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Scheduling Soft Real-Time Jobs 
Over Dual Non-Real-Time Servers 

Benjamin Kao and Hector Garcia-Molina, Member, /E€€ 

Abstract-In this paper, we consider soft real-time systems with redundant off-the-shelf processing components (e.g., CPU, 
disk, network), and show how applications can exploit the redundancy to improve the system's ability of meeting response time 
goals (soft deadlines). We consider two scheduling policies, one that evenly distributes load (Balance), and one that partitions 
load according to job slackness (Chop). We evaluate the effectiveness of these policies through analysis and simulation. Our 
results show that by intelligently distributing jobs by their slackness amount the servers, Chop can significantly improve real- 
time performance. 

Index Terms-Real-time systems, scheduling, dual servers, soff deadlines, distributed systems. 
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1 INTRODUCTION 

RADITIONAL hard real-time systems handle jobs with T stringent time constraints. Job deadlines are guaranteed 
by careful but often complex system design and, in many 
cases, by using expensive specialized hardware (e.g., a real- 
time network). It is clear that systems like the space shuttle 
require specialized real-time hardware that can guarantee 
timely processing of jobs. However, there are other soff real- 
time applications for which meeting every single job dead- 
line causes poor utilization of system resources, is unneces- 
sary, or is even impossible. As an example of a soft dead- 
line, consider a digitized voice packet. For good playback, it 
must be delivered by a certain time across a network. Yet, 
considering a stream of packets, it is tolerable to miss a few 
packets. A second example is a banking transaction proc- 
essing system. A typical requirement for such a system may 
be that 95% of transactions complete in less than 2 seconds 
[lo]. Here again, some missed deadlines (up to 5%) may be 
tolerable. 

Even in cases where end-users have no deadlines, it may 
still be highly desirable to make applications more respon- 
sive to user timing requirements. For example, in a distrib- 
uted database, it may be desirable to deliver messages in- 
volved in a two phase commit in a short time frame, to re- 
duce the "window of vulnerability" where blocking can 
occur [4] and to reduce the time locks are held. Packets for 
read-only queries would have less stringent timing re- 
quirements. Packets for remote view update and quasi- 
copies [18] would have even less stringent requirements. 
Similarly, a disk 1/0 system should be designed in such a 
way that hot spot accesses be done promptly to avoid long 
queues and improve response time. 
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To build a soft real-time system, one may or may not be 
able to use specialized real-time hardware, such as a real- 
time network or a disk that schedules 1/0 requests ac- 
cording to deadlines. Real-time hardware would obviously 
make it easier to meets system deadlines. Unfortunately, 
real-time hardware is more expensive and is not readily 
available. For instance, off-the-shelf, easy-to-maintain and 
inexpensive networks do not usually provide real-time fa- 
cilities. Standard networks such as Ethernet or token ring, 
and their corresponding drivers do not support real-time 
traffic, and they tend to deliver messages in a FCFS order. 
Even for systems that provide priorities, they usually allow 
only a limited number of priority levels [32]. This renders 
real-time scheduling algorithms ineffective [3]. As another 
example, sophisticated disk controllers that employ algo- 
rithms such as the Elevator Algorithm [27] schedule disk 
requests according to disk block position instead of request 
deadlines. Conventional real-time scheduling algorithms 
like earliest-deadline-first do not perform well either be- 
cause they cause long average seek time and poor through- 

Given the lack of real-time support by (low cost) stan- 
dard hardware, how can we improve the timeliness of all 
those soft real-time applications that are running on non- 
real-time hardware? If we only have a single non-real-time 
standard hardware component, where applications have no 
control over the low level scheduling mechanism, there is 
not much that we can do. However, if redundant compo- 
nents are available, it may be possible to control how jobs 
are dispatched to replicated components to achieve real- 
time goals. 

Fortunately, redundant components are not uncommon. 
Redundancy is used to provide higher reliability and scal- 
ability. For example, redundant networks are used within a 
local area (e.g., a Tandem Nonstop system [l]), and in a 
wide-area environment by using different carriers or lines. 
A stock market trader may have multiple machines ana- 
lyzing the activities of a trading floor. Also, mirrored disks 
are used for stable storage and for crash recovery in data- 
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base systems [lo]. Data stored on both disks can also be 
accessed in parallel to improve performance. Special driv- 
ers can be designed to intelligently dispatch jobs across the 
multiple identical components. In this paper we study how 
these redundant components can be exploited to meet sys- 
tem’s real-time constraints. 

Note that since real-time hardware is not common, its 
cost will be higher than that of standard hardware, where 
economies of scale and simpler designs lower costs. Thus, it 
may be more cost effective to use redundant standard 
hardware as opposed to a single specialized real-time one, 
achieving at the same time higher reliability and real-time 
responsiveness. 

For our evaluation, we will first consider a dual-server 
system as shown in Fig. 1. (We will extend our model later 
and consider an n-server system in Section 7.) This system 
processes jobs with soft real-time constraints. Servers are 
assumed to be identical in their processing ability. Each 
server has its own queue where jobs are spooled. Concep- 
tually, the servers can be of any type (e.g., network, or 
disk). When a job arrives, an application entity, which we 
will call a dispatcher, will choose a server to which the job is 
dispatched. 

Server 1 

Server 2 

Fig. 1. A queueing model. 

We study and compare two schemes for dispatching jobs 
over the two servers. The first scheme is to evenly distrib- 
ute jobs to the two servers. The second scheme is to priori- 
tize jobs into two classes depending on their time criticality. 
Jobs with more stringent time constraints are routed to one 
of the servers, while the other server handles the less time- 
critical jobs. The server prioritization scheme is analogous 
to a four lane highway. The slower lanes on the outside 
carry more traffic (higher load); passengers on those lanes 
are in less of a hurry. The fast central lanes usually have 
fewer cars, traveling at a higher speed. In our servers, our 
goal will be the same as on the highway: the load on the 
server carrying the high priority jobs will be kept lighter so 
they may meet their time constraints. 

To analyze the relative performance of these dispatcher 
algorithms, we follow two strategies: First we construct a 
uery simple queuing model that lets us study the major 
trade-offs involved. Second, we construct a variety of more 
detailed and realistic simulation models that let us verify 
the trends observed for the analytic model. The simulations 
include specifics of Ethernet and disk 1/0 subsystems, as 
well as relaxation of the simplifying assumption (e.g., peri- 
odic tasks and more than two servers are considered.) We 
stress that the analytical model is very simple. Its goal is not 
to predict performance of some real system; rather, its goal 
is to let us understand the key issues. The fact that the 

simulations, with very different assumptions, confirm the 
trends of the analysis, gives us reason to believe that the 
analytical model is indeed capturing the key factors. 

