The Design andInstantiation of anOntology for Teaching

George Kuk & Dave Elliman University of Nottingham

The Ontology

- Topic is the main entity
- Topics have levels
- Pre-requisite is an ordering relation
- The graph is directed (no loops) within a level but can spiral up
- Topics contain lower level nested ontologies to any depth

The Class Model is Recursive

• A Syllabus: Making English Tea

- 1. How to boil water
- 2. Heating the pot
- 3. Adding Tea
- 4. Adding Water
- 5. Brewing
- 6. Pouring
- 7. Adding Milk and Sugar
- 8. Polite drinking practice

These topics from an ontology together with their prerequisites

- We can data-mine the ontology from the syllabus which will be at a defined level (loosely GCSE, A-Level, 1st Year degree, Finalist etc.)
- It helps to go via XML but not essential
- Pre-requisites need attention by hand as most are implicit
- Sub ontologies likely within each topic

A sub-topic ontology

- 3 Adding Tea
- 3.1 The choice of breakfast, speciality or fruit teas (only in Germany).
- 3.1 The pros and cons of tea-bags
- 3.2 Calibration for strong or weak preferences
- o 3.3 The "one for the pot" rule
- 3.3 Measuring Decorative spoon or metric scales?

The level reflects the charactersitics of the learners

- Level 1: Pre-school tea-making. Very simple instructions, strong emphasis on safety. Success is anything drinkable
- Level 2: Ordinary tea-making. A number of sophistications taught with the goal of making "A good cuppa"
- Level 3: For hotels and good restaurants. A precise and detailed art is taught with the aim of delighting the connoisseur

Colouring occurs as learning proceeds along a trajectory

An aggregate view for the teacher showing levels of group undertsanding

• • Progress can be Data-Mined

- From online tests easy obvious
- From coursework harder but very powerful idea especially if automatic
 - We noted constructions used in programs (e.g. while loops, if the else etc. & noted competent usage)
 - We noted debugging strategies (e.g. commenting out, print statements added)
 - We noted success at a program (e.g. for sorting)
- All done using fairly simple text searching tools

• • We discovered things!

- Where people were stuck and realised our teaching was often to blame – for example:
- o A variable is not a pigeon hole!
- You can't easily correct your program without a knowledge of debugging.
 Our pre-requisite structure (order of teaching was wrong)

• • • An interesting fact we had not appreciated

• • Conclusions

- The idea works
- It gives back a lot of information
- Our tools are ad-hoc and prototypes but we now know how to do this properly
- Students really appreciate being monitored and are easily amazed at how much we have learned about them
- Once set up needs minimal effort from the teacher to keep it working

• • • We think...

- An ontology (or rather a tree of ontologies) is an excellent structure for teachers to represent knowledge
- A relational database is perfect for storing the data
- Data mining is what makes it all work with an acceptable level of effort
- The resulting system is to education what computer-based accounts has been to commerce

Any Questions

