the number of communication steps in an
algorithm, and therefore the total startup costs [31]. For
example, to broadcast a message, the processor array of size
P can be logically partitioned into a fi x fi mesh. Data
is first broadcast along a single column and then broadcast
concurrently along each row. Instead of sending messages
individually from a processor to all the other (P - 1)
processors in P - 1 communication steps, 2 x (e - 1)
communication steps are sufficient using this technique.

Node contention can often lead to poor performance.
When many processors attempt to communicate with a
single processor simultaneously, the limited communication
hardware at this processor results in a serialization of these
communication events. With communication scheduling
techniques, the communication events can be distributed
over time, so that traffic among the processors is smooth.
Thus node contention overheads can be reduced [35], [50].
Efficient schedules for frequently occurring patterns (e.g.,
many-to-many personalized communication) are useful in
a variety of situations.

Many general purpose machines provide hardware sup-
port for message passing in the form of advanced commu-
nication adapters or intelligent network interfaces. These
adapters can perform communication related operations
such as transmission, reception, and protocol processing.
The main processor places the message to be sent in its
memory and issues a command to the network interface.
While the network interface performs the actual send opera-
tion, the main processor can continue with its computations.
This hardware feature can be exploited at the software level
using nonblocking send commands. Such a send operation
incurs only the start-up cost T d , and the data transmission
cost is hidden. With a little reorganization of the control
flow, algorithms can benefit from this feature [14].

WANG et al.: HIGH-PERFORMANCE COMPUTING FOR VISION 94 1

Pr,mlh"e Feature
Extraction

The Grouping Process
(Hypothesis Generation)

Image
I
t

Linear Feature Extraction

Lines and Junctions

Rectangle Formation

Recognition and Description
(The Matching Process)

3-D Building Description

Fig. 3. An overview of the building detection system

Vision tasks often exhibit irregular data dependencies.
Due to this, large synchronization overheads are incurred.
Processors idle-wait while other processors compute re-
sults required for further processing. The asynchronous
algorithm technique can reduce such overheads. In an
asynchronous algorithm, processing nodes iterate without
synchronizing between iterations. This elimination of syn-
chronization overhead can improve processor utilization by
reducing processor idle times [1 I].

When coarse-grained distributed memory architectures
are used, accesses to remote data are much more expensive
than local memory accesses. It is therefore important for
data items that are needed by a computation to be located
at the respective processing nodes. The data must be
partitioned and distributed in such a manner that the overall
communication time is minimized, and the workload is
balanced [36], [44].

Since vision tasks consist of multiple distinct phases, the
data are accessed differently in each phase. In such situa-
tions, data remapping aims to rearrange the data layout in
between the phases so as to reduce the total execution time.
In some scenarios, the overhead incurred in performing the
remapping operation might be larger than the performance
benefit due to remapping. These tradeoffs can be estimated
using the computational model.

The following subsection illustrates the applicability of
many of these techniques using a real world vision appli-
cation as an example.

D. A n Example Vision Application

This section explains the computational steps in an ex-
ample vision application; a building detection system [25].
This is an integrated vision system, consisting of low,
middle, and high-level phases. We choose such a complete
application because it illustrates the applicability of our
techniques to irregular problems arising in intermediate and
high level vision. Most previous research efforts in using

301 25

0

Fig. 4. Speed-up of linear feature extraction on SP-2.

general purpose parallel machines have only considered
low-level tasks.

I) Overview of the Computations: The input to the build-
ing detection system is an aerial image of buildings in urban
and suburban environments and the output is a collection
of buildings modeled as compositions of rectangular blocks
[25]. The computational steps in this application can be
divided into three main phases, as shown in Fig. 3. In
the initial phase, primitive features such as line features
are detected in the input image. The computation consists
of structured processing such as, for instance, convolution
operations. In the second phase, these primitive features are
grouped together into higher level structures. For instance,
line segments that are a very small distance apart, and run
parallel to one another are grouped into a single line. In
the third phase, high-level objects (rectangles) in the scene
are recognized.

A serial implementation written in LISP produces good
results, but the computational times on current workstations
are large. The processing for a 1 K x 1 K image takes nearly
65 min to extract the line segments and 10 min to generate
building hypotheses in the perceptual grouping phase, while
processing a large image may take several hours [25]. To
make the system really usable, computation times of at
most a few seconds for small images, and of a few tens
of minutes for large images are desired.

