

Dynamic Supply Chain Integration -- An Knowledge-based Decision and Coordination Framework

Minhong Wang Division of Information & Technology Studies Faculty of Education, HKU Feb 2007

Minhong Wang, et al., "Dynamic Supply Chain Integration through Intelligent Agents", *Proceedings of 40th Hawaii* International Conference on System Sciences (HICSS-40), IEEE Computer Society Press, Hawaii, US, January 2007.

Background

- What is supply chain
 - A sequence of activities and organizations involved in producing and delivering a good or service.

- E-Supply chain
 - large number of resources from a global market
 - increased uncertainties of both demand and supply
 - more complex and dynamic relationships between supply chain partners

Background (cont)

- E-Supply chain requires more flexibility in
 - customer demand
 - partner relationship

Dynamic Supply chain integration

- supply chains dynamically set up in response to market requirements –
 - · flexibly plan the sequence of activities to satisfy the requirement
 - rapidly identify suitable partners/resources from the e-market
 - effectively coordinate partners and their activities throughout the chain

How to achieve flexibility through dynamic supply chain integration?

Analysis on Supply Chain Integration

- Main issue & concept
 - Individual vs. integrated service
 - Partial solution vs. global solution
 - Constraint management for achieving coherence among partial solutions
- Main problem
 - Undetermined requirements/constraints of individual services
 - Unpredicted solutions to individual services

Dynamic constraints management in a distributed environment

Related Work

- Job-shop scheduling, workflow scheduling and resource management
 - Jobs, operations, resources
 - Work out a feasible or optimal job schedule
- QoS aware web service composition
 - Quality of Service (QoS) capability, quality, cost, time, etc.
 - Work out a feasible or optimal composition plan
- Limitation
 - They assume
 - · Requirements of individual service are always determined
 - Possible solutions to individual services are always known
 - Failed to adequately address the dynamics and uncertainties of the operating environments.

Proposed Approach

- Objective
 - Deal with undetermined constraints and unpredicted solutions of the individual services involved in the chain
 - Working out a mutually satisfying solution to the integrated service
- Solution
 - Agent-oriented computing
 - Knowledge-based dynamic decision and coordination

Agent-oriented Computing (AOC)

- AOC is to model and construct complex problems by decomposing and assigning them to a number of flexible and interactive autonomous software agents
- Software Agent
 - It is a computer system that enjoys properties as autonomy, reactivity, pro-activity, and social ability
 - A group of agents may interact with one another to collaboratively achieve their goals in a distributed environment
- Agents are suited for applications which
 - are not all known a priori
 - are not fully controllable behaviours
 - must interact through communication and coordination_

Features of supply chain integration

Agent-based Computing in Distributed Constraint Management

- Each service is assigned to an agent
 - service -> variable
- Each agent is to find a solution to the service
 - solution -> value
- Agents coordinate with each other towards a global solution
 - Intra- & inter-agent constraints (time, cost, location, etc.)

Framework

A Supply Chain Process

Decision and Coordination Process

Key Steps

- Identify partially compatible solutions
 - Information collecting and sharing
- Figure out promising solutions
 - Knowledge generation from information
- Recommend promising solutions to relevant agents
 - Knowledge dissemination for coordination
- Refine constraints towards mutually satisfying solutions
 - Knowledge utilization for dynamic decision

Knowledge-oriented Cycle

lechnology in Ed

Agent Architecture

How to figure out promising solutions?

Calculate the Promising Value of a Solution

- Promising Preceding Solution
 - Pre_prom (Bidij) = w_conn * Pre_conn (Bidij) + w_tf * Pre_tf (Bidij)
- Promising Succeeding Solution
 - Suc_prom (Bidij) = w_conn * Suc_conn (Bidij) + w_tf * Suc_tf (Bidij)

Strategies for Selecting a Promising Solution

- Elitist strategy
 - Selects the best bid
- Random selection strategy
 - Choose a bid at random
- Tournament selection strategy
 - If the tournament size is higher, weak individuals have a smaller chance to be selected
 - Equivalent to elitist strategy when the tournament size is the population size
 - Equivalent to random selection when the tournament size is 1

(random constructions - to avoid being entrapped in a local optima by diversifying the search in the vicinity of local optima)

Experiments

- Build a prototype to simulate the supply chain integration process
 - Test the feasibility of the proposed approach in different situations
 - Compare the impact of three strategies of selecting a promising solution
 - Elitist strategy
 - Tournament selection
 - Tournament size
 - Random selection

Comparison of three selection strategies

Discussion

- Implication
 - Knowledge-based decision and coordination with dynamics and uncertainties
 - Agent-oriented computing for complex problems
- Future work
 - Consideration of human interaction with the automatic system
 - More investigation on complex supply chain structure

Thank you!