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Vision is a challenging application for high-peqormance 
computing (HPC). Many vision tasks have stringent latency 
and throughput requirements. Further, the vision process has a 
heterogeneous computational projile. Low-level vision consists 
of structured computations, with regular data dependencies. 
The subsequent, higher level operations consist of symbolic 
computations with irregular data dependencies. Over the years, 
many approaches to high-speed vision have been pursued. VLSI 
hardware solutions such as ASIC’s and digital signal processors 
(DSP’s) have provided good processing speeds on structured 
low-level vision tasks. Special purpose systems for vision have 
also been designed. Currently, there is growing interest in 
using general purpose parallel systems for vision problems. 
These systems offer advantages of higher performance, software 
programmability, generality, and architectural flexibility over the 
earlier approaches. The choice of low-cost commercial-off-the- 
shelf (COTS) components as building blocks .for these systems 
leads to easy upgradability and increased system life. 

The main focus of the paper is on effectively using the COTS- 
based general purpose parallel computing pla@orms to realize 
high-speed implementations of vision tasks. Due to the successful 
use of the COTS-based systems in a variety of high pe~ormance 
applications, it is attractive to consider their use for vision 
applications as well. However, the irregular data dependencies in 
vision tasks lead to large communication overheads in the HPC 
systems. At the University of Southern California, our research 
efforts have been directed toward designing scalable parallel 
algorithms for  vision tasks on the HPC systems. In our approach, 
we use the message passing programming model to develop 
portable code. Our algorithms are spec$ed using C and MPI. In 
this paper, we summarize our efforts, and illustrate our approach 
using several example vision tasks. 

To facilitate the analysis and development of scalable 
algorithms, a realistic computational model of the parallel system 
must be used. Several such models have been proposed in the 
literature. We use the General-purpose Distributed Memory 
(GDM) model which is a simple but realistic model of state-of-the- 
art parallel machines. Using the GDM model, generic algorithmic 
techniques such as data remapping, overlapping of communication 
with computation, message packing, asynchronous execution, and 
communication scheduling are developed. Using these techniques, 
we have developed scalable algorithms for many vision tasks. 
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For instance, a scalable algorithm for linear approximation has 
been developed using the asynchronous execution technique. 
Using this algorithm, linear feature extraction can be peqormed 
in 0.065 s on a 64 node SP-2 for a 512 x 512 image. A serial 
implementation takes 3.45 s for the same task. Similarly, the 
communication scheduling and decomposition techniques lead to 
a scalable algorithm for the line grouping task. We believe that 
such an algorithmic approach can result in the development of 
scalable and portable solutions for vision tasks. 

I. INTRODUCTION 
Computer vision has applications in a wide variety 

of fields such as vehicle navigation, medical diagnosis, 
aerial photo interpretation, and automatic target recogni- 
tion, among others. Some of these applications involve 
interaction with a human, and must complete within a 
few seconds. Other applications require a machine to act 
in real time, such as in automatic vehicle guidance. The 
maximum tolerable latency here is typically less than a 
fraction of a second. Most vision tasks are computationally 
intensive, involving complex processing. Thus for practical 
implementations of vision tasks to be possible, high 
performance computing support is essential. 

Parallel processing is an attractive approach to satisfy 
the computational requirements of vision applications [45]. 
High levels of performance and fast turnaround times 
seem promising with general purpose parallel machines. 
However, simply replacing existing computing platforms 
with parallel machines does not guarantee that the stringent 
latency and throughput requirements of vision tasks will 
be met. To realize the full potential of parallel machines, 
efficient software is an important component. Parallel pro- 
grams for the vision tasks must be developed. Although 
compiler technology is rapidly evolving, currently available 
parallelizing compilers can provide only limited support 
in automatically generating efficient parallel code from 
serial vision algorithms. This is because the computational 
characteristics of vision tasks are different from the struc- 
tured number crunching computations that arise in most 
other grand challenge applications. A significant fraction of 
vision tasks consists of extensive symbolic computations, 
and therefore has irregular run-time data dependencies. 
Further, vision computations are heterogeneous, utilizing 
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techniques from a variety of disciplines such as signal 
and image processing, advanced mathematics, and artificial 
intelligence. It is therefore necessary to manually develop 
suitable parallel algorithms for vision computations. 

The heterogeneity in vision tasks also arises because 
vision computations proceed in distinct phases [42]: low- 
level, intermediate-level, and high-level. The processing 
at each level has different computational characteristics. 
Low-level processing is mostly iconic, with regular and 
structured computations. The input to this stage is a two- 
dimensional (2-D) image array of pixels, representing the 
observed scene. Operations are performed on pixels using 
image data in the neighborhood of these pixels. At the 
higher levels, however, the operations performed on an item 
often have irregular data dependencies. Processing at these 
levels is performed on objects that are groups of features 
extracted at the lower level. On account of these complex 
and heterogeneous computational requirements, vision has 
been identified as a grand challenge application for high 
performance computing [20]. 

Several engineering factors also restrict the options in 
choosing computing platforms for vision applications. For 
example, many vision tasks arise in the context of robotic 
applications. Computing platforms for these applications 
must be easily embeddable on robot vehicles. Small sizes 
and low power requirements are important in such situa- 
tions. A further consideration is that robotics applications 
require placing the computing resources in hazardous sur- 
roundings. 

System cost is another consideration. In scientific com- 
puting environments, a single computing resource is shared 
by several applications. While this could lead to longer 
computing times, the costs incurred by each application 
are reduced. However, the stringent timing constraints 
associated with vision tasks often require that systems be 
dedicated entirely to a single task. Many vision applica- 
tion environments cannot afford these high system costs 

Several efforts have been directed toward providing high 
speed computing support for vision [4], [ 5 ] ,  [21], [41], 
[53],  [55]. A brief summary of leading research efforts in 
parallel computing for vision can be found in [63]. These 
efforts can be grouped into three categories, based on the 
nature of computing platforms they utilize: single chip (or 
board level) VLSI processors, specialized vision systems, 
and general purpose parallel machines. 

I )  VLSI Processors: Accelerator boards consisting of 
VLSI processing elements are well-suited for structured 
computations. These VLSI processors therefore yield 
excellent performance for low-level vision processing. 
The accelerators implement the computations in hardware, 
resulting in high-speed execution. For instance, VLSI chips 
for convolution and other low-level operations have been 
developed. 

VLSI processors can also be programmable. Digital sig- 
nal processors (DSP’s) are an example of programmable 
VLSI processors. A DSP chip has an instruction set, and 
can execute any program composed of valid instructions. 
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Due to this flexibility, efficient support for different tasks 
can be provided. Although VLSI processors perform well 
on structured computations, their architecture is not well 
suited for the irregular tasks in high level vision. Complete 
vision systems based on these components have therefore 
not been designed. 

2) Specialized Vision Systems: Specialized vision sys- 
tems are computing platforms specially designed to 
suit the requirements of vision tasks. The architectural 
features match the computational characteristics of vision 
processing. However, the architecture is adequately general, 
enabling efficient implementation of a variety of vision 
tasks. An example is the image understanding architecture 
(IUA) [64]. This architecture has three different layers of 
computational engines that suit the requirements of low, 
middle, and high-level vision tasks. 

However, practical considerations make the special- 
purpose approach less attractive. Specialized machines 
tend to have a rather complex architecture, leading to 
considerable design and development effort. New operating 
systems, compilers, and other systems software must be 
developed for the special architecture. This design effort 
would result in higher system development costs. Many 
application scenarios cannot afford to use such expensive 
systems. 