2) Parallel Techniques for Fast Line Finding: The linear
feature extraction algorithm consists of two major phases:
contour-pixels detection and linear approximation. Contour
detection is performed to identify intensity boundaries
(contours) in the 2-D raw image. Linear approximation
is then performed to approximate the contours by line
segments.

The contour-pixels detection phase consists primarily of
window operations with localized data dependencies. Paral-
lelizing this phase on a coarse-grain machine such as SP-2,
can be easily done. The n x n image array is divided into
P blocks, where P is the number of processors available.
Each block is of size L x L Initially, the boundary data d? fi.

Y 4 L PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7, JULY 1996

Table 2 Execution Time for Line Grouping on CM-5

Image (n x rL)

Air (n = 128)

Execution Time (in seconds)
Communication Algorithm Number of Processors Number of Segments

Five Stage Two Stage One Stage
64 320 ,287 ,341 ,186

53 (n = lI<)

AP1 (n = 256) 64 1594 .460 ,504
5512 (n = 512) 64 3256 I .934 ,981 I

64 7219 1.436 1.462 1.295

.361
314

Air (n = 128) 2.56 320 ,363 ,961 .477
AP1 (n = 256)
J512 (n = 512)
J3 (78 = lli)

6o r

256 1594 .408 1.051 ,539
2.56 3256 ,524 1.177 ,648
256 7219 .633 1.255 ,758

512x512 Image /

0 10 20 30 40 50 60 70
Number of Processors

Fig. 5. Speed-up of the linear approximation phase on SP-2.

between neighboring image blocks is exchanged and stored
in a local buffer. The window operations then proceed
without further interprocessor communication.

In the linear approximation phase, irregular runtime data
dependencies occur. The contours can be nonuniformly
distributed over the image and approximation of a contour
can proceed only after the previous segment of the contour
at the neighboring processor has been processed. This
results in load imbalances and poor processor utilization.

The asynchronous algorithm technique can improve load
balance and processor utilization in this situation. We have
developed an asynchronous algorithm for linear approxima-
tion, allowing each processing node to run independently
of other processing nodes without violating any data de-
pendency [l l]. Fig. 4 shows the performance improvement
achieved by such an asynchronous algorithm.

Our implementation shows that, linear feature extraction
on a 512 x 512 image can be performed in 0.065 s on
a 64 node SP-2. A serial implementation takes 3.45 s
on a single processing node of the SP-2. A previous
implementation on CM-5 takes 0.1 s on a partition having
512 processing nodes. Fig. 5 shows the speedup diagram
for this task on a SP-2. The code was written using MPI
[39] and is therefore portable to other parallel machines.
(Intel Paragon, Meiko CS-2, Cray T3D, etc.) We have
ported it to SP-2 and CM-5 [ll].

3) Parallel Techniques for Perceptual Grouping: The per-
ceptual grouping process operates on the set of primitive
features detected in the low-level analysis and groups them
to form structural hypotheses. These hypotheses are further
used for high-level reasoning.

Perceptual grouping consists of four stages: line group-
ing, junction grouping, parallel grouping, and U-contour
grouping. The line grouping operation groups line segments
which are closely bunched, overlapped, and parallel to each
other to form a line. For each line segment, a search is
performed within a constant width window on both sides
of it, to find other parallel line segments. The input to each
processor is an image block of size x along with
line segments extracted during linear feature extraction. A
segment token with starting coordinates (2 1 , y1) and ending
coordinates (2 2 , y2) is stored in the processor which has
the image block containing (22, yz). The grouping process
is performed in a scatter-and-gather fashion. In the scatter
phase, each processor computes the search window for each
token stored locally in the processor. Search requests are
then sent to the processors which have index array elements
that overlap the search window. The search requests look
for line segments which are approximately parallel to the
local segment. The detected segments are then grouped and
sent back in the gather phase. A merge operation is then
performed to form lines.

