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Abstract—This paper presents two recently developed algo-
rithms for efficient model order reduction. Both algorithms enable
the fast solution of continuous-time algebraic Riccati equations
(CAREs) that constitute the bottleneck in the passivity-preserving
balanced stochastic truncation (BST). The first algorithm is
a Smith-method-based Newton algorithm, called Newton/Smith
CARE, that exploits low-rank matrices commonly found in
physical system modeling. The second algorithm is a project-
and-balance scheme that utilizes dominant eigenspace projection,
followed by a simultaneous solution of a pair of dual CAREs
through completely separating the stable and unstable invariant
subspaces of a Hamiltonian matrix. The algorithms can be applied
individually or together. Numerical examples show the proposed
algorithms offer significant computational savings and better ac-
curacy in reduced-order models over those from conventional
schemes.

Index Terms—Algebraic Riccati equation, balanced stochastic
truncation (BST), Newton method, Smith method, SR algorithm.

I. INTRODUCTION

N BACKEND verification of very-large-scale integration

(VLSI) design, initial state-space modeling of interconnect
and pin packages easily involves thousands or millions of state
variables, thereby prohibiting direct computer simulation and
analysis. Model order reduction (MOR) (e.g., in [1]-[20]) has
become an integral step wherein the original linear model is
reduced to, and approximated by, a much smaller linear model.
It is desirable that the reduced-order model has small error over
the frequency and/or time domains. Important properties such
as stability and passivity! must also be preserved along the
reduction process in order for the reduced-order models to be
useful [1], [2].

MOR techniques include transfer-function moment matching
(e.g., asymptotic waveform evaluation (AWE) [3]), Krylov
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! A passive system is one that does not generate energy internally. A dissipa-
tive system, such as an RLC network, is passive.

subspace projection (e.g., Padé Approximation via Lanczos
(PVL) [4], and matrix PVL (MPVL) [5]), and the passivity-
preserving congruence transform (e.g., passive reduced-order
interconnect macromodeling algorithm (PRIMA) [1]). These
schemes can be implemented by computationally efficient
Krylov iterations [21] and often work well; however, they are
“feasible” designs and not “optimal” in terms of any approxi-
mation criterion. Another class of techniques stem from control
theory. Examples include the optimal Hankel-norm approxima-
tion [6], standard balanced truncation (BT) [7]-[9], [13], and
the passivity-preserving balanced stochastic truncation (BST)
[9]-[12], [14], [20]. The merits of these control-theoretic ap-
proaches are their superior global accuracy and deterministic
error bounds [6], [11]. These schemes are, however, expensive
to deploy due to the need of solving large-size matrix equations
and decompositions. For example, standard BT requires solving
a pair of Lyapunov equations (linear matrix equations), while
BST calls for the solution of a pair of continuous-time algebraic
Riccati equations (CAREs), i.e., quadratic matrix equations
[22]. To alleviate the cost of standard BT, a series of recent work
took advantage of the low-rank input/output matrices arising
in many physical systems and developed the Cholesky-factor
standard BT variants (e.g., in [13], [15]-[17], and [23]). These
schemes are mainly based on the alternating direction implicit
(ADI) method of solving Lyapunov equations and have compa-
rable speed to the popular projection-based methods. However,
standard BT does not guarantee passivity. BST preserves both
passivity and stability and poses no special structural require-
ments on the original state space [12] but suffers from the high
computational cost of solving CARE:s. In fact, solving even a
moderately sized CARE can be computationally intensive [18].
The heuristics in [24] tackle large CAREs with low-rank and
sparse matrices, but theoretical basis and convergence proof are
unavailable.

Standard techniques of solving a CARE include forming a
Hamiltonian matrix and identifying its stable invariant sub-
space [22], [25]-[27]. Another way, provided a stabilizing
initial condition is known, is to use the Newton method, which
solves a Lyapunov equation in each iteration [22], [28]. In this
paper, we summarize and report our recent work on fast im-
plementations of both the Newton and Hamiltonian approaches
in the context of large-scale BST [18], [19]. The first contri-
bution is a Smith-method-based Newton algorithm, called the
Newton/Smith CARE (NSCARE) algorithm, for quickly solv-
ing a large-scale CARE containing low-rank input/output ma-
trices [18]. The algorithm uses Krylov subspace iterations and
is numerically stable. The second contribution is an effective
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two-stage project-and-balance reduction algorithm [19], which
provides a framework for trading off computational cost against
model approximation accuracy. The projection basis in the first
stage is formed by the dominant eigenspaces of the controlla-
bility and observability Gramians [8], [15], [17]. The projected
intermediate model is then further reduced by BST. A novel
observation that relies on completely separating the stable and
unstable invariant subspaces of a Hamiltonian matrix reveals
that two dual CAREs in BST can be jointly solved at the
cost of essentially one. Numerical examples show the proposed
algorithms exhibit fast reduction and deliver excellent model
accuracy.