3) General Purpose Parallel Machines: Recent commer- 
cial parallel machines, such as the IBM SP-2, Meiko CS-2, 
Intel Paragon, SGI Power Challenge, and Cray T3D, have 
been successfully used for a variety of high performance 
applications. They offer hundreds of Gigaflops of comput- 
ing performance. These machines are not designed for any 
specific application, but are meant to be general purpose 
systems. Most of them have a similar architecture consisting 
of processing elements, each with a local memory module, 
interconnected by a high speed network. These systems 
offer several advantages over the VLSI processors and the 
specialized vision systems: 

Cost effectiveness: A wide range of application do- 
mains use the same general purpose machines. The 
larger volume of production leads to lower system 
costs as compared to the specialized systems. 
Programmability: The general purpose machines are 
easily programmable. Availability of programming en- 
vironments enable rapid and easy development of 
efficient software. VLSI processors do not provide 
these advantages. 
Portability: Standard communication libraries such as 
the Message Passing Interface (MPI) [39] have been 
defined and implemented efficiently on many parallel 
machines. Application software developed using these 
libraries can be ported from one parallel machine to 
another without extensive modifications. 

This paper focuses on methodologies for the efficient 
utilization of general purpose parallel computing platforms 
for vision applications. In developing high-speed paral- 
lel solutions on these platforms, the following issues are 
important: 
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Accessing the network incurs large software over- 
heads. The interconnection network hardware typically 
consists of high bandwidth and low latency links. 
However, the time spent in executing the relevant 
operating system routines is an order of magnitude 
larger than the hardware latencies. By accounting for 
this overhead in the algorithm design process, faster 
solutions can be developed. 
Due to this expensive network access operation, most 
computations should ideally use data located in the 
local memory of the processor. Locality enhancing 
transformations such as data partitioning and mapping 
schemes are necessary to achieve good performance. 

These issues can be handled either through compiler 
transformations or through careful algorithm design. 

a )  Compiler transformations: In this approach, an op- 
timizing compiler transforms a sequential user code into 
an efficient parallel code for a target architecture. This 
simplifies the task of the end-user, since no special efforts 
are necessary to generate efficient parallel code. On the 
other hand, the user does not have complete control over 
process scheduling, data layout, and data movement op- 
erations. Performance conscious users can optimize their 
code to some extent by providing compiler directives. Data 
parallel compilers allow users to specify initial data layouts. 
However, they yield good performance only when large 
amounts of data are processed in a structured manner. 
Currently, the compiler-based approach achieves good per- 
formance in parallelizing loops, especially in cases where 
regular data dependencies exist between the computations 
[2]. Recently, compilers have been developed that can auto- 
matically exploit optimal mixes of data and task parallelism, 
based on the particular application program and target 
platform combination. However, this effort has focused 
on applications that have a static and predictable com- 
putation structure [56].  Most high-level vision operations 
contain extensive symbolic operations, and therefore lack a 
structured and regular data access pattern. Automatic (com- 
piler based) parallelization of these computations would 
therefore result in load imbalances and poor processor 
utilization. 

b) Design of efJicient algorithms: Contrary to the 
compiler-based approach, the user is in complete control 
of the parallelization process. The user designs efficient 
parallel algorithms, and then develops explicit parallel 
code for them. During the algorithm design phase, the 
parallelization overheads are carefully analyzed and it is 
ensured that these overheads are not significant. Parallel 
programs are developed using a high level programming 
paradigm. The message passing paradigm has been widely 
used on account of its excellent support for process control 
and data movement between processes. Message passing 
standards such as MPI [39] have been defined, making 
it convenient to develop portable code. We believe that 
this is a promising approach to the design of high speed 
parallel solutions to vision applications. In the following 
sections, the issues in pursuing this algorithmic approach 
are discussed in detail. 

A primary goal of analyzing the parallelization overheads 
during the algorithm design phase is to design scalable 
solutions. Scalability ensures that the overheads due to 
parallelization do not dominate the performance gains. A 
scalable algorithm can thus realize increasing speed ups 
as larger parallel system configurations are utilized. Many 
algorithmic techniques have been developed to eliminate 
or reduce the parallelization overheads. Examples of these 
techniques include data partitioning and mapping, load 
balancing, and schemes to hide communication latencies. 

Thus the algorithmic approach consists of the following 
steps: 

Analysis of the computation and communication 
characteristics of the algorithm. This analysis can help 
identify the bottlenecks that would restrict scalability 
of the parallel solution. 
Application of the appropriate algorithmic technique 
to overcome these bottlenecks, resulting in a scalable 
algorithm. 

support the analysis phase and to evaluate the al- _. .~ 

gorithmic techniques, an analytical representation of the 
parallel system is necessary. A computational model is such 
a representation. It consists of parameters to represent the 
computing power of the nodes, hardware communication 
delays incurred in the network links, and software over- 
heads in interfacing to the communication modules, among 
others. Several popular models for general purpose parallel 
computer systems are in use [14], [18], [27]. In choosing 
among these, a trade-off must be made between accuracy 
and simplicity. An accurate model can provide realistic 
and reliable estimates of overheads and execution times. 
However, the analysis becomes increasingly complicated, 
restricting applicability to only simple systems. 

Many different techniques can be developed with the 
assistance of such an analytical model. A common goal of 
these techniques is to reduce overheads in parallelization of 
the applications. Data mapping techniques help to reduce 
the frequency of access to remotely located data. On the 
other hand, techniques such as overlapping communication 
with computation hide these overheads. Load balancing 
techniques lead to efficient utilization of all the computing 
nodes. 

Our approach to high performance computing for vision 
is based on the algorithmic approach. The models and 
techniques developed by us result in efficient and scalable 
parallel solutions to many vision tasks. These results are 
discussed in Section IV. 

The rest of the paper is organized as follows-Section I1 
summarizes the computational nature of vision tasks. In 
Section 111, we describe the architectural features of cur- 
rent general purpose parallel machines, and also survey 
the popular computational models. Section IV details our 
algorithmic approach of utilizing these parallel machines for 
vision computations and summarizes some performance re- 
sults. Section V concludes the paper, where future research 
directions are identified. 
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11. THE NATURE OF VISION COMPUTATIONS 

To develop efficient parallel algorithms for vision, it is 
important to understand the computational characteristics 
of vision tasks. In this section, we summarize the salient 
features of vision computations. 

A. Computational Characteristics 

Vision tasks have a heterogeneous computational profile. 
The early phases consist of structured computations with 
localized data access patterns. This regularity is absent in 
the later phases, where extensive symbolic computations are 
performed. From a computational perspective, the vision 
process is generally divided into three distinct phases [42]. 

In the low-level processing phase, the raw input image 
is processed to extract primitive features, such as edges. 
The input image is represented as a 2-D array of pixels. 
Most of the pixel operations in this phase are performed 
using image data in the neighborhood of the pixels. The 
communication pattern is local and processing across the 
image is uniform. Such algorithms are easily parallelized. 

In the intermediate-level processing phase, low-level fea- 
tures are grouped into a hierarchy of increasingly complex 
and more abstract descriptions. For example, edges are 
grouped into curves, curves into surfaces and surfaces into 
objects. These elements are combined into pairs, triples and 
larger structures, so the number of alternatives can grow to 
be very large. Of the many combinatorial groups possible, 
only some are meaningful. Efficient techniques are needed 
for forming and evaluating the groups. 

In the high-level processing phase, the descriptions gen- 
erated at the intermediate level are interpreted for finding 
semantic attributes of an image. This includes the task 
of object recognition and generation of inferences from 
collections of objects. Processing at this level tends to 
be highly irregular though the number of data objects is 
smaller. Typical algorithms consist of graph matching and 
rule-based analysis. 

Thus it can be seen that the computations constitute a 
mix of varied methodologies. The regular data flow present 
in low-level processing is absent at the higher levels. A 
wide variety of data structures and representations are 
also employed. In low-level processing, imagelike arrays 
are used. Typically, input data sizes are in the range of 
1 K x  1 K pixels of data with each pixel represented by 16 b. 
As the computation proceeds, structures such as linked lists 
are used. Data is often organized in the form of complex 
data structures, and data accesses make extensive use of 
pointers. 