1.1 Related Work 

Systems using dual (or multiple) servers processing a single 
job stream have been analyzed extensively by queueing 
theorists [23], [31], [15], [17], [12]. These studies usually 
consider non-real-time systems and focus on the queueing 
delay of jobs. For example, in [15], a dual-queue system 
with heterogeneous servers (i.e., servers with different 
servicing capacity) in which a newly arrived job always 
joins the shorter queue is analyzed. Extension of the study 
can be found in [12], [23] in which a threshold-type sched- 
uling policy is evaluated. In their model, a job is always 
serviced by the faster server unless the fas ter-server queue 
is longer than the slower-server queue by a certain thresh- 
old. Others studies that consider queueing systems em- 
ploying real-time scheduling algorithms like earliest- 
deadline-first can be found in, e.g., [35], [ll]. However, 
these studies are usually confined to single-queue systems. 

The problems of scheduling hard real-time jobs in dis- 
tributed and multiprocessor environment:; are studied in 
[33], [28], [29], [36]. The focus is on coordinating the sched- 
ulers at the multiple components closely to ensure job 
deadlines are always met. This paper assumes a much 
looser control over the local schedulers. For example, each 
component employs its own local scheduliing routine. Also, 
the focus is on using off-the-self standard components for 
soff, instead of hard, real-time jobs. 

There is also work done on real-time communication 
using multiple paths. In [20], a medium access protocol for 
integrated voice, video and data traffic, operating on a 
dual-ring LAN is discussed. The main idea is to use one 
LAN for packet transmission and the other for scheduling. 
Another idea on sending duplicate packets over redundant 
paths to enhance communication timeliness is studied in 
[7], [25], [30], [SI. Finally, the use of disk shadowing and 
disk striping to improve fault-tolerance and 1/0 system 
performance is considered in [5], [9]. 

The rest of this paper is organized as fclllows. Sections 2 
through 4 present the analytical model and results. In par- 
ticular, Section 2 presents the model, Section 3 shows the 
analysis of a single server system, and Section 4 extends the 
analysis to a dual-server system with various dispatcher 
strategies. Sections 5 presents the results of Ethernet simula- 
tions and disk simulations. A discussion on some of the prac- 
tical aspects of job prioritization is presented in Section 6. In 
Section 7, some extensions and variations of the base model 
are discussed. For examples, we look at periiodic tasks, multi- 
ple servers, and other queueing disciplines. Finally, we con- 
clude the paper in Section 8. 

2 THEMODEL 

Our analytical model is shown in Fig. 1. 1Ne make the fol- 
lowing assumptions: 

1) Jobs are generated according to a Poisson distribution 
with mean interarrival time l/A. 
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2) As a job is generated, it is dispatched, according to the 
dispatcher strategy adopted, to one of the servers. 

3) Job execution times are exponentially distributed with 
mean equal to 1 time unit. System load is therefore 
normalized against server capacity. 

4) Associated with each job is its slack. We define slack 
to be equal to t, - t, where t, is the time at which the 
server must start servicing the job (to meet its dead- 
line) and t, is the generation time of the job. 

5) Job slacks are assigned according to a slack density 
function S(x). For illustrative purpose, we consider 
two slack distributions in this paper: 
a) A uniform distribution over the range [S,,,, Smz] 

(Fig. 2a). That is, slacks that fall in between the 
minimum value (S,",,,) and the maximum value 
(S,xoJ are equally likely to be picked. If we define 
k = Slax-Smlx, then 

S(x) = -, 1: Smin 5 x I sm, 
lo ,  x > S m m .  

b) A discrete two-spike distribution (Fig. 2b). In this 
case, a job's slack is either S,,, or S,,,; it takes on 
no other value. We will use a to represent the 
fraction of jobs in the system that belong to the 
tight-slack (SmJ class. The uniform distribution is 
suitable for modeling systems with many differ- 
ent real-time applications, each with different 
time-constraints. Systems that handle both real- 
time and non-real-time jobs may be modeled by 
the two-spike distribution. 

6) The queueing discipline at each server is FCFS 

7 )  Jobs are independent of each other. 
(M/M/1 queue). 

Smin Smm 
(a) Uniform 

Fig. 2. Slack distributions. 

(b) 2-spike 

As stated in the introduction, in our study we focus on 
soft real-time systems. In such systems, a primary perform- 
ance goal is to meet as many deadlines as possible, but un- 
like hard real-time systems, there is no absolute guarantee 
that all deadlines will be met. We assume that jobs in the 
system i s  of equal importance and the primary performance 
metric is the percentage of jobs that missed their deadlines. 
The smaller this number, the better a system performs.' 

As discussed in Section 1, this is a simple model and is 
used to study how different factors affect the relative per- 
formance of the dispatcher strategies. Real systems have 

1. An alternative model would consider jobs of different values, and the 
performance goal would be to maximize the total value obtained by com- 
pleting jobs in time (see [13]). We do not consider this model in this paper. 

their idiosyncratic properties which are not captured by our 
general model. For example, disk controller may employ 
the Elevator Algorithm in scheduling disk head movement. 
Similarly, networks may not process packets in a FIFO 
fashilon and packets may be queued at each interface (as 
opposed to a global queue we have assumed).' Again, in 
our simulations (Section 5) we model the Ethernet and the 
Elevator protocols (individually), and show that the results 
are not that different from what the FIFO model predicts. 
Other variations to the base model, such as earliest- 
deadline-first queues, and different execution time distribu- 
tions, will be discussed in Section 7. 

3 AINALYSIS OF A SINGLE SERVER 

In this section, we compute the percentage of missed dead- 
lines for a single server system. ,That is, we assume that 
server 2 of Fig. 1, is shut down and all jobs are handled by 
server 1, i.e., by a single M/M/l queue. The expressions 
derived in this section will be used to study the more gen- 
eral case in Section 4. 

Consider a job with slack y. The probability that it 
misses its deadline is equal to the probability that it must 
wait in the server queue more than y time units. Given an 
M I M I 1  system with mean inter-arrival time l / A  and 
meart service time 1.0, the waiting time distribution T(y) is 
given by [14]: 

T(y) = Pr [time spent in queue) 5 y] 
- 1 - A e- (1 -4~ - 

Thus, the probability that the job waits more than y time 
units and misses its deadline is 1 - T(y). To compute the 
fraction of missed deadlines MD (Le., the expected prob- 
ability of missing a deadline), we must consider the distri- 
bution of y, i.e., S(y) ,  giving: 

Using the uniform slack distribution of Section 2 (Fig. 2a) 
and defining MDlgunrform to be the fraction of missed dead- 
lines for the single server case with the uniform slack dis- 
tribuiion, we obtain: 

To illustrate how MDls,un,form is affected by system load and job 
slackness, we select S,,,, = 0.5 time unit and plot MDls,untmjn as a 
function of k Three curves are shown in Fig. 3 for S,,,x = 10, 
30, arid 100 time units.3 We observe from the figure that the 
percentage of missed deadlines increases rapidly as the load 
increases. Moreover, when jobs are given more slack (as S,,,x 
increases), MDIS,",,*,, drops. 