The message packing technique can reduce the com-
munication overhead in this operation. All requests from
a processor with the same destination are packed into a
single message. The resulting communication pattern is a
many-to-many personalized communication with message
length variance. Using decomposition and communication
scheduling techniques, we have developed a five-stage algo-
rithm which can reduce the communication time for many-
to-many data communication with high message length
variance [62]. This performs better than a straightforward
one-stage algorithm and a two-stage algorithm proposed
in [50], especially for larger number of processors and
for higher variance in the message length. In Table 2, we
present sample performance results of the line grouping
operation on CM-5.

Thus it can be seen that the algorithmic approach can
yield significant performance improvements, and thereby
lead to scalable parallel implementations of computational
tasks in various stages of the vision process. Careful

f l f l

WANG ef ul.: HIGH-PERFORMANCE COMPUTING FOR VISION 943

analysis of the overheads and structuring of the algorithm to
overcome these overheads are important steps to achieving
high performance.

V. CONCLUSION
This paper has given an overview of the state-of-the-

art in high performance computing for vision. We observe
that vision tasks have computational characteristics signifi-
cantly different from those of Grand Challenge problems in
scientific application domains. The vision process consists
of a sequence of tasks, each with distinct computational
characteristics. Low-level vision has a structured computa-
tional profile, with regular data dependencies. At the higher
levels, extensive symbolic operations with irregular data
access patterns are present. This heterogeneous nature of
the computations makes it difficult for a single computing
platform to achieve desired performance levels for the entire
vision process.

Over the years, researchers have used several different
approaches based on various computing platforms for high-
performance vision. Custom VLSI based solutions have
been successfully used primarily for low level vision prob-
lems. Specialized vision systems have also been designed
with architectural features that suit the requirements of
vision tasks. However, such systems have not been widely
used due to high costs and long design times.

Economic and engineering considerations point to the use
of general purpose distributed memory parallel machines
as computing platforms for vision applications. Current
generation general purpose machines are designed around
low-cost COTS components and have a MIMD architecture.
These systems offer advantages of architectural flexibility
and programmability. Due to their general purpose architec-
ture, they provide suitable computing support for a variety
of vision tasks at each of the different levels of vision
processing. Parallel solutions for low-level tasks have been
developed and implemented on these systems. However,
developing high speed parallel solutions for the higher level
tasks is not straightforward. The irregular data dependencies
of these tasks lead to excessive communication overheads,
when they are implemented on the distributed memory
systems. These overheads result in inefficient processor
utilization and low speed ups.

We have used an algorithmic approach to develop high
performance parallel solutions for vision tasks on the gen-
eral purpose machines. A computational model of the
parallel system is used to analyze parallelization overheads,
and thereby design scalable algorithms. With the assistance
of the model, we have designed scalable parallel algorithms
for many generic tasks in vision processing. We have
implemented these algorithms on current generation parallel
machines, with promising results.

Many challenging issues remain to be solved before
practical real time vision systems can be realized. The
application environments for real-time systems have special
constraints such as low-power consumption and small sys-
tem size. Most currently available general purpose parallel

machines have large power requirements and are bulky.
Research in multichip modules (MCM’s) and in low power
microsystems design aims to advance COTS component
technology so that they can be used in such embedded
parallel systems. On the software side, standards such as
real-time MPI are currently evolving. Efficient implemen-
tations of these standards on the computing platforms must
be developed, so that efficient parallel algorithms can be
designed in a truly portable manner.

ACKNOWLEDGMENT
The authors thank the Vision group, headed by R. Nevatia

at the University of Southern California, for many helpful
discussions and for their assistance in understanding vision
computations. The implementations reported in this paper
were performed at the Minnesota Supercomputer Center,
the Pittsburgh Supercomputing Center, and the Maui High
Performance Computing Center. The authors are grateful to
the authorities at these organizations for providing access
to their computing resources. They also thank Y . Chung
and C.-C. Lin for helpful discussions.