The computations consist of both integer-based numerical 
operations and symbolic manipulations. Many of the high- 
level symbolic computations do not have localized data 
access patterns. This results in large communication over- 
heads, when the computations are parallelized. In executing 
these high-level tasks, the flow of control and the load 
distribution on the processors are often unpredictable at 
compile time. Parallel algorithms, data partitioning and 
mapping methods, and load balancing strategies are needed 

to result in useful speed-ups. Load imbalances can arise 
since irregular triangular meshes are sometimes used to 
approximate surfaces of arbitrary topology. Often the tech- 
niques employed are not fixed, but evolve over a period of 
time. Thus reprogrammability is also required. 

Most of the past work in the area of parallel processing 
for computer vision has addressed the use of parallelism 
for problems in low-level and some geometric problems in 
the interface between image processing and image under- 
standing [43]. Design of parallel techniques for individual 
problems in low-level processing seems to be reasonably 
well understood [47]. However, this is not true of the higher 
level tasks. Implementations of these tasks on state-of-the- 
art parallel machines do not offer the performance levels 
demanded by interactive or real-time modes of execution. 

Thus, vision tasks are computationally complex mainly 
because of their irregular dependencies, frequent inter- 
processor communication, and heterogeneous operations. 
These characteristics are different from the number crunch- 
ing tasks in scientific applications, where the complexity 
arises primarily due to the large number of operations to 
be performed on extensive amounts of data. Most real 
vision applications use images whose sizes are atmost a 
few thousand pixels on each side. Larger parallel systems 
do not automatically yield higher speed ups for vision ap- 
plications, as they do for many of the scientific applications. 
High processor efficiency for the irregular vision tasks is 
therefore difficult to achieve. 

B. Example Vision Tasks 

We illustrate the computational aspects of vision pro- 
cessing through some representative tasks. The examples 
chosen include tasks from low, middle, and high-level 
processing. 

1) Segmentation: Segmentation identifies the line seg- 
ments in the image, taking the 2-D pixel array as input. 
This is one of the first steps in most vision applications. 
During later stages, these segments can be further grouped 
into more complex shapes. 

Segmentation techniques fall into two classes: edge-based 
and region-based. In edge-based techniques, “edgels” which 
represent local intensity discontinuities are first detected. 
They are then “linked” to form curves which may be further 
approximated by straight lines or other primitives such 
as B-splines [43]. In region-based techniques, regions of 
homogeneous intensity (or color) are found and then their 
boundaries are detected. 

It should be noted that the segmentation step, while 
relatively easy, can consume significant computational re- 
sources. The amount of data to be handled here is rather 
large compared to the subsequent stages. It is not untypical 
for about 25% of the total application processing time to 
be devoted to this step. For both approaches above, the 
initial processing is iconic (image like) and consists of local 
neighborhood operations. This step is easily parallelized on 
virtually any architecture. However, the later steps, such 
as that of line finding, require the conversion of iconic 
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representations into symbolic lists. These operations are not 
so straightforward to parallelize. 

2) Perceptual Grouping: In perceptual grouping, lower 
level features, such as lines and curves, are grouped into 
successively more complex and abstract features such as 
surfaces and parts of objects. These methods typically 
rely on geometric and other symbolic relations between 
the lower level features. Perceptual grouping techniques 
typically follow a “hypothesize, select, and verify’’ par- 
adigm. Initially, grouping hypotheses are formed based 
on some geometric relations such as parallelism or sim- 
ple symmetries. A large number of hypotheses may be 
generated at this step. Then stronger, but computationally 
more expensive, measures are used to select among the 
competing hypotheses. Finally, the selected hypotheses are 
“verified” based on all available image evidence [34]. 

Parallel implementation of such grouping operations is 
complicated as the computations are mostly symbolic, 
and not homogeneous for all features. The communication 
pattern is data dependent and irregular. At the hypothesis 
formation stage, a large number of hypotheses can be 
generated due to the combinatorial nature of the process. 

3) Object Recognition: Object recognition consists of 
matching observed descriptions with stored models in 
a database. Often, moving objects must be visually 
tracked. Object recognition requires matching of attributed 
graph structures. Commonly used techniques are those of 
subgraph isomorphism and of maximal cliques. However, 
purely graph theoretical techniques are not sufficient to 
capture the variability that is inherent in observed scene 
descriptions. Apart from these techniques, some heuristic 
criteria need to be incorporated. Parallel implementations 
of such techniques have been reported [29]. 

Thus the above examples illustrate the differences in 
computational characteristics of vision tasks at low, mid- 
ddle, and high levels. 

111. HPC SYSTEMS: ARCHITECTURE AND MODELS 
This section describes the architectural characteristics, 

programming aspects, and performance issues of current 
generation high performance computing platforms. With 
this knowledge, the reader will be able to easily appreciate 
the role of the algorithmic techniques to be presented in 
Section IV. 

A. The Architecture of HPC Systems 

Traditionally, vector supercomputers have been the plat- 
forms of choice for high performance computing applica- 
tions. Advances in semiconductor technology are rapidly 
changing this scenario. The performance of microproces- 
sors as well as the capacity of memory chips have improved 
tremendously in recent years. These components are used 
in the large uniprocessor workstation market, resulting in a 
corresponding decrease in their cost. The ready availability 
of these low cost building blocks has led to their use in 
parallel computing systems as well. Several commercial 
general purpose parallel machines such as the IBM SP- 

2, Gray T3D, TMC CM-5, and Intel Paragon have been 
designed around these commercial-off-the-shelf (COTS) 
components. All these parallel systems have a similar archi- 
tecture consisting of three main components: 1) Computing 
nodes based on state-of-the-art processor chips and DRAM 
modules, 2) a low-latency high-bandwidth network that 
interconnects the computing nodes (the network typically 
consists of high speed point-to-point links and routing 
switches), and 3) a network interface that couples each 
computing node to the network [14]. 

The COTS-based parallel systems provide several advan- 
tages over the monolithic vector supercomputer systems: 

The architectural configuration is flexible. The system 
can be easily expanded to include additional processor 
and memory modules into the system. 
The system can be easily upgraded to incorporate tech- 
nological advances. As faster processors and memory 
components become available, existing modules can 
be replaced with the new components. The existence 
of standard hardware interfaces makes this especially 
easy. 
The available memory bandwidth scales with the sys- 
tem size. This is because the system memory is par- 
titioned into several modules, each with its set of 
memory ports. The number of memory modules in- 
creases with the system size and so does the number 
of memory ports. 

The COTS-based systems also offer advantages over 
single instruction multiple data (SIMD) stream architec- 
tures. SIMD systems consist of a central unit that fetches 
and interprets instructions and then broadcasts appropriate 
control signals to a number of processors operating in 
lock step. The architecture also consists of a high-speed 
network for interprocessor communication. The Connection 
Machine CM-200, the MasPar MP-2, and the forthcom- 
ing Cray 3/SSS Super Scalable System are examples of 
SIMD systems. Many applications with an embarrassingly 
parallel computational profile perform well on these sys- 
tems. However, not all high performance applications are 
of an embarrassingly parallel nature. The generality, low 
cost, and increasing performance levels of 3 2 4  and 64-b 
processors make the COTS-based systems very attractive. 
High-performance systems are therefore converging toward 
a multiple instruction multiple data (MIMD) stream archi- 
tecture designed around the COTS components. 