2 Studies have shown that standard network protocols like Ethernet and 
token Iing tend to queue packets m approximate FIFO order Some access 
protocols (e.g , in Distributed Queue Dual Bus [24], and a variation of the 
Virtual Tune CSMA protocol [22]) approximate a FCFS order of packet 
transmissions on a bus 

3. Recall that the average job service time IS 1 time unit 
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Fig. 3. MD,5un*,, as a function of A. S,,, = 0.5. (Curves are labeled with 
corresponding SM, values.) 

Next we consider the 2-spike slack distribution (see Fig. 
2b). Recall that a is the fraction of jobs with slack = S,,,. 
Substituting this distribution into (1) we obtain: 

MDls,z-vAe = a U -  WmJ1 + (1 - a) [I- V , J I  

(3) 
To illustrate the behavior of this expression, let us take 
a = 0.2 (i.e., 20% of the jobs have tight time constraint), 
S,,, = 0.5, and S,, = 19. Fig. 4 shows MDls,2-qh (solid line) as 
a function of A. (The dotted lines in Fig. 4 will be explained 
later.) Note that the value of S,,, was chosen so that the 
2-spike distribution would have the same mean as the uni- 
form distribution with S,,, = 30. Thus, the average slackness 
is the same in Fig. 3 (curve for S,,, = 30) and Fig. 4 and it is 
relevant to compare. We observe that the 2-spike slack dis- 
tribution gives a higher M D  than the uniform distribution. 
For example, when R = 0.5, MD,,,, = 7.8% while MD1s,,,fo, 
= 2.64%. Intuitively, the 2-spike distribution has relatively 
more jobs with very tight time constraints. These tight slack 
jobs contribute most to the missed deadlines. We will take a 
closer look at this issue shortly. 

Also shown in Fig. 4 are the components of MDls,z..qrke 
(labeled A, B, C, D). Curve A represents the probability that 
a tight slack job (with slack = S,,) misses its deadline, i.e., A 
is 1 - T(S m m  ) (or R e(41-a)s'"1n)). Similarly, B is the probability 
that a loose slack job (with slack = SmJ misses its deadline, 
i.e., B is 1 - T(S,,J (or il e(-(l-a)s)s,x) ). Note that these curves are 
independent of a. Curves C and D represent the summands 
of (3), that is, C = a4 and D = (1 - a)B. Curve C(D) shows 
the portion of M D  attributable to tight (loose) slack jobs, 
and MD,s,2-v,ke = C + D. 

From Fig. 4, we observe that even though tight slack jobs 
represent only 20% of the population, they contribute much 
more to MDls,z-Th than loose slack jobs do (Curve C %= D), 
for a wide range of il (< 0.8). Intuitively, they are the major 
cause of missed deadlines and hence should be given pref- 
erential treatment. This is precisely what the dispatcher 
attempts to do. 

- - a h d ' - a ) s m m  + (1 - a) h+-a)Smnx.  

4 DISPATCHER STRATEGIES 
In this section, we study a dual-server system with two 
possible dispatcher strategies: 

Strategy 2 (Balance): Dispatch a job to either server 
with equal probability. 
Strategy 2 (Chop): One server, S ,  is reserved for tight 

0 0.2 0.4 0.6 0.8 1 
x 

Fig. 4. MD,sr-vk as a function of A, two job classes with slacks equal 
0.5, and 19, a= 0.2. 

slack jobs. It handles jobs whose slacks are at the 
lower p quartiles of the slack distribution. Server S, 
handles the rest of the load, i.e., jobs with slack in the 
upper (1 - p )  quartile of the distribution (looser slack) 
(See Fig. 5 for the uniform slack distribution case). 

Slack distribution 
Area = p Area = 1 - p  IW[ 

Fig. 5. Chop strategy: Tasks with slack in the range [U,  b] ([b,  c]) are 
serviced by S, (SJ. 

For the Chop strategy, we only consider p in the range 10, 
0.51. Since the slack and execution time distributions in our 
baseline model are independent, if p were greater than 0.5, 
we would be routing more than 50% of the jobs to S ,  which 
is the opposite of what we want to do.4 Instead, the goal is to 
have a reduced load on S,. To see the motivation for this, say 
the total load is /2 = 1. With the Balance strategy, 0.5 of this 
load would go to each server. If we assume a two-spike slack 
distribution, then the percentage of deadlines that would be 
missed by each server is given by Fig. 4. (The slack distribu- 
tion on each server is the same as S(x) because jobs are ran- 
domly routed.) Thus, for a load of R = 0.5, each server loses 
7.8% of its job deadlines (point labeled A in the figure). The 
overall M D  for the system would still be 7.8Y0, since each 
network has half the load. 

If we now consider the Chop strategy with p = 0.2 (Fig. 
6), we see that the tightest 20% of the jobs will go to S,. 
Since in our example, 20% of the jobs have slackness S,,,, it 
so happens that all tight slack jobs go to S,. The remaining 
80% loose slack jobs go to S,. The load on ST is 0.2. The 
probability that a job on S, misses its deadline is obtained 

4. If the slack and execution time distributions are not independent (for 
example when lengthier jobs tend to have longer slack), then we may have 
to consider p bigger than 0.5. In any case, the main point here is to keep the 
load of the tight-slack server below 0.5. 
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Total load A = 
Tight 

Loose 

I 0.8 I 
Fig. 6. Example of Chop with 2-spike slack distribution. 

from curve A in Fig. 4. (This is the percentage of missed 
deadlines curve for tight slack jobs given that they see a 
server load A.) On this server, the probability of missing a 
deadline is 0.134 (point 0 on curve A), and the contribution 

to the total M D  is 0.2 x 0.134 = 2.7% (point 0 on curve C). 
On the other hand, on S,, we have a load of 0.8 loose slack 
jobs. In this case, the contribution to MD is 1.43% (point x 
on curve D).  Hence, the total M D  is 2.7% + 1.43% = 4.13%' 
almost half of the M D  when the Balance strategy was used. 
Thus, by *'robbing Peter to pay Paul" we have managed to 
make each server perform better. 

We now proceed to derive expressions for the percentage 
of missed deadlines under each scenario. We use the notation 
MD,, to refer to the percentage of missed deadlines under 
dispatcher strategy a when the overall slack distribution is b. 
Optional annotation will appear as superscript. The analysis 
for the Balance dispatcher is simple since each server in the 
dual-server system behaves as in the single server case, ex- 
cept that the load is cut in half. (The Poisson arrival distribu- 
tion is preserved at each server under random selection of 
jobs.) Hence, we can use (2) and (3), with A replaced by A /2: 

MDBalance,ungorm 

and 

M"Balance,2-spike 

- - a(n / 2$-'/*)smin + (1 - a)(n / 2 ) g - ( l - A / W m x ] .  