REFERENCES

H. Alnuweiri and V. Prasanna, “Parallel architectures and
algorithms for image component labeling,” ZEEE Trans. Putt.
Anal. and Mach. Intell., pp. 1014-1034, 1992.
J. M. Anderson and M. S. Lam, “Global optimizations for
parallelism and locality on scalable parallel machines,” in Proc.
ACM SIGPLAN’93 Con$ on Programming Language Design
and Implementation, pp. 112-125.
G. Astfalk, “Parallel programming on the convex MPP,” in
Proc. IEEE Oceans, 1994, pp. 1-6.
P. Athanas and A. Abbott, “Addressing the computational
requirements of image processing with a custom computing
machine: An overview,” in Proc. Workshop on Reconjgurable
Architectures, Santa Barbara, CA, 1995.
D. Bader and J. J B J B , “Parallel algorithms for image histogram-
ming and connected components with an experimental study,”
Tech. Rep., Univ. Maryland, Dec. 1994.
I. Banicescu and S. Hummel, “Balancing processor loads and
exploiting data locality in irregular comoutations,” IBM Res.
Rei., Feb. 1995.
A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms
in the postal model for message-passing systems,” in Proc. 4th

I

ACM iymp. on Parallel AIg&thms aid-Architectures, 1992,
pp. 13-22.
A. Beguelin er al., “A users’ guide to PVM: Parallel virtual
machine,” Tech. Rep. ORNUTM-11826, Oak Ridge Nat. Lab.,
July 1991.
N. J. Boden et al., “Myrinet-A gigabit-per-second local-area
network,“ IEEE Micro, Feb. 1995.
2. Bozkus et al., “Compiling fortran 90D/HPF for distributed
memory MIMD computers,” J. Parallel and Distrib. Cornput.,
Special Issue on Data Parallel Algorithms and Programming,
vol. 21, no. I , Apr. 1994.
Y. Chung, V. K. Prasanna, and C.-L. Wang, “A fast asyn-
chronous algorithm for linear feature extraction on IBM SP-
2,” in IEEE Workshop on Computer Architectures for Mach.
Perception, Sept. 1995.
Convex Computer Corp., “SPP 1000 systems overview,” 1994.
Cray Res., Inc., “Cray T3D System architecture overview,”
Sept. 1993.
D. Culler et al., “LogP: Toward a realistic model of parallel
computation,” in Proc. 4th ACM SIGPLAN Symp. Principles
and Practices uf Parallel Programming, 1993, pp. 1-12.
E. W. Dijkstra, “Cooperating sequential processes,” Program-
ming Languages.
Dolphin Interconnect Solutions, Inc., “1 Gbitkec SBus-SCI
cluster adapter card,” White Paper, Mar. 1995.

New York: Academic, 1966.

944 PROCEEDINGS OF THE IEEE, VOL. 84, NO. I , JULY 1996

[17] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active [42] R. Nevatia, Machine Perception. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

[43] R. Nevatia and K. Babu, “Linear feature extraction and descrip-
tion,” Computer Graphics and Image Processing, vol. 13, pp.
257-269, 1980.

messages: A mechanism for integrated communication and
computation,” in Proc. 19th Annu. Int. Symp. on Computer
Architecture, 1992, pp. 256-266.

[I81 S. Fortune and J. Wvllie. “Parallelism in random access ma-
chines,” in Proc. IOfh A k M Symp. on Theory of Computing, . . . ” - I

1978, pp. 114-118.
D. Gerogiannis and S. Orphanoudakis, “Load balancing require-
ments i n parallel implementations of image feature extraction
tasks,” IEEE Trans. Parallel and Distrib. Syst., vol. 4, pp.
994-1013, Sept. 1993.
“Grand challenges: High performance computing and communi-
cations,” The FY 1992 U.S. Res. and Develop. Program, Comm.
on Physical, Mathematical, and Engineering Sci., Federal Co-
ordinating Council for Sci., Engineering, and Technol., Office
of Sci. and Technol. Policy, Washington, DC, 1992.
C. Guerra, “Survey of parallel algorithms for structural pattern
matching,” Int. Cont on Putt. Recog., Sept. 1994, pp. 275-278.
T. Heywood and S. Ranka, “A practical hierarchical model
of parallel computation: The model,” J. Parallel and Distrib.
Computing, vol. 16, pp. 212-232, 1992.
High Performance Fortran Forum, “High performance Fortran
language specification,” Jan. 1993.
C. A. R. Hoare, “Monitors: An operating system structuring
concept,” CACM, vol. 21, no. 8, Aug. 1978.
A. Huertas, C. Lin, and R. Nevatia, “Detection of buildings from
monocular views of aerial scenes using perceptual grouping and
shadows,” Image Understanding Workshop, 1993, pp. 253-260.
IBM, Parallel Programming Subroutine Reference Release 2.0,
1994.
J. JB Ja and K. Ryu, “The block distributed memory model for
shared mcmory multiprocessors,” in Proc. Int. Parallel Process.
Symp., 1994, pp. 752-756.
V. Karamcheti and A. Chien, “Software overhead in messag-
ing layers: Where does the time go?’ in Proc. Int. Parallel
Processing Symp., ASPLOS VI, 1994, pp. 51-60.
A. Khokhar, “Scalable data parallel algorithms and implementa-
tions for object recognition,” Ph.D. dissertation, Dept. EE-Syst.,
Univ. S. Calif., Apr. 1993.
V. Kumar, A. Grama, A. Gupta, and C. Karypis, Introduc-
tion to Parallel Computing: Design and Analisis of Parallel
Algorithms. New York: BenjaminlCummings, 1994.
S. Kumaran and M. Quinn, “Divide-and-conquer programming
on MIMD computers,” Int. Parallel Process. Symp., 1995, pp.