B. An Architectural ClassiJication 

The COTS-based MIMD systems are powerful platforms 
for many HPC applications. Several classification schemes 
can be used for the MIMD systems. We base our scheme 
on factors that affect the achievable performance. We clas- 
sify the MIMD HPC systems based on three architectural 
features: 

Memory partitioning: Based on the organization of 
the physical memory modules, MIMD HPC systems 
can be classified into two classes. Systems in the 
distributed memory category are organized with a 
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memory module situated physically close to each pro- 
cessor module. The centralized memory systems are 
organized with all the memory modules situated at a 
single location. 
The distributed memory systems offer potentially bet- 
ter memory access performance, especially in large 
systems. If many of the memory accesses by a proces- 
sor can be satisfied at the local memory module, the 
interconnection network is accessed only occasionally. 
On the other hand, the centralized memory systems do 
not scale well to large system sizes. Since all memory 
accesses contend for the same interconnection network, 
it can lead to degraded memory system performance. 
In distributed memory systems, the partitioned nature 
of the memory modules implies that some portions 
of the system memory can be accessed directly by a 
processor, while accesses to other portions of memory 
require use of the interconnection network. Many 
distributed memory architectures provide additional 
hardware support for remote data access, in the form of 
intelligent network interfaces. The interfaces can trans- 
fer blocks of data between memory modules without 
processor intervention. 

* Address space organization: MIMD HPC systems can 
be further classified based on the memory management 
scheme. In shared address space systems, the memory 
is logically organized as a single address space. A 
processor can access any location of the memory 
using read and write operations. In private address 
space systems, each processor can directly access 
only its local memory module, which it controls. 
Access to a remote memory location requires explicit 
interaction and communication with the appropriate 
remote processor. 
When distributed memory systems are logically orga- 
nized as shared address space systems, remote memory 
modules appear to a processor as portions of its ad- 
dress space. This organization results in a nonuniform 
memory access (NUMA) characteristic, with some 
portions of the address space having lower access 
times than other portions. In the centralized memory 
systems, hardware always supports a shared address 
space organization. 
Interprocessor coupling: Based on the physical prox- 
imity between the individual processing nodes, we 
distinguish between loosely and tightly coupled archi- 
tectures. Loosely coupled architectures typically con- 
sist of independent uniprocessor systems, connected 
together with additional network links. Tightly coupled 
systems are typically organized as a single “box,” 
which contains all the processor and memory modules 
interconnected by a special purpose interconnection 
network. A workstation cluster is an example of a 
loosely coupled architecture, while a massively parallel 
processor like the Cray T3D is an example of a tightly 
coupled architecture. 
The degree of interprocessor coupling must often be 
considered during the algorithm design phase. Interac- 

MIMD Architectures 

I 

Distributcd Memory Centralized Memory 

Private Address Shared Address Shared Address 

Loosely Tightly Loosely Tightly Tightly 
Coupled Coupled Coupled Coupled Coupled 

Myrinet based CM-5 SCI based GRAY T3D SGI Power Challenge 
systems sp.2 systems Conuex SPP 

Fig. 1. Classification of current HPC systems. 

tions between processors are “expensive” in a loosely 
coupled system. These systems are therefore better 
suited for coarse grain parallel solutions. Algorithmic 
techniques to hide overheads in interprocessor interac- 
tion are particularly important in these systems. 

Fig. 1 shows our classification scheme. We identify ex- 
amples of each class at the bottom of the figure. Some of 
these examples are discussed in further detail next. 

Workstation clusters interconnected by high-bandwidth 
low-latency networks are proving to be a low-cost approach 
to high performance systems. A typical example, Myrinet, 
consists of three main components: computing elements, 
namely the workstations, the network, consisting of links 
and switches to route data, and network interfaces between 
the workstations and network links. The network interface 
consists of a special processor that can transfer blocks of 
data, once transfer parameters are specified. This feature 
allows for the overlap of computation and communication 
in this loosely coupled system. One-way message laten- 
cies of 100 p s  and bandwidths of 255 Mbls have been 
observed in a Myrinet-based system interconnecting Sparc 
workstations [9]. 

Examples of distributed-memory, private-address-space, 
tightly-coupled systems are the Thinking Machines CM-5, 
IBM SP-2, Intel Paragon, and Meiko CS-2, among others. 
A CM-5 system contains between 32 and 16 384 processing 
nodes (PN’s). Each node is a 32 MHz Sparc processor 
with upto 32 Mbytes of local memory. The PN’s are 
interconnected by three networks: a data network, a control 
network, and a diagnostic network. The data network 
provides point-to-point data communication between any 
two PN’s. Communication can be performed concurrently 
between pairs of PN’s and in both directions. The data 
network is a 4-ary fat tree, whose bandwidth continues 
to scale linearly up to 16384 PN’s. The control network 
provides cooperative operations, including broadcast, syn- 
chronization, and scans (parallel prefix and suffix). The 
control network is a complete binary tree with all the PN’s 
as leaves. Each partition consists of a control processor, a 
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collection of processing nodes, and dedicated portions of 
the data and control networks [58].  

The Scalable Coherent Interface (SCI) standard specifies 
the implementation and operation of a shared address 
space, distributed memory system [51]. A SCI system 
consists of interconnected processor and memory nodes. 
The basic interconnection topology is that of a ring. How- 
ever, other topologies can be realized using switches. 
SCI supports cache coherence in hardware, with a dis- 
tributed directory-based coherence protocol. Unidirectional 
point-to-point links with differential signaling, as well as 
distributed cache sharing lists enable scalable performance. 
SCI can be used in the design of loosely coupled or tightly 
coupled systems. Bus interfaces and switches based on SCI 
allow for several workstations to be connected together as a 
distributed memory, shared address space, loosely coupled 
system [16]. 

The Cray T3D [13] and the Convex SPP [12] are ex- 
amples of distributed memory, shared address space, and 
tightly coupled systems. Each processing element (PE) 
of the T3D consists of a processor, local memory, and 
additional support circuitry. Two PE’s form a node and 
share a network interface. The nodes are organized in a 
three-dimensional (3-D) torus topology. Hardware access 
to remote memory is provided by the support circuitry and 
the block transfer engine (BTE), which is situated on the 
network interface module. The BTE’s can transfer large 
chunks of data between memory modules. The destination 
processor can then access the data from its local memory. 
The support circuitry allows the processor to directly access 
remote memory, without making additional copies in the 
local memory module. The T3D also has other unique 
features, such as a cache which can be invalidated by a 
user command. 

The centralized memory category has representatives 
only in the tightly coupled shared address space subclass. 
The Silicon Graphics PowerChallenge system is a typical 
example. It consists of up to 18 processing nodes (MIPS 
RSOOO) interconnected with a single system bus. All ac- 
cesses to memory take place over the system bus [54]. 
Centralized memory systems do not scale to large system 
sizes. Our efforts toward high performance vision systems 
have therefore focused on distributed memory systems. 

C. Parallel Programming Models 

Several models of parallel computer systems have been 
proposed in order to design, use, and effectively reason 
about these systems. These models can be broadly classified 
as machine, architectural, computational, and programming 
models [22] .  Machine models are specific to a particular 
machine and characterize execution of low level (assem- 
bly language) code. Architectural models characterize the 
features of a class of machines with a similar architecture. 
System organization details such as memory partitioning 
and interconnection network topology are addressed. While 
both these models are useful for efficient algorithm design 
on a particular target machine, they are not suitable for 

portable algorithm design. We therefore do not consider 
them in further detail. 

Computational models provide an abstract view of a class 
of computers, while accurately reflecting costs of operations 
on these machines. We discuss computational models in 
Section 111-D. 

Programming models are a high level representation of 
a computer system’s operation. They describe the system 
in terms of the semantics of a particular programming 
language. While a computational model describes memory 
as a sequence of locations, a programming model will 
describe it in terms of data structures [22]. A parallel 
programming model essentially contains abstractions 
for representing parallel computational activities, as 
well as for communication and interaction between 
the parallel activities. Hardware and system software 
layers on a parallel platform together implement these 
abstractions. 

The existence of standard programming models permits 
architecture independent programming. Software developed 
in accordance with a programming model is portable across 
all platforms that support this model. The commonly used 
parallel programming models are the data parallel, shared 
memory, and message passing models. 