For the Chop strategy, we consider each slack distribu- 
tion in turn. For the uniform slack distribution, we note that 
the load on S ,  is Poisson with parameter pR and its slack 
distribution is uniformly distributed in the range [S,,,, S,,, + 
kp]. (Recall that k = S,,, - Smln.) By (2), the fraction of missed 
deadlines for S, is 

By similar argument, 

MDChop,uniform 

To analyze the two spike distribution, we consider two 
subcases: 

CASE 1: (a5 p). In this case, the fraction of system load that 
is handled by S, is more than the fraction of jobs that 
have tight slack. S, thus has a mixture of jobs. It has a to- 
tal load of PA. A fraction a/p of this load consists of tight 
slack jobs. Loose slack jobs represent a fraction of 
(p - a)/p of the S, load. Thus, by (3)  we have: 

MDChop,2.sptkc (ST) 

= (a / p)[p~-'*-w~s"""] , p - a ;Ipe-(1-~P)s"'"" 

-(1-+)4" + (p-a)h -('-+)Smax 
P 

- - 

Server S, is responsible for loose slack jobs only. Its load 
is (1 - p)A Therefore, 

MD~~,,,,(s,) = (1 - p ) ~  e-l"l-p)als~n~x. 

CASE 2: (a > p ) .  In this case, S, has exclusively tight slack 
jobs with a load pa.  Server S, receives a load of (1 - p)R, 
out of which a fraction of (a-  p)/(l - p )  is tight slack and 
(1 - @/(1- p )  is loose slack. Again, by (3), we have, 

(S ) = p & - ( - , w n m  
MDChop,2-splke T 

MD*-,(SJ = (a-  p p  e-[l-(l-p)'ls,~~* + (1 *)jle-[l-(l-P)us,n,, 

In either case 1 or 2, 

MDCJq,Z-s@e = F' ' MDChop,2-spke(sT) + (l . MDChopZ-splke(SL)' 

To study ithe expressions we have derived, we select a 
set of representative base parameter settings. We are not 
attempting to model any particular system; rather we se- 
lect a base setting that illustrates the main trade-offs in- 
volved. For the base setting we then vary one or two pa- 
rameters at a time, showing their impact on performance. 
Due to space limitation we do not present all of our re- 
sults; we have selected the ones we consider the most il- 
lustrative. 

For our base setting we choose A = 1.0; the uniform slack 
distribution with S,,, = 0.5, Smox = 30, and the two spike dis- 
tribution with S,,, = 0.5, SmnX = 19, and a = 0.2. Note that the 
two slack distributions have similar mean value. 

Fig. 7 shows MDChop,unlform as a function of p. Also shown 
is MDBalance,unlfom (dotted line), which is a constant 2.64%. 
We see that the performance of Chop is sensitive to the 
choice of p. If p is chosen too small (< 0.23), server S, is 
congested with a load (> 0.77) that it cannot properly 
handle. Strategy Chop is counterproductive in this case. 
However, over a wide range of p values, [0.23, 0.51 Chop 
does outperform Balance. (Recall that p is always less than 
0.5.) Finally, we note that the optimal value of MDchop,unlform, 

opt MDchop,unform = 1.43% occurs at p = 0.33. This is about 46% 
fewer missed deadlines than strategy Balance, quite a sig- 
nificant improvement. 

Fig. 8 shows a graph similar to Fig. 7 but for the 2-spike 
slack distribution. We see in this case that Chop performs bet- 

5. Since we have two servers, the highest load for a stable dual-server 
system is 2.0. 
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Fig. 7. MD%,un@m as a function of p .  A = 1.0, Smm = 0.5, S,, = 30. Num- 
bers in parentheses give the coordinates of marked point. 
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P 
Fig. 8. MD%2-+ as a function of p .  a= 0.2, A = 1 .O, S,, = 0.5, s, = 19. 

ter than Balance over a wider range of p [0.16,0.5] and its op- 
timal point (3.88%) is about 50% better than MD,,,, (7.79%). 

To study the impact of load on performance, we vary the 
load R from 0.4 to 1.4, under the uniform slack distribution (Smm 
= 0.5, S,, = 30). (Results for the two spike distribution are 
similar and are not shown here.) Fig. 9 shows MD*,umm and 

tained by selecting the p that minimizes the percentage of 
missed deadlines.) We see that when R is small, MD$,uqom 
increases at a slower rate than MDm,unlw It then slowly 
catches up as R becomes larger. ("he dotted curve 
MDChop,unrfOTm is discussed below.) 

Fig. 10 shows the relative gain in switching from Balance to 

We see that Chop performs much better than Balance under 
low load. As a matter of fact, one would expect the load to be 
quite low in any system with real-time deadlines, else too 
many deadlines would be missed. Looking at Fig. 9, we 
would expect R to be say less than 0.8, so that very few dead- 
lines are missed. And it is precisely in this range that Chop 
performs the best. For instance, at R = 0.4 Balance misses 
nearly thrice as many deadlines at Chop! So clearly, the Chop 
strategy is paying off. 

As pointed out earlier, MD,,, is sensitive to the choice of 
p. But how bad is it if we choose the wrong p? In Fig. 9, we 
show MDWrop,unfm evaluated at a suboptimal p = pwt + 0.05, 
where pqt is the optimal p value. Since p < 0.5, the selected p 
is at least 10% off its optimal value. The resulting curve is 
labeled MD2Y'O5 in Fig. 9. We observe that under low 
load, the percentage of missed deadlines hardly changes as 

MDChop,unform opt as R varies. (For a given A, MD~$p,,niform is ob- 

opt+O 05 
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Fig. 11. Maximum load for Balance and Chop as jvaries. 

a result of the variation in p. As the load increases beyond 
1.2, the variation in p is significant, and Chop begins to per- 
form as poorly as Balance. Again, we note that a real-time 
system should have considerable spare capacity, so that the 
vast majority of deadlines can be met. Therefore, under 
normal condition, the system should not be operating at a 
high load. This suggests that inaccuracy in finding an opti- 
mal p should not diminish the advantages of Chop. (We 
return to the selection of p in Section 6.) 

Another way to study the trade-off between load and 
deadlines is to assume the system can tolelrate a maximum 
number of missed deadlines, and to control the load. For in- 
stance, consider a voice/data communicatioii system that can 
tolerate missing the deadlines of p (< 1.0) voice packets and 
still provide a satisfactory service. We want to know, for a 
given value of f l  what the maximum value of R can be, pro- 
vided that M D  2 fl  To do this, we will use the 2-spike distri- 
bution and set Smx to m, which means that data packets do 
not have deadlines at all. Fig. 11 shows the maximum load 
the system can handle for both Balance and Chop strategies, as 
pranges from 0.5% to 3%. (we assume a = 0.20 and p is op- 
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timal.) We see that Chop can accommodate a load that is 
about 2.5 times of Balance's over the range of pvalues shown. 