T. Kwan, B. Totty, and D. Reed, “Communication and compu-
tation performance of the CM-5,” in Proc. of Supercomputing

F. T. Leighton, Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes. San Mateo, CA: Morgan
Kaufmann, 1992.
C. A. Lin, A. Huertas, and R. Nevatia, “Detection of buildings
using perceptual organization and shadows,” in Proc. 1994
Con$ Computer Vision and Patt. Recog., pp. 62-69.
C.-C. Lin and V. K. Prasanna, “Analysis of communication
costs of parallel machines with various communication mech-
anisms,” in Proc. 5th Symp. on Frontiers ($Massively Parallel
Comput., 1995.
C.-C. Lin, V. K. Prasanna, and Y. Chung, “Data remap-
ping for intermediate level analysis in image understanding on
distributed-memory mahines,” in Workshop on Solving Irregular
Problems on Distrib. Memory Machines, IPPS’95, 1995, pp.
3 5 4 2 .
W. Lin and V. K. Prasanna, “Parallel algorithms and architec-
tures for discrete relaxation technique,” in IEEE Con$ Computer
Esion and Putt. Recog. (CVPR), 1991.
H. Lu and J. K. Aggarwal, “Applying perceptual organization to
the detection of man-made objects in nonurban scenes,” Putt.
Recog., pp. 835-853, 1992.
Message Passing Interface Forum, “MPI: A message-passing
interface standard,” Tech. Rep. CS-94-230, Univ. Tennessee,
Knoxville, TN, May 1994.
R. Miller, V. K. Prasanna, D. Reisis, and Q. Stout, “Parallel
comuutations on reconfigurable meshes,” IEEE Trans. Comput-

734-741.

’93, 1993, pp. 192-201.

ers, bp. 678-692, June-1993.
P. Naravanan, L. Chen, and L. Davis, “Effective use of SIMD
parallelism in low- and intermediate-level vision,” IEEE Com-
puter, vol. 25, no. 2, pp. 68-73, 1992.

[44] C. Ou and S. Ranka, “Parallel remapping algorithms for adap-
tive problems,” in Proc. Symp. Frontiers of Massively Parallel
Computation, 1995, pp. 367-374.

1451 V. P. Kumar, Parallel Algorithms and Architectures for Image ~.
Understanding. Boston:-Academic, 1991.

[46] V. K. Prasanna and V. Krishnan, “Efficient parallel algorithms
for template matching on hypercube SIMD machines,” in Proc.
Int. Con$ on Parallel Process., Aug. 1987.

[47] V. K. Prasanna and C.-L. Wdng, “Image feature extraction on
connection machine CM-5,” in Image Understanding Workshop,

[48] -, “Scalable parallel implementations of perceptual group-
ing on connection machine CM-5,” in Int. Con$ on Patt. Recog.,
1994.

[49] V. K. Prasanna, C. Wang, and A. Khokhar, “Low level vi-
sion processing on connection machine CM-5,” in Workshop
on Computer Architectures for Machine Perception, 1993, pp.
1 17- 126.