I )  The Data Parallel Model: A data parallel program 
looks similar, to a sequential program, with additional 
compiler directives. Parallel threads execute the same 
program, although they operate on different portions of 
the problem data space. The directives are guidelines for 
partitioning the data elements, and for distributing them 
on to the processing elements. Primitives such as shift, 
transfer, etc. are used for interprocess communication. 
The data parallel programming model is suitable for 
structured parallel applications, where a large number 
of data elements are processed identically. Although 
the data parallel programming model matches the SIMD 
architectures closely, it can be implemented on the MIMD 
architectures as well. Unlike in the SIMD systems, the 
computations execute with a coarse granularity. They 
synchronize at intermediate points, rather than at every 
step. This is referred to as the single program multiple data 
(SPMD) mode of execution. A number of data parallel 
languages are in use, such as HPF [23] and Fortran D 
[IO]. 

2)  The Shared Memory Model: In the shared memory 
programming model, processes communicate through a 
common logical address space. A variable written to by 
one process can be read by any of the other processes, with 
the same variable name. This paradigm is thus very similar 
to the sequential programming paradigm. It has therefore 
been considered to be easy to understand. 

The multiple processes can execute asynchronously, 
each performing different functions. This model is 
therefore applicable to a wider and more general class of 
problems than the data parallel model. New processes can 
be dynamically forked and terminated at any point in a 
program. Loop iterations can also be executed in parallel 
across a set of processes. In a self-scheduling loop, each 
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process is assigned a chunk of loop iterations. The first 
process which completes its work requests a new chunk. 
This continues until all the iterations are complete. 

Often, portions of the shared data space must be acces- 
sible to only one process at a time. This is the mutual- 
exclusion problem. Several schemes have been developed 
to ensure this functionality. Examples are semaphores [ 151 
and monitors [24]. These schemes require a process to 
obtain exclusive access rights before it executes the critical 
portion of code. 

3) The Message Passing Model: In a message passing 
program, parallel processes execute with private copies 
of code and data. Each process can perform a different 
function, or can perform identical computations on different 
data. When intermediate results computed by the individual 
processes must be combined, explicit interaction between 
the processes must take place. One process “sends” a 
message containing the necessary information, and the 
other process “receives” it. Collective communication 
operations involving multiple processes are also feasible. 
Apart from such a message-based interaction, the contents 
of a process’s data space are not accessible to other 
processes. For efficient execution, the programmer carefully 
partitions the data space between the processes so as to 
reduce the number of exchanged messages. The message 
passing model thus provides versatility and a higher degree 
of control in tuning parallel code for enhanced performance. 

Programming using the message passing model has been 
considered to be tedious and error-prone as compared to 
the shared memory style. Several message passing libraries 
such as the Parallel Virtual Machine (PVM), the Message 
Passing Library (MPL), and CMMD have been developed 
[8], [26], [S7]. These libraries consist of functions for thread 
creation and termination, sending and receiving messages 
between threads, and for collective communications such as 
broadcast, gather, and scatter. To enable the development 
of portable message passing programs, the MPI standard 
[39] has been recently defined. 

4)  Hybrid Programming Models: We have primarily used 
the message passing model in programming our vision 
applications. The versatility of this model and the provi- 
sion for task parallelism are especially important for the 
irregular problems arising in intermediate and high level 
vision, which have only limited amounts of structured data 
parallelism. 

The shared memory programming style is considered to 
be simple and elegant. However, this programming model 
often does not offer adequate flexibility when performance 
sensitive optimizations are to be made. A hybrid of the 
shared memory and message passing styles often offers ben- 
efits of both performance and programming ease. Consider 
the simple example of vector reduction by summation using 
shared memory programming. If a single shared variable is 
used to store all the intermediate results, updating the shared 
variable must be done using a lock. This would result in 
excessive idle waiting at the lock. Instead, a private variable 
could be used in each of the parallel processes to store 
partial results, as is typical in the message passing model. 

All the partial results can be then combined only at the 
final stage. 

The message passing model can also be simplified by 
incorporating ideas from the shared memory style. Data 
communication in the message passing model requires the 
programmer to identify both the sending and receiving 
processes, and to insert appropriate communication calls in 
both of them. From the programmer’s view, communication 
requires synchronization between the communicating pro- 
cesses. “Active Messages” [17] is a deviation from this style 
and provides asynchronous message passing. For instance, 
to send a message from one node to another, the sending 
node initiates a “put” operation. This creates a message 
consisting of the data, its destination node and address, 
and the address of a user level handler. The message 
is then sent to the destination node, where it interrupts 
the processor and starts the handler routine. The handler 
simply reads the data from the message and stores it into 
the destination address. At a later point, the process on 
the destination node reads this data which is now simply 
another variable in its private address space. This scheme 
thus decouples the sending and receiving processes, and 
obviates the need for synchronization between them. It 
is necessary for the sending process to know the address 
layout of the destination process. This requirement is met 
by programs executing in the single program multiple data 
(SPMD) mode, where all the processes have a uniform code 
image. The Cray T3D also supports a similar asynchronous 
style of communication in its SHMEM library [S2]. 

D. Computational Models 

A computational model is an analytical representation of 
a computer system. For a parallel system, the computational 
model consists of parameters to represent the computing 
power of the nodes, hardware communication delays in- 
curred in the network links, and software overheads in 
interfacing to the communication modules, among others. 
Using the model, the designer can predict the performance 
of an algorithm-architecture pair, and also identify bottle- 
necks in achieving scalable parallel performance. 

An effective model must balance conflicting requirements 
of simplicity, accuracy, and broad applicability. Simplic- 
ity allows for easier analysis, but the model should also 
accurately represent the salient features of the system 
architecture and enable realistic predictions to be made. 
Details specific to a small set of machines should be 
omitted, so that the model can be applied to a wider class 
of architectures. 

A number of parallel computational models have been 
proposed and studied in the last 20 years. Some of these 
models are discussed next. 

I )  The Parallel Random Access Machine (PRAM): The 
PRAM model [18] is one of the earliest and most widely 
used computational models. It represents an ideal parallel 
machine with P processors and a single shared memory 
of unbounded size. Any processor can access any memory 
location with no access latency. All the processors operate 
with a common clock and synchronize at every step. 
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The PRAM model has been criticized as being unrealistic, 
since it does not address memory latency and memory 
contention issues. Some variations of the PRAM consider 
overheads due to contention at a single memory location. 
For instance, there are variations of the PRAM model 
based on whether simultaneous reads or writes to a single 
location by multiple processors is permitted. However, 
contention can also occur at memory ports. In distributed 
memory machines, the number of memory locations in 
a module is much larger than the number of memory 
ports to the module. The PRAM model does not account 
for such contention at a memory port. Accordingly, the 
PRAM model is not ideally suited for efficient algorithm 
design on distributed memory architectures. For instance, 
efficient data layout and data remapping techniques cannot 
be designed using this model. 

2) Network Model: The network model represents the 
overheads due to specific topological organizations of the 
processors, such as rings, trees, meshes, and hypercubes 
[33].  Communication is allowed only between directly 
connected processors; other communication is explicitly 
forwarded through intermediate nodes. In current HPC sys- 
tems, however, the hardware network latency is negligible 
in comparison with the software overheads. The network 
model does not capture this trait accurately. 

3) Bulk Synchronous Parallel (BSP) Model: The BSP 
model [59] represents a distributed memory machine in 
terms of processor/memory modules, an interconnection 
network, and a synchronizer which performs barrier 
synchronization. Computations consist of a sequence of 
supersteps. In each superstep, every processor is allocated 
a task consisting of some combination of local computation 
steps, and send and receive operations. A message sent at 
the beginning of a superstep can only be used in the 
next superstep, even if the length of the superstep is 
longer than the message latency. After each period of 
L time units, a barrier-style synchronization is performed 
to determine whether the superstep has been completed by 
all the processors. If it has, the machine proceeds to the 
next superstep. Otherwise, the next period of L units is 
allocated to the unfinished superstep. The value L must be 
carefully chosen based on the network capability and the 
amount of computation in the algorithm. 