We next consider the impact of slackness on perform- 
ance. While keeping /z fixed at 1.0 and s,, at 0.5, we vary 
S,,, from 10 to 80. Figs. 12 and 13 show MDBalance,unfom, 

in the figures, the gain by using Chop over Balance can be 
very significant. It is also interesting to note that as the 
slack range becomes larger, Chop outperforms BaZance by a 
wider margin (Chop misses a factor of three fewer deadlines 
at high slacks). The explanation is that if the slack range is 
too small, then no matter how one divides the load, the 
servers will find themselves serving jobs of very similar 
slack. If jobs are of more or less the same slack then Balance 
is just a special (and optimal) case of Chop. Therefore, for 
small value of Smax, the performance of Balance approaches 
the optimal performance of Chop. 

In conclusion, our simple analytical model indicates that 
Chop outperforms Balance, as long as a good p value can be 
selected. The gain can be very significant if either the sys- 
tem load is low or there is a wide variation in job slackness. 

MDChop,unform, opt and their ratio as S,,, varies. As can be seen 

In the previous sections, we presented an analytical evalua- 
tion on two dispatcher strategies for a simple dual-server 
system. Several simplifying assumptions (e.g., FCFS server 
queues) were made for tractability of the analysis. Many 
real systems are likely to deviate from our simple model. In 
order to see how real systems would perform, we imple- 
mented two detailed event-driven simulators6: One for a 

dual-Ethemet system (Section 5.1) and another for a dual- 
disk system (Section 5.2). We present our simulation results 
in this section. 

The reasons for choosing Ethernet and disk for our 
simulation studies are that they are commonly found in 
computer systems; they have interesting job servicing or- 
ders (CSMA-CD with binary exponential backoff for Ether- 
net and the Elevator algorithm for disk); and most impor- 
tantly they differ in their response to load stress. The Ether- 
net protocol, which is based on contention resolution, does 
not handle high load situation well7 [34]. The Elevator algo- 
rithm, on the other hand, accommodates high load better 
by p i c k g  up disk requests that are "on the way" as the 
disk head moves. In fact, the average seek distance de- 
creases as the load increases. Since Chop has the effect of 
stressing one server while relaxing the other, it is thus in- 
teresting to see how this strategy fairs when applied to 
dual-Ethernet and dual-disk systems. 

5.1 Ethernet Simulation 
We simulate a dual-Ethernet system with n nodes (or sta- 
tions) (see Fig. 14). Each node generates a Poisson packet 
stream with mean rate A / n  (total load thus equals A). Two 
buffer queues at each node, one for each network, are used 
to internally store packets waiting for service. The queueing 
discipline is non-preemptive earliest deadline first (EDF). 1- 
persistent CSMA/CD with binary exponential backoff is 
implemented as the network access protocol [21]. The 
transmission time is still assumed to be exponentially dis- 
tributed with mean equal to 1 time unit. Finally, the round- 
trip latency of the network (4 is taken to be 4% of the mean 
packet transmission time' (i.e., 0.04 time unit). 

CSMA/CD LAN 

1 k 

EDF : EDF : 

CSMAICD LAN 

Fig. 14. Ethemet simulation model. (EDF-Earliest Deadline First queue) 

Each simulation run lasts 200,000 time units. For exam- 
ple, with a packet arrival rate of /z = 1.0, this means about 
200,000 packets are processed per run. Each data point is 
obtained by averaging the results of three simulation runs, 
each with a different random number seed. The 95% confi- 
dence interval is rt 0.13 percentage point. Table 1 shows the 
setting of our Ethernet baseline experiment. 

TABLE 1 
BASELINE SETTING FOR ETHERNET SIMULATION 

7 CSMA-CD protocols thrash under high load due to the large amoun 

8 Based on a 512 bit contention slot time and a 15kB Dacket size i ~ l u  
of bandwidth wasted in contention resolution. 

6. Our simulators are written in the simulation language DeNet [19]. overhead) [34]. 
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The solid lines in Fig. 15 show the simulation results 
comparing the Balance and Chop strategies as p varies for 
the baseline setting. The curves in Fig. 7 are reproduced in 
Fig. 15 as dotted lines. These dotted lines show the results 
as predicted by the analytical model. 

0.25 0.3 0.35 0.4 0.45 0.5 
P 

Fig. 15. MDcw,unfi,m as a function of p .  ;1 = 1.0, Sm,= = 0.5, Smx = 30, 
n = IO. Ethernet simulation. 

Comparing the simulation results (solid lines) and the 
analytical results (dotted lines), we observe that the analyti- 
cal model underestimates the missed deadlines MD when 
Ethernets (Fig. 14) rather than FCFS servers with global 
queues (Fig. 1) are assumed. We also note that the underes- 
timation decreases as p approaches 0.5. 

This underestimation is attributable to the additional 
delay introduced by network contention. Time is wasted in 
packet collisions. Furthermore, a packet may be delayed 
because of multiple conflicts, due to the probabilistic nature 
of the access protocol. This effect translates into a higher 
MD value than predicted. Moreover, when p is small 
(e.g., 0.25), the low priority network is given a high load 
(e.g., 0.75). The degree of contention in the low priority 
network is thus high, making the difference between the 
analytical MD value and the simulation M D  value larger. 

Notwithstanding the discrepancy, Fig. 15 shows that 
both the simulation and analytical results display similar 
trends. In particular, 

1) Chop performs better than Balance over a significant 
range of p values, 

2) the slope of MD,, is relatively flat at the optimal 
point, so that a minor deviation from the optimal 
value can be tolerated, and 

3) the gain by using Chop over Balance is still significant 
(Chop misses 31% fewer deadlines than Balance does). 

Among the other experiments we have done with our 
Ethernet simulator, we have looked at the effect of chang- 
ing the number of stations (while keeping the system load 
constant) and the round-trip latency of the network. Our 
results show that increasing the number of stations in- 
creases the probability of network contention, and thus 
more overhead in resolution. For example, if we have 10 
packets and only one (sending) station, all the packets are 
queued up in the station and no collision occurs. On the 
other hand, if we have 10 stations, in the worst case, each 
station has one packet to send, and severe contention en- 
sues. However, we observe that the increment in collision 
probability due to each additional station becomes quies- 

cent once the number of stations reaches five. Thus, in our 
baseline setting of n = 10 stations, results are not very sensi- 
tive to n. 