[50] S. Ranka, J. Wang, and M. Kumar, “Irregular personalized
communication on distributed memory machines,” J . Parallel
and Distrib. Computing, vol. 25, pp. 58-71, 1995.

[51] SCI-Scalable Coherent Interface Standard, ANSUIEEE 1596-
1992.

[52] SHMEM Techn. Note for C, Cray Res. Inc., 1994.
[53] H. J. Siegel, J. B. Armstrong, and D. W. Watson, “Mapping

computer vision related tasks onto reconfigurable parallel pro-
cessing systems,” IEEE Computer, pp. 54-63, Feb. 1992.

[54] Silicon Graphics, Inc., Power Challenge Technical Report,
1994.

[55] R. M. Haralick et al., “Proteus: A reconfigurable computational
network for computer vision,” in Int. Con$ on Putt. Recog.,
1992.

[56] J. Subhlok et al., “Communication and memory requirements as
the basis for mapping task and data parallel programs,” Proc.

NOV. 1994, pp. 595-602.

Supercomput., 1994.
[57] Thinking Machines Corp., CMMD Re$ Guide Version 3.0, 1992.
1581 __. “CM-5: Technical summarv.” Tech. Rem. 1991.
i59j L. Valiant, “A bridging model fo i parallel coGputation,” Com-

mun. ACM, vol. 33, no. 8, pp. 103-111, 1990.
[60] C.-L. Wang, “High performance computing for vision on dis-

tributed memory machines,” Ph.D. dissertation, Univ. S. Calif.,
Aug. 1995.

[61] C.-L. Wang, V. K. Prasanna, H. Kim, and A. Khokhar, “Scal-
able data parallel implementations of object recognition using
geometric hashing,” J. Parallel and Distrib. Comput., Mar.
1994.

[62] C.-L. Wang, V. K. Prasanna, and Y. Lim, “Parallelization of
perceptual grouping on distributed memory machines,” in IEEE
Con$ Computer Architec. ,for Machine Perception, Sept. 1995.

[63] J. Webb, “High performance computing in image processing
and computer vision,” in Int. Conf: on Putt. Recog., Sept. 1994,
pp. 218-222.

[64] C. C. Weems, S. P. Levitan, A. R. Hanson, and E. M. Rise-
man, “The image understanding architecture,” Znt. J. Computer
Vision, vol. 2, pp. 251-282, 1989.

Cho-Li Wang received the B.S degree is com-
puter science and information engineering from
the National Taiwan University in 1985 He
received the M.S. and Ph.D. degrees in computer
engineering from the University of Southern
California in 1990 and 1995, respectively

He IS now a Lecturer in the Computer SCI-
ence Department at Hang Kong University His
research interests include parallel proce\\ing for
image understanding, high performance corn-
puter architectures. and \oftware environments

for distributed multimedia applications

WANG er al.: HIGH-PERFORMANCE COMPUTING FOR VISION 945

Prashanth B. Bhat received the B Tech degree
in computer engineering from the Kamataka
Regional Engineering College, India. in 1992
He received the M E degree in computer science
and engineering from the Indian Institute of
Science, Bangalore, in 1994 He is presently
working toward the Ph D degree in computer
engineering at the University of Southern Cali-
fornia at Los Angeles

His research interest7 include computer ar-
chitecture, parallel algorithm design for signal

and image processing applications, heterogeneous computer systems. and
configurable computing

Viktor K. Prasanna (Fellow, IEEE) received
the B S degree in electronics engineering from
Bangalore University and the M S degree in
automation from the Indian Institute of Science
He received the Ph D. in computer science from
the Pennsylvania State University in 1983

He is currently Professor of Electncal En-
gineering at the University of Southern Cali-
fornia at Los Angeles His research interests
include parallel computation, computer architec-
ture, VLSI computations, and high performance

computing for signal and image processing, and vision He has served on
the editonal boards of the Journal of Parallel and Distributed Computrng
and the IEEE TRANSACTIONS ON COMPUTERS

Dr Prasanna is the founding chair of the IEEE Computer Society
Technical Committee on Parallel Processing He is the general co-chair
of the 1997 IEEE International Parallel Processing Symposium

946 PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7, JULY 1996