The model provides a restricted framework for algorithm 
designers to hide communication latency by overlapping 
computation and communication. However, it assumes spe- 
cial synchronization hardware, which may not be available 
on many parallel machines [14]. 

4) LogPModel: The LogP model is a general purpose 
model for distributed memory machines [14]. The model 
has four parameters: L  (latency), o (overhead), g (gap), and 
P (number of processors). The processors work asynchro- 
nously and communicate by point-to-point messages over 
a network. A message from a processor takes L + 20 time 
to reach the destination processor, where L represents the 
hardware latency and 20 represents software overheads at 
the network interfaces of the sending and receiving pro- 
cessors. The network is assumed to have afinite capacity, 

such that at most messages can be in transit from any 
processor or to any processor at any time. 

The L o g P  model does not assume special hardware sup- 
port to synchronize processors. All collective operations are 
done by point-to-point message passing. The basic LogP 
model assumes all messages are of small size, containing a 
word (or small number of words). This assumption is true 
in the case of only a few parallel machines (e.g., CM5) 
that allow the use of low level communication primitives 
in user code. Moreover, software overheads such as end- 
to-end flow control, packet sequencing to preserve in-order 
delivery, and buffer management are not considered. 

5) Postal Model: The postal model assumes a fully con- 
nected distributed memory system architecture [7]. The 
model is similar to the LogP model in the sense that a 
communication latency X is associated with each commu- 
nication step. If at time t processor p sends a message M 
to processor q, then processor p is busy sending message 
M during the time interval [t,t + 11, and processor q 
is busy receiving message M during the time interval 
[t + X - 1, t + A]. The communication latency X is used to 
capture both the software and hardware overhead costs. In 
the postal model, the term message refers to an atomic piece 
of data (e.g., a packet) communicated between processors. 
A message cannot be broken into smaller pieces at the 
sending processor, at the communication network, or at the 
receiving processor. 

6) The Block Distributed Memory (BDM) Model: The 
BDM model [27] characterizes a distributed memory ar- 
chitecture with a hybrid programming model. The pro- 
gramming model assumes a NUMA shared address space. 
Access to a remote memory location requires the program- 
mer to copy the block of memory containing the desired 
data to a portion of the local memory module. The actual 
data movement is the same as in the message passing 
programming model. However, the programmer need not 
issue a send operation in the sending process. This transfer 
appears to the programmer as a block copy from one region 
of the shared address space to another. 

The cost incurred in the data transfer is modeled using 
parameters representing memory latency, communication 
bandwidth, and spatial locality. The cost of accessing a 
remote location is 7 + ma, where 7 is the maximum latency 
for a requesting processor to receive a packet consisting of 
m consecutive words, and 0 is the rate (time per word) 
at which a processor can inject a word into the network. 
The same cost (7- + ma) is incurred even if a single word 
is moved. Thus the model encourages the use of spatial 
locality. The capability of interconnection networks to hide 
memory latency is modeled by pipelined prefetching. IC 
prefetch read operations issued by a processor can be 
completed in T + kma time. 

7) The GDM Model: The GDM model captures the fea- 
tures of the general purpose parallel systems organized 
as distributed memory machines with a message pass- 
ing programming model. This model has been used in 
1471-[49], [60], [62]. The high-bandwidth, low-latency in- 
terconnection network in these machines can be modeled 
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as a complete graph since the network hardware latencies 
are relatively small in comparison with the large software 
overheads in message passing [28]. The model consists 
of two parameters. The startup time, Td, includes the 
software and communication protocol overheads. This is 
associated with each communication step. The transmission 
rate, r d ,  represents the time taken to transmit a unit of 
data. 

Point-to-point communication of a message of size m 
between a pair of processors takes Td + mr<l time. Further, 
a permutation of data elements among the processors, 
assuming that each processor has m units of data for 
another processor, also takes T d  + mr,i time. Many HPC 
systems provide support for overlapped communication and 
computation with an additional communication processor. 
The main processor only spends T d  time to activate the 
communication processor. Further data transmission is han- 
dled by the communication processor, during which time 
the main processor can continue with its computations. To 
perform a global operation such as a broadcast, a bamer 
synchronization, or a reduction operation (sum, min, max, 
prefix sum, etc.), rg time is required. The model assumes 
rg is a constant, if the machine has a control network 
dedicated to performing fast global operations, i.e., CM-5 
[32]. Otherwise, the operation is implemented using point- 
to-point communication primitives, rg = O(  (log P)Td), 
where P is the number of processors. 

We have used the GDM model as an analytical basis 
in the design of high performance parallel algorithms for 
vision. The model accurately reflects the performance of 
current generation general purpose parallel HPC systems. 
It has proved to be an effective model to predict achievable 
performance, to guide algorithm design, and to identify 
performance bottlenecks for our applications. In the next 
section, we present some of our research in this direction 
and our experimental results on state-of-the-art systems. 

Understand Machine 
Characteristics 

r# Practlcal Machine 
Sires 

Iv .  AN ALGORITHMIC APPROACH TO HIGH SPEED VISION 

As discussed in Section 111-A, current generation COTS 
based general purpose HPC platforms offer several ad- 
vantages. Desired performance levels can be achieved by 
suitably scaling up system size. The architectural similarity 
between the systems in this class permits software solutions 
to be easily ported from one system to another. To facilitate 
easy software development, several programming environ- 
ments have been developed for these systems. Currently, 
these platforms are widely used for scientific computing 
applications. 

In developing parallel solutions for vision problems on 
these systems, large speed-ups and efficient processor uti- 
lization are often hard to realize. This is primarily due to 
the irregular communication patterns in vision tasks and 
the large communication costs of coarse-grained distributed 
memory systems. With the assistance of a computational 
model and careful analysis of the overheads, efficient 
parallel algorithms for these tasks have been designed. We 
discuss this algorithmic approach in this section. 

Portable lmplemenlatlonr 

Standard) 
---e- (C+ Message-Passing 

Understand Vlrlon tomputatlonr 
Generic Vlrion Problems 
Practical Problem Slier I 

Design Scalable Algorithms 

I 1 I I 

Fig. 2. Overview of the algorithmic approach 

A. Our Approach 

The focus of our approach is on the development of 
general algorithmic techniques for generic vision problems, 
suitable for the large class of general purpose distributed 
memory machines. Fig. 2 shows the key steps in this 
approach. 

The architecture of the distributed memory machines 
is first studied and the salient computation and com- 
munication features of these machines are captured in 
terms of the GDM computational model described in 
Section 11-D. The model constitutes a framework to 
design parallel algorithms and accurately predict their 
performance. For most distributed memory parallel 
machines, the ratio of Td to r d  is in the range of several 
hundreds to few thousands as shown in Table 1 [3]. 
A number of generic problems arising in low, in- 
termediate, and high level computer vision are then 
considered. The computational model is used to design 
scalable algorithms for these generic problems and 
to analyze their performance. With a known problem 
size, we can estimate the overheads and evaluate the 
performance of the parallel algorithms without actual 
implementation of the algorithms. 
We implement our algorithms on distributed memory 
machines. The algorithms are programmed using the 
message passing programming model (C and explicit 
message passing commands such as CMMD in CM- 
5 and MPL in SP-2). This programming model offers 
the desired amount of flexibility. Recently, we have 
been using the MPI message passing standard to ensure 
portability of code. 

We have developed general techniques along these lines, 
and performed scalable implementations of several vision 
tasks [ l l ,  [ill, [351-[371, [401, [461-[491, [601-[621. 