The paper is organized as follows. Section II presents
the problem setting and preliminaries. Section III introduces
the NSCARE algorithm and Section IV presents the project-
and-balance algorithm. Numerical examples in Section V
demonstrate the effectiveness of the proposed algorithms
over conventional approaches. Finally, Section VI draws the
conclusion.

II. BACKGROUND AND PRELIMINARIES

A target application of the proposed algorithms is in the
reduction of large-scale RLC (and therefore passive) circuits
commonly encountered in VLSI interconnect and package sim-
ulations. Consider a minimal state-space model of

i =Ax + Bu (1a)

y=Cx+ Du (1b)
where A € Rnxn, B e Rnan’ C e Rmxn’ Dc Rmxmy B,
and C are of low rank, i.e., m < n, and u € R™ and y € R™
are power conjugates.> The system matrix A is assumed stable
or, equivalently, its spectrum is in the open left half-plane, de-
noted by spec(A) C C~. We assume that D + DT > 0, where
the notation M > 0 (M > 0) means that the symmetric matrix
M is positive definite (positive semidefinite).

RLC state-space models from modified nodal analysis
(MNA) [29] in VLSI interconnect modeling have the properties
of A+ AT <0, B=CT, and D = 0 [2]. Such a system can
be recast into an equivalent form with D + DT > 0 [9], [30].
Moreover, an RLC system in the descriptor format [2] with a
singular £ (€ R™*™) preceding & can be transformed into an
equivalent minimal form in (1) [13], so the settings in (1) are
assumed without loss of generality.

The controllability Gramian W, and observability Gramian
W, are solved through the following continuous-time
Lyapunov equations:

AW, + W.AT + BBT =0 2)
ATW, + W, A+ CTC =0. (3)

2For every component of v that is a node voltage (branch current), the
corresponding component of y is a branch current (node voltage) so that uTy
represents the instantaneous power injected into the system.
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The spans (ranges) of W. and W, denote the reachable
and observable states, respectively. For many physical systems
including RLC circuits, W, and W, are of low numerical
rank or approximately so. The implication is that the state
activities usually take place in, or through, projection can be
well captured by some lower dimensional subspaces [23].

A. Smith Method
The Smith method (e.g., in [9], [13], and [16]) solves a

continuous-time Lyapunov equation by transforming it into a
discrete-time version having exactly the same solution. For
instance, the following two equations solve the same W_:

AW. + W. AT + BBT =0 (4a)

AW ALY + W, + BB, =0 (4b)
where A, = (A —pI)(A+pl)~', B, = /=2p(A +pl)~'B,
and p € C™ is a shift parameter. It follows that W, =
Sty ALB,BY(A7)". In practice, we want to minimize
the spectral radius of A, so that the power terms decay
quickly and the infinite summation can be well approxi-
mated by finite terms. A simple possible choice is p =
— /A max (A)|[Amin (A)] [9]1, where Amax(-) and Apin(-) de-
note the maximum- and minimum-modulus eigenvalues. An
important observation is that W, is naturally cast as a matrix
factorization, namely, when the growth of the summation be-
comes negligible after k terms

k-1 )
Wen Y ALB,BY (A})' = Ki(Ap, By)Ki(Ap, By)T (5)
1=0

where Ky (Ap, Bp) = [By ApBy, - -+ AF1B,] is called the kth
order Krylov matrix and serves as a Cholesky factor of W..
Obviously, this Krylov matrix factorization is computationally
advantageous when B, is of low rank and when the rank
information of the Krylov matrix can be revealed quickly. The
application of the Smith method in standard BT of VLSI models
can be found in [9] and [13]. It should be noted that the Smith
method is mathematically equivalent to the ADI method with a
single shift parameter [6], [17], [23]. In fact, in our algorithms,
the Smith-method-based parts can readily be replaced with
the ADI scheme with multiple shifts. The Smith method is
chosen because of its ease of exposition and also because it
requires only one large-scale matrix inversion (in finding A,),
which constitutes the most expensive step in both proposed
algorithms.