Another set of experiments concerns the round-trip la- 
tency of the network. The general observation from this 
sensitivity test is that the smaller the round-trip latency (zj 
is, the better Chop performs compared with Balance. For 
example, when z = 0.05, Chop misses 28% fewer deadlines 
than Balance. When  is reduced to 0.04, the improvement 
climbs to 31%. This can be explained by the fact that a 
smaller round-trip latency means smaller contention slots, 
and thus the contention resolution overhead is reduced. 
Chop can then free up the high-priority network exclusively 
for packets with stringent time constraints without causing 
much overhead in the low-priority network, which is 
loaded with all the loose-slack packets. 

5.2 Disk Simulation 
Our next experiment simulates a dual-disk system (see 
Fig. 16). We make the following assumptions concerning 
the physical disks and the 1 /0  requests. 

U- 
Disu. / 

Read Disk 2 
Requests 

Fig. 16. Disk simulation model. 

First of all, we assume that the disks mirror each other 
and they are equally capable in satisfying 1 / 0  requests. 
Disk requests are of two types: reads and writes. In this 
paper, we only consider read requests, and therefore each 
request can be serviced by either one of the two disks. 
Write requests are ignored for two reasons: First, since the 
disks are mirror to each other, a write ha:: to be processed 
by both disks. The net effect (if writes were considered) is 
a lowered disk processing capacity, and this affects both 
Balance and Chop the same way. Second, if 1/0 requests 
are generated by real-time transactions thlen read requests 
are performed before the transaction is committed while 
writes are performed after the commitment.' The implica- 
tion is that read requests have explicit timing constraints 
(as imposed by the issuing transactions). Write requests, 
on the other hand, usually do not have such constraints; 
they are typically issued by non-real-timle processes, such 
as the buffer manager [Z]. 

We consider high end disk controllers (such as DEC HSC, 
IBM 3880) which internally perform 1/0 request buffering 
and scheduling (e.g., the Elevator algorithm). Furthermore, 
we assume that seek times are non-linear with seek distance 

9. A write request is usually performed first on (a local main memory 
copy of the data item 1161. For recoverability, a log record is then pre- 
pared for the write. High performance systems usually store the log file 
in stable memory or in a separate log disk or tape. These log operations 
do not interfere with the disk reads. The physicad update to the disk 
copy of the data item is done by the buffer manager, typically after the 
transaction commit. 
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Fig. 17. MD,, as a function of p .  ;1 = 43 reqhec., Smh = 36ms, 
S,,r8x = 326ms. Disk simulation. 

[5]. In particular, we use the following formula to compute 
the access time (Access(n)) for an 1/0 request n tracks away 
from the current head position [5]. 

Access(n) = (DiskFactorh  + DiskConstunt) msec, 
where DiskFactor is the seek time scaling factor and 
Diskconstant measures the rotational latency plus the 
transfer time of an average request. 

As in our Ethernet simulation, 1/0 requests are being gen- 
erated according to a Poisson distribution at a rate of /z jobs 
per seconds. We model disk requests at the track level. Rota- 
tional optimization is not considered in this paper. Each disk 
request can thus be represented by a track number. We as- 
sume that these track numbers (of disk requests) are uni- 
formly distributed in the range [I, MaxTrack], where M u -  
Truck is the highest track number of the disk. Deadlines" of 
requests are computed according to the following formula: 

Deadline = Arrival-Time + UnifOrm([S,,,, SmX])" 

where Arrival-Time is the arrival time of the request and 
Uiziform([a, b ] )  represents a random slack uniformly taken 
from the range [a, b] .  

Table 2 shows the parameter setting of our disk baseline 
experiment. Again, simulation results are obtained by aver- 
aging the statistics of three runs. Each run lasts 4,500 sec- 
onds simulation time. At a load of 43 requests/sec., about 
193,500 requests are generated per run. The 95% confidence 
interval is III 0.13 percentage point. 

TABLE 2 
BASELINE SETTING FOR DISK SIMULATION 

Fig. 17 shows the percentage of missed deadlines by Bal- 
ance and Chop obtained from our simulator as p varies. From 
the figure we see the characteristic performance curve of 
Chop. In the baseline experiment, the optimal value of MD,, 

10. Here a deadline of an 1/0 request is the time by which the request 
has to be completed, not started as we assumed for the analytical and Ether- 
net models. 

11. Note that the execution time does not appear in the deadline formula. It 
is because the amount of time it takes for a disk read depends on the position 
of the disk head before the read, which cannot be predicted. The slack time in 
the formula, generated from the uniform distribution, thus represents how 
much time is given to the disk read, instead of how much waiting time the 
request can be delayed without causing a missed deadline. 

is 1.59% which occurs at p = 0.34. This is about a 41% im- 
provement over Balance (2.69%). 

For disk scheduling, we do not compare the simulation 
result directly and point-by-point to the analytical result as 
we did for the Ethernet case. This is because the access time 
(or the service time) distribution of disk requests is not ex- 
ponential. Yet, we would like to remark that the baseline 
setting (Table 2) of our disk experiment is )chosen such that 
the values of MD,,,, are relatively the same in all three 
cases we studied: analytical (2.64% in Fig. 7), Ethernet 
(2.69% in Fig. 15), and disk (2.69% in Fig. 17). The perform- 
ance of Chop in these cases thus reflects how well this strat- 
egy works compared with Balance in the various environ- 
ments. From the figures, we notice that the performance of 
Chop in the disk simulation mimics closely to what the 
analytical model shows. Moreover, the relatively large un- 
derestimation of MDChq by the analytical model at low 
value of p in the Ethernet case (Fig. 15) does not occur in the 
disk case. Tkis is because no particular overhead is incurred 
when a disk is stressed with high load. 

To further illustrate the effect of load stress on the per- 
formance of Chop in the Ethernet and disk environments, 
we increase the load of the two systems gradually from the 
baseline-setting load up to 50% more. Figs. 18a and 18b 
compare the miss deadlines percentage of Balance and Chop 
in the Ethernet and disk models, respectively. From Fig. 
Ha, we see the toll taken by load stress on Chop in the Eth- 
ernet environment. At high load, severe network contention 
discourages Chop from keeping the load of the high priority 
network low while routing too many loose-slack packets on 
the other neiwork. As a result, Chop does not perform much 
better than Balance does at a high load situation. The same 
phenomenon does not occur in the disk case as shown by 
Fig. 18b. The Chop strategy is seen to blend well with the 
Elevator algorithm even when the system load is high. 

(a) Ethernet 

0 
1 1.051.11.151.21.251.31.351.41.451.5 

X (packets/time unit) 

(b) Disk 
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0 '  I I I 

45 50 55 60 65 
X (requests/second) 

Fig. 18. Effect of load stress in (a) Ethernet and (b) disk environments. 