B. Scalable Portable Solutions 

For the developed algorithms to be useful, it is important 
that the solutions be scalable and portable. Informally, 

940 PROCEEDINGS OF THE IEEE, VOL. 84, NO. 7, JULY 1996 



Imbalanced workloads can often occur in vision tasks 
when input images with a nonuniform feature distribution 
are divided among the processors in a regular way. In such 

Intel iPSC/860 1 136-150 1.60-2.86 ,0250 cases, the achievable speed-up is determined by the most 

Table 1 
Distributed Memory Machines 

Communication Parameters of Various 

Time in Microseconds 
I/clock rate Machine 1 T d  T d  

Meiko CS-2 

Intel Delta 
Intel Paragon 
nCube-2 
TMC CM-5 
IBM SP-1 
IBM SP-2 

10-95 .24-.27 .0250 H11. 

85-250 .47-1.14 ,0200 heavily loaded processor. Load balancing techniques reduce 
140-180 .40 ,0125 imbalances in the amount of computation to be performed 

by each processing node [6], [19]. Data structures such 
as line segments and their associated computations are 

39-46 .14 ,0148 redistributed among the processors to achieve load balance 

60 1.60 .os00 
88-260 30-1.00 .0330 

240-600 1.14 ,0160 

scalability of a parallel system is a measure of its capacity to 
increase speedup in proportion to the number of processors. 
Thus a parallel algorithm-architecture pair is considered 
scalable if the execution time of the algorithm on a machine 
with P processors varies as [30]. Scalability ensures that 
parallelization overheads do not dominate the performance 
gains due to parallel processing, as larger systems are used. 

Different definitions of scalability have appeared in the 
literature. In [30], isoefficiency is used as a metric of 
scalability. Based on this definition, a scalable parallel 
system is one in which the efficiency can be kept fixed 
as the number of processors is increased, provided that the 
problem size is also increased. The isoefficiency function 
expresses quantitatively, in terms of the number of proces- 
sors, the necessary increase in problem size to maintain the 
efficiency constant. A system with a smaller isoefficiency 
function is therefore more scalable than a system with a 
larger isoefficiency function. 

A variety of parallel processing systems are currently in 
use. Porting software across different platforms is difficult 
due to the use of proprietary parallel programming libraries. 
The effort involved in developing efficient parallel pro- 
grams suggests the need for software portability between 
the systems. The MPI standard [39] has been defined for 
this purpose. MPI specifies the semantics and function- 
call interfaces of a set of standard library routines. These 
routines can be called from Fortran or C programs. Pro- 
grams developed using MPI function calls can be easily 
ported across platforms that implement the standard func- 
tionality. Efficient implementations of MPI are possible by 
optimizations at the hardware and systems software level. 

C. Parallel Algorithmic Techniques 

To develop high performance vision solutions, we design 
efficient solutions for some generic vision problems. These 
problems arise in many vision applications, and therefore, 
efficient solutions to the generic problems lead to efficient 
execution of a large class of vision applications as well. We 
design scalable parallel algorithms for these problems and 
develop portable code for these algorithms using MPI. 

We use several parallel algorithmic techniques to design 
scalable algorithms. These techniques improve load balance 
between the processors, reduce interprocessor communi- 
cation overheads, and reorganize data layouts among the 
processors. 

sition techniques are some of the algorithmic techniques 
that reduce overheads in interprocessor communication. 

Message vectorization or message packing reduces mes- 
sage startup overheads [60]. Several short messages with 
the same source and destination are combined and sent as a 
single large message block. Although this does not reduce 
the total amount of data transferred, the communication 
overhead is significantly reduced because the number of 
startups is fewer. In current generation parallel machines, 
the startup overhead is much larger than the unit transmis- 
sion cost. 

Decomposition techniques constitute a different approach 
toward reducing the number of communication steps in an 
algorithm, and therefore the total startup costs [31]. For 
example, to broadcast a message, the processor array of size 
P can be logically partitioned into a fi x fi mesh. Data 
is first broadcast along a single column and then broadcast 
concurrently along each row. Instead of sending messages 
individually from a processor to all the other ( P  - 1) 
processors in P - 1 communication steps, 2 x (e - 1) 
communication steps are sufficient using this technique. 

Node contention can often lead to poor performance. 
When many processors attempt to communicate with a 
single processor simultaneously, the limited communication 
hardware at this processor results in a serialization of these 
communication events. With communication scheduling 
techniques, the communication events can be distributed 
over time, so that traffic among the processors is smooth. 
Thus node contention overheads can be reduced [35], [50]. 
Efficient schedules for frequently occurring patterns (e.g., 
many-to-many personalized communication) are useful in 
a variety of situations. 

Many general purpose machines provide hardware sup- 
port for message passing in the form of advanced commu- 
nication adapters or intelligent network interfaces. These 
adapters can perform communication related operations 
such as transmission, reception, and protocol processing. 
The main processor places the message to be sent in its 
memory and issues a command to the network interface. 
While the network interface performs the actual send opera- 
tion, the main processor can continue with its computations. 
This hardware feature can be exploited at the software level 
using nonblocking send commands. Such a send operation 
incurs only the start-up cost T d ,  and the data transmission 
cost is hidden. With a little reorganization of the control 
flow, algorithms can benefit from this feature [14]. 
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Fig. 3. An overview of the building detection system 

Vision tasks often exhibit irregular data dependencies. 
Due to this, large synchronization overheads are incurred. 
Processors idle-wait while other processors compute re- 
sults required for further processing. The asynchronous 
algorithm technique can reduce such overheads. In an 
asynchronous algorithm, processing nodes iterate without 
synchronizing between iterations. This elimination of syn- 
chronization overhead can improve processor utilization by 
reducing processor idle times [ 1 I]. 

When coarse-grained distributed memory architectures 
are used, accesses to remote data are much more expensive 
than local memory accesses. It is therefore important for 
data items that are needed by a computation to be located 
at the respective processing nodes. The data must be 
partitioned and distributed in such a manner that the overall 
communication time is minimized, and the workload is 
balanced [36], [44]. 

Since vision tasks consist of multiple distinct phases, the 
data are accessed differently in each phase. In such situa- 
tions, data remapping aims to rearrange the data layout in 
between the phases so as to reduce the total execution time. 
In some scenarios, the overhead incurred in performing the 
remapping operation might be larger than the performance 
benefit due to remapping. These tradeoffs can be estimated 
using the computational model. 

The following subsection illustrates the applicability of 
many of these techniques using a real world vision appli- 
cation as an example. 

D. A n  Example Vision Application 

This section explains the computational steps in an ex- 
ample vision application; a building detection system [25]. 
This is an integrated vision system, consisting of low, 
middle, and high-level phases. We choose such a complete 
application because it illustrates the applicability of our 
techniques to irregular problems arising in intermediate and 
high level vision. Most previous research efforts in using 

301 25 

0 

Fig. 4. Speed-up of linear feature extraction on SP-2. 

general purpose parallel machines have only considered 
low-level tasks. 

I )  Overview of the Computations: The input to the build- 
ing detection system is an aerial image of buildings in urban 
and suburban environments and the output is a collection 
of buildings modeled as compositions of rectangular blocks 
[25]. The computational steps in this application can be 
divided into three main phases, as shown in Fig. 3. In 
the initial phase, primitive features such as line features 
are detected in the input image. The computation consists 
of structured processing such as, for instance, convolution 
operations. In the second phase, these primitive features are 
grouped together into higher level structures. For instance, 
line segments that are a very small distance apart, and run 
parallel to one another are grouped into a single line. In 
the third phase, high-level objects (rectangles) in the scene 
are recognized. 

A serial implementation written in LISP produces good 
results, but the computational times on current workstations 
are large. The processing for a 1 K x 1 K image takes nearly 
65 min to extract the line segments and 10 min to generate 
building hypotheses in the perceptual grouping phase, while 
processing a large image may take several hours [25]. To 
make the system really usable, computation times of at 
most a few seconds for small images, and of a few tens 
of minutes for large images are desired. 

2) Parallel Techniques for  Fast Line Finding: The linear 
feature extraction algorithm consists of two major phases: 
contour-pixels detection and linear approximation. Contour 
detection is performed to identify intensity boundaries 
(contours) in the 2-D raw image. Linear approximation 
is then performed to approximate the contours by line 
segments. 

The contour-pixels detection phase consists primarily of 
window operations with localized data dependencies. Paral- 
lelizing this phase on a coarse-grain machine such as SP-2, 
can be easily done. The n x n image array is divided into 
P blocks, where P is the number of processors available. 
Each block is of size L x L Initially, the boundary data d? fi. 
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Table 2 Execution Time for Line Grouping on CM-5 

Image ( n  x rL) 

Air ( n  = 128) 

Execution Time (in seconds) 
Communication Algorithm Number of Processors Number of Segments 

Five Stage Two Stage One Stage 
64 320 ,287 ,341 ,186 

53 ( n  = lI<) 

AP1 ( n  = 256) 64 1594 .460 ,504 
5512 ( n  = 512)  64 3256 I .934 ,981 I 

64 7219 1.436 1.462 1.295 

.361 
314 

Air ( n  = 128) 2.56 320 ,363 ,961 .477 
AP1 ( n  = 256) 
J512 ( n  = 512) 
J3 (78 = lli) 

6o r 

256 1594 .408 1.051 ,539 
2.56 3256 ,524 1.177 ,648 
256 7219 .633 1.255 ,758 

512x512 Image / 

0 10 20 30 40 50 60 70 
Number of Processors 

Fig. 5. Speed-up of the linear approximation phase on SP-2. 

between neighboring image blocks is exchanged and stored 
in a local buffer. The window operations then proceed 
without further interprocessor communication. 

In the linear approximation phase, irregular runtime data 
dependencies occur. The contours can be nonuniformly 
distributed over the image and approximation of a contour 
can proceed only after the previous segment of the contour 
at the neighboring processor has been processed. This 
results in load imbalances and poor processor utilization. 

The asynchronous algorithm technique can improve load 
balance and processor utilization in this situation. We have 
developed an asynchronous algorithm for linear approxima- 
tion, allowing each processing node to run independently 
of other processing nodes without violating any data de- 
pendency [ l l]. Fig. 4 shows the performance improvement 
achieved by such an asynchronous algorithm. 

Our implementation shows that, linear feature extraction 
on a 512 x 512 image can be performed in 0.065 s on 
a 64 node SP-2. A serial implementation takes 3.45 s 
on a single processing node of the SP-2. A previous 
implementation on CM-5 takes 0.1 s on a partition having 
512 processing nodes. Fig. 5 shows the speedup diagram 
for this task on a SP-2. The code was written using MPI 
[39] and is therefore portable to other parallel machines. 
(Intel Paragon, Meiko CS-2, Cray T3D, etc.) We have 
ported it to SP-2 and CM-5 [ll]. 

3) Parallel Techniques for  Perceptual Grouping: The per- 
ceptual grouping process operates on the set of primitive 
features detected in the low-level analysis and groups them 
to form structural hypotheses. These hypotheses are further 
used for high-level reasoning. 

Perceptual grouping consists of four stages: line group- 
ing, junction grouping, parallel grouping, and U-contour 
grouping. The line grouping operation groups line segments 
which are closely bunched, overlapped, and parallel to each 
other to form a line. For each line segment, a search is 
performed within a constant width window on both sides 
of it, to find other parallel line segments. The input to each 
processor is an image block of size x along with 
line segments extracted during linear feature extraction. A 
segment token with starting coordinates ( 2 1 ,  y1) and ending 
coordinates ( 2 2 ,  y2) is stored in the processor which has 
the image block containing (22, yz). The grouping process 
is performed in a scatter-and-gather fashion. In the scatter 
phase, each processor computes the search window for each 
token stored locally in the processor. Search requests are 
then sent to the processors which have index array elements 
that overlap the search window. The search requests look 
for line segments which are approximately parallel to the 
local segment. The detected segments are then grouped and 
sent back in the gather phase. A merge operation is then 
performed to form lines. 

The message packing technique can reduce the com- 
munication overhead in this operation. All requests from 
a processor with the same destination are packed into a 
single message. The resulting communication pattern is a 
many-to-many personalized communication with message 
length variance. Using decomposition and communication 
scheduling techniques, we have developed a five-stage algo- 
rithm which can reduce the communication time for many- 
to-many data communication with high message length 
variance [62]. This performs better than a straightforward 
one-stage algorithm and a two-stage algorithm proposed 
in [50], especially for larger number of processors and 
for higher variance in the message length. In Table 2, we 
present sample performance results of the line grouping 
operation on CM-5. 

Thus it can be seen that the algorithmic approach can 
yield significant performance improvements, and thereby 
lead to scalable parallel implementations of computational 
tasks in various stages of the vision process. Careful 

f l f l  
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analysis of the overheads and structuring of the algorithm to 
overcome these overheads are important steps to achieving 
high performance. 

V. CONCLUSION 
This paper has given an overview of the state-of-the- 

art in high performance computing for vision. We observe 
that vision tasks have computational characteristics signifi- 
cantly different from those of Grand Challenge problems in 
scientific application domains. The vision process consists 
of a sequence of tasks, each with distinct computational 
characteristics. Low-level vision has a structured computa- 
tional profile, with regular data dependencies. At the higher 
levels, extensive symbolic operations with irregular data 
access patterns are present. This heterogeneous nature of 
the computations makes it difficult for a single computing 
platform to achieve desired performance levels for the entire 
vision process. 

Over the years, researchers have used several different 
approaches based on various computing platforms for high- 
performance vision. Custom VLSI based solutions have 
been successfully used primarily for low level vision prob- 
lems. Specialized vision systems have also been designed 
with architectural features that suit the requirements of 
vision tasks. However, such systems have not been widely 
used due to high costs and long design times. 

Economic and engineering considerations point to the use 
of general purpose distributed memory parallel machines 
as computing platforms for vision applications. Current 
generation general purpose machines are designed around 
low-cost COTS components and have a MIMD architecture. 
These systems offer advantages of architectural flexibility 
and programmability. Due to their general purpose architec- 
ture, they provide suitable computing support for a variety 
of vision tasks at each of the different levels of vision 
processing. Parallel solutions for low-level tasks have been 
developed and implemented on these systems. However, 
developing high speed parallel solutions for the higher level 
tasks is not straightforward. The irregular data dependencies 
of these tasks lead to excessive communication overheads, 
when they are implemented on the distributed memory 
systems. These overheads result in inefficient processor 
utilization and low speed ups. 

We have used an algorithmic approach to develop high 
performance parallel solutions for vision tasks on the gen- 
eral purpose machines. A computational model of the 
parallel system is used to analyze parallelization overheads, 
and thereby design scalable algorithms. With the assistance 
of the model, we have designed scalable parallel algorithms 
for many generic tasks in vision processing. We have 
implemented these algorithms on current generation parallel 
machines, with promising results. 

Many challenging issues remain to be solved before 
practical real time vision systems can be realized. The 
application environments for real-time systems have special 
constraints such as low-power consumption and small sys- 
tem size. Most currently available general purpose parallel 

machines have large power requirements and are bulky. 
Research in multichip modules (MCM’s) and in low power 
microsystems design aims to advance COTS component 
technology so that they can be used in such embedded 
parallel systems. On the software side, standards such as 
real-time MPI are currently evolving. Efficient implemen- 
tations of these standards on the computing platforms must 
be developed, so that efficient parallel algorithms can be 
designed in a truly portable manner. 
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