B. Krylov Subspace Iteration

The structure of a Krylov matrix lends itself to iterative
computation. Among others, Arnoldi and Lanczos algorithms
[21] are numerically efficient procedures for obtaining the
Krylov matrix. We present only the Arnoldi algorithm here, due
to space limitation. The following MATLAB-style pseudocodes
assume a rank-one B,, but block versions of Arnoldi and
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Lanczos algorithms are available for B,, of arbitrary ranks (e.g.,
in [1] and [2]).

SmithArnoldi: Input (4,, B,, max _itr, tol)
j=1;
q1 = By /|| Bpll2: Q1 == [q1]; B:=1,
Hy:=[]; Ry == [[| Bp|l2)s
W1 = BpB,T;
While j < max _itr,

fori:=1toj

hij := q} Apgs;
end for '
rj+1 = Apg; — X hijai

hlj
H; = Hja .
hj—1,;
[0 O ﬂ] 7]
ify>1
R‘,l R',l(:,j - 1)
R; = J H;|7
e T L
wj = Qi R;(;,7);

Wj = Wj_1 + ijjT;
if (JJw; ]2 < tol) break while loop;
end if
8= lrjsall2
if (8 < tol) break while loop;
qj+1:=T1j41/05;
Qiv1:=1[Q; ¢+l
Ji=J+1L
end while
k := number of columns in R;;
Return Wy, Qr, Ry, and Hy.

In short, the Arnoldi algorithm iteratively computes the &
orthogonal columns of Q; € R™ ¥, an upper Hessenberg ma-
trix Hy € R**%_ an upper-triangular matrix R;, € R¥**, and an
accumulation matrix WWj, € R™*"™ such that

D QLQr = Ii;

2) Hy = QEAka;

3) ’Ck(Ap’Bp) = [Bp APBP
QR factorization;

4) Qy spans the range of i (A,, By);

5) Wi = Ki(Ap, Bp)Kr(Ap, By)" = (QrRi)(QrRy)™.

Alglep] = QkRk is a

C. BST

The positive real lemma [2] states that the system in (1) is
passive if and only if there exists a P (€ R™*™) > 0 satisfying
the linear matrix inequality (LMI)

ATP+PA PB-CT

B'P-c —(D+D%)| = ©
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Using the Schur complement, (6) is equivalent to

AYP+PA+(PB-CY)(D+ DY) Y(BTP-C) <.
(7

The solution of (7) being zero is a CARE. Taking the matrix
root ;LT = (D + DT)~! and defining B = BL, C = L"C,
and A = A — B(D + D")"'C, the CARE is expressible as

F(P)=A"P+PA+PBBTP+C"C=0. (8

The solution of (8), if it exists, is not unique. There is a unique
stabilizing solution Py, in the sense that spec(fl + BBTPOO) C
C~. In the mechanics of BST, we first align (balance) the
most reachable states with a given input energy, quantified
by fi)oc u(t)Ty(t)dt, with the states delivering the maximum
energy to the output, quantified by — [, u(t)Ty(t)dt [9], [12].
It starts by finding the stabilizing solutions, P, and Quin, to
the following dual CAREs:

ATPmin + PminA + PminBBTPmin + éTO =0
AQmin + QminAT + QminéTéQmin + BBT =0.

(9a)
(9b)

Let Qumin = XX7T and Poin = YYT be any Cholesky factor-
izations; now, do the singular value decomposition (SVD)

XTy =uxvT? (10)
where ¥ > 0 is an “economy size” k-by-k (k < n) diagonal
matrix with singular values in descending magnitudes. Suppose
the singular values of X are

01202220, 0pq1] > 2> 0. (1D

These values quantify the importance of the states in the input-
to-output energy transfer. Accordingly, in MOR, the “tail” can
be truncated so only the most significant states remain. To do
this, define I,,, to be the identity matrix of dimension m, 0., xn,
to be an m X n zero matrix, and

Tr = [ Operp] = 2VTYT

I }
O(kfr)xr .

The system (T, ATgr, T B,CTr, D) then represents the sto-
chastically balanced (also referred to as positive-real balanced
[12], [20]) and truncated model. The best bound to date for the
frequency-domain approximation error can be found in [11].
BST is preferred to standard BT because it guarantees pas-
sivity, in addition to stability, in the reduced-order model
(e.g., in [9]-[12]).

Tp = XU 2 [ (12)

III. NSCARE ALGORITHM

We start with a brief recap of the Newton method in solving
CAREs (more details can be found in [22] and [28]). The
advantages of the Newton algorithm include its quadratic con-
vergence (once