In this section, we showed some representative simulation 
results of Ethernet and disk scheduling and compared them 
to that obtained by the analytical model. Though not shown 
in this paper, we have performed extensive experiments with 
the simulators, varying parameters over wide ranges. In all 
cases, the simulation model confirms the trends identified by 
the analytical model. Among the observations we drew from 
the simulation results, we saw an important relationship be- 
tween the performance of Chop and the reaction of a server to 
load stress. We noticed that Chop was particularly effective in 
cases when a high load did not cause significant overhead at 
the server. In such a case, the strategy of stressing one server 
while relaxing the other yielded a significant reduction in the 
missed deadline percentage. 

6 CHOOSINGP 

As has been pointed out earlier, the performance of the Chop 
strategy depends on the p values used by the dispatchers. 
Although it is not crucial to have exactly the optimal p value 
for a given configuration (see, for example, Fig. 7) it is impor- 
tant to have a reasonable value. Thus, an important question 
is how a real system would select such a p value. 

There are many ways this could be done. For example, if 
the system parameters are static, the analytic model could 
be used to select the optimal p ,  which our simulation results 
show to be close to the actual optimal p .  If the system is 
dynamically changing, it is possible to design an adaptive 
strategy that automatically tunes the p choice. Here we de- 
scribe one possible implementation of this dynamic tuning 
on a dual-Ethernet system. Due to space limitations, our 
description is brief. 

As explained in Section 4, the search for the optimal p 
can be confined to the range [0,0.5]. We can thus start by 
operating the system at p = 0.5, which guarantees a per- 
formance at least as good as Balance’s. Our strategy is to 
continuously explore the neighborhood values of p for 
improvement. To achieve this, we elect a network coordi- 
nator whose job is to periodically collect missed deadlines 
statistics from its peer nodes, decide on a new p (by in- 
crementing or decrementing the current value by some 
amount x) ,  and then broadcast its decision.*’ If the new p 
does not cause a reduction in missed deadlines, the coor- 
dinator will switch the direction of p updates (e.g., from 
increments to decrements). 

Since MDCh,,un,,orm is a convex function of p (see (4)), a local 
optimum is also the global optimum [26]. The above men- 
tioned strategy, which is an example of nearest neighbor 
algorithms, is thus capable of locating the optimal p value 
with a discrepancy of the size of the stepwise update x .  This 
argues for a small value of x .  On the other hand, if x is cho- 
sen too small, it will take a long time for the system to con- 
verge to the optimal p value. Fortunately, as discussed in 
Section 4, the M D  curve is quite flat near the optimal point. 
A small value of x, and hence an accurate estimation of the 
optimal p ,  is therefore unnecessary. 

To demonstrate how well the algorithm works, we 

12. If the coordinator dies, either a re-election is held or all dispatchers 
set p to 0.5. Again, the latter option ensures a performance no worse 
than Balance‘s. 

simulate a 10 node dual-network system as shown in 
Fig. 14 with an exponential distribution for transmission 
time of mean 1 msec. The coordinator changes p once 
every 20 seconds by a step of 0.01. System load is initially 
800 packets/second. To illustrate how the strategy adjusts 
to a changing load, at time 700 the load is reduced to 
600 packets/second. Fig. 19 shows a trace of the value of p 
as a function of time. From the figure we :see, for example, 
that after startup it takes about 5.7 minutes (or 17 
updates) for the system to arrive at its optimal operating 
point (at p = 0.41). At time 700, it talkes 3.3 minutes 
(10 updates) for the system to automatically adjust to the 
new system load. 
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Fig. 19. p adopted by nodes. 

We emphasize that the p selection algorithm we have 
described does not make any assumptions on the packet 
arrival/service-time distributions. (Of course, the simula- 
tor used for testing it is using a specific choice of func- 
tions.) So, as long as the fraction of missed deadlines, 
MD,,, is a convex function of p ,  the algorithm can locate 
the optimal p value. 

7 OTHER VARIATIONS OF THE BASE MlODEL 

Although the simulations of Section 5 show the perform- 
ance of the Balance and Chop strategies in specific scenarios, 
we still continued to make three fundamental assumptions: 

1) there were only two servers, 
2) tasks were aperiodic, and 
3) servers were not using real-time scheduling locally. 

How critical are these assumptions? Will Chop continue to 
perform well even if they are changed? I11 this Section we 
address these questions. In particular, we extend our base 
model and study other system configurations. We first dis- 
cuss how to modify the Chop strategy to accommodate 
more than two servers. We then look at the case when there 
are periodic tasks as well as aperiodic ones. The impact of 
having other execution time distributions (besides exponen- 
tial), and other real-time queueing algorithms such as earli- 
est-deadline-first and least-slack-first is also discussed. 

7.1 Multiple Servers 
Our discussion so far only considers a dual-server system. 
The idea of chopping up the load according, to task slack can 

~ 



~ 

66 

For this experiment, we simulated a dual FCFS server 
system with the Chop dispatcher installed. Tasks are of two 
types: periodic and aperiodic. There are 10 streams of peri- 
odic tasks. Stream i (1 5 i 5 10) has a period of 1.5 + 2.95i.I3 

13. These numbers are picked so that the slack of periodic tasks spans 
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be applied to an n-server system as well. Suppose we have 
n servers named Server,, Server2, ..., Server,,. One way to par- 
tition the load would be to direct a p1 fraction of the load 
with the tightest slack to Server,, a p2  fraction of the load 
with the next tightest slack to Server, and so on. As an ex- 
ample, if the slack distribution is uniform in the range 
[S,n,,,, Smax],  then Server, would get all the tasks whose slack is 
in the range [S,,, + k(p,  + ... + p,-,), S,,, + k(p, + ... + p,)] where 
k = S,,,, - S,n,, (see Fig. 20). The load to Serverl is R p,. We cart 
use (2) to compute the fraction of missed deadlines at each 
server. Since the pls sum to one, the overall fraction of 
missed deadlines can be expressed as a formula with n - 1 
parameters: MD,,,,qo,(pll ..., p,-,). The values of the p,s are 
then determined by locating the minimum of MDm,,,,m(). 

slack dist. 
server 1 

Fig. 20. n servers. 

The above way of determining the servers' load works 
but is computationally expensive and is not practical espe- 
cially when n is large. Alternatively, we can approximate 
the values of the optimal p,s by considering a tree of dis- 
patchers. We first divide the server pool into a tight-halfwith 
rn/21 servers and a loose-half with Ln/21 servers. We then 
consider the two halves as two servers with servicing ca- 
pacities of rd2-I  and Ln/21 times of a single server. The 
original Chop strategy is then applied to determine the hac- 
tion of the load (and hence the slack range) to be directed to 
the two halves. This process is recursively repeated for each 
half until the load to each individual server is determined. 
With the tree method, we have to locate the minimum 
points of n - 1 curves, each with one parameter. This is con- 
siderably less expensive to do than finding the optimal 
point for MD,,,,,,,(), which has n - 1 variables. We have 
compared the two methods on a three-server system and 
found that they give almost identical performance on 
missed deadlines. 

When the system is dynamic, or when a priori informa- 
tion about load and slack is not available, the use of the 
analytical formula to estimate the values of the p,s fails. 
To locate the optimal values of n - 1 variables in a dy- 
namic system could be very difficult. For this reason, 
methods that use less number of parameters are desirable. 
Here, we mention two. One method, which we refer to as 
the p - n, method, partitions the server pool into two 
parts. One with n, servers, the other with n - n, servers. 
The two pools of servers are considered as two single 
servers with different capacities. The Chop strategy is then 

applied to this dual to determine their load. Among each 
server pool, the Balance strategy is used to subdivide the 
assigned load. The p - n, method, which uses two vari- 
ables (s7 and n,), can be simplified further by fixing n, to 
Ln/2]. We call this the n / 2  method. 

Fig. 21 compares the performance of Chop using differ- 
ent approximation methods on an n-server system. The 
performance of Balance is also shown. In the figure, we 
vary n, the number of servers, and measure the fraction of 
missed deadlines. The system load is 0.7 x n, the average 
utilization of the system is therefore 0.7. The slack distri- 
bution is [0.5,30]. 

7 
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Fig. 21. PeFformance of Chop with different approximation methods. 

From the figure, we see that Chop with the tree method 
performs best. It reduces M D  by about 38% over Balance. 
The p - n, method and the n/2 method also do fairly well, 
with an M D  reduction of about 27%. Further experiments 
with different parameter values show that the p - n, and 
n/2 methods perform very similarly. Therefore, in most 
situations, the use of the parameter n, is unnecessary. In 
conclusion, in an n-server system, if the load is relatively 
static with a known slack distribution, the Chop strategy 
with the tree method is the algorithm of choice. In a more 
dynamic environment, however, the n /2  method, which 
performs well, is more manageable with only one pa- 
rameter to tune, and still gives significant improvements 
over the Balance strategy. 

7.2 Periodic Tasks 
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Note that tasks with shorter period contribute more load 
to the system than tasks with longer period. We assume 
that the deadline of a periodic task is the arrival time of 
the next task of the same stream. The execution time of a 
periodic task is set at 1.0. For aperiodic tasks, they arrive 
according to a Poisson distribution. Their execution time 
is exponential with an average of 1.0. Their slack distribu- 
tion is uniform in the range t0.5, 301. The total load to the 
system is 1.6, with which half of the load is due to aperi- 
odic tasks. 

Fig. 22 shows the fraction of missed deadlines of three 
periodic task streams (Streams 1, 5, and 9), of the aperiodic 
task, and of the system as a whole. We see that there are 
"jumps" in the curves which occur at regular interval 
(when p = 0.1,0.2,0.3,0.4, ..). This is due to the fact that the 
dispatcher only direct tasks according to their slack, and 
periodic tasks take on only ten discrete levels of slackness 
in our simulation. As an example, when p is smaller than 
0.1, all periodic tasks are directed to Server 2, saturating it. 
When p is between 0.1 and 0.2, Stream 1 goes to Server 1, 
which is lightly load, and almost all deadlines are met 
there. Server 2, on the other hand, is still saturated by the 
other nine periodic streams, plus 90-80% of the aperiodics. 
When p is larger than 0.3, the load of Server 2 is light 
enough for it to handle most of its tasks, and there is a large 
drop in missed deadlines. Finally, when the value of p is 
between 0.3 and 0.4, the percentage of system missed 
deadlines ranges from 4.5% to 5.0%. This compares very 
favorably to Balance, which misses 8.7% of the deadlines 
(not shown in graph). 
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Fig. 22. Simulation result with periodic tasks. 

In conclusion, the inclusion of periodic tasks do change 
the behavior of the system, e.g., it introduces "jumps" in 
the M D  curve. However, the curve still exhibits roughly 
the same convex shape. Also, Chop can still yield signifi- 
cant performance gain over BaZance (almost halved the 
number of missed deadlines for the particular scenario 
shown here.) 

7.3 Others 
We have studied the performance of the dispatcher algo- 
rithms under other different scenarios. For example, we 
simulated the system with different task execution time 
distributions (normal, uniform, etc.) and different arrival 
patterns. We have also modified the Chop dispatcher so that 
it directs tasks not by their slackness but by their deadlines. 

In any case, the same general conclusion can be drawn as 
that from the base-line experiments. 

In this paper, we focus our attention on non-real-time 
servers. We assume that these servers are not capable of 
doing real-time scheduling, such as earliest-deadline-first 
and least-slack-first. Since the Chop strategy can very well 
be applied to systems with real-time servers, it is thus inter- 
esting to study how it fairs in this environment. To this end, 
we simulated a dual real-time server system. Our results 
show that the performance benefit of applying Chop over 
Balance is not impressive with real-time servers. The reason 
is that Chop, which stresses one server wlhile relieving the 
other, does not perform outstandingly under a high load 
condition (see Fig. 10). Also, under low load, the real-time 
schedulers alone are capable of maintaining a very low 
missed-deadline percentage and therefore a sophisticated 
dispatcher algorithm, such as Chop, is not necessary. 

8 CONCLUSION 

In this paper, we have discussed how multiple non-real- 
time servers can be used to support soft real-time sched- 
uling. Our approach is unusual (at least from the perspec- 
tive of conventional real time systems) because we are 
assuming that 

1) we cannot afford or do not have available a real-time 

2) we can tolerate some missed deadlines (soft real-time 

We believe there is a wide class of applications where this is 
true, and where strategies like Chop can significantly reduce 
the number of deadlines that are missed. 

Through a simple analytical model, we studied and 
compared two ways of utilizing the replica: a balance 
scheme in which load is evenly distributed, and a prioriti- 
zation strategy in which jobs are segregated according to 
their slackness. We show that in cases where tight slack jobs 
cause a disproportionately high number of missed dead- 
lines, segregation can significantly improve the system's 
real-time behavior. This improvement is particularly 
marked (e.g., Chop misses up to afuctor of :3 fewer deadlines 
than Balance in Fig. 13) when the system load is moderate 
and there is a wide variation in job slackness. In practice, 
we would expect the load on a real-time network to be 
moderate, else too many deadlines would be missed. Thus, 
it seems reasonable to expect Chop to perform much better 
than Balance. 

To verify the analytical results and to study more realis- 
tic environments, a dual-Ethernet system and a mirrored 
disks system were simulated. The results indicate that the 
analytical model indeed captures the essential system char- 
acteristics, and is a useful tool for studying such systems. 

It is interesting to note that our basic idea, that of sglit- 
ting load according to real-time slackness, can be applied to 
other replicated system components. For example, in a da- 
tabase system with replicated database servers, read re- 
quests could be routed according to transaction slack. 
Similarly, in a multiprocessor system, rlequests could be 
queued by slackness. 

server; and 

systems). 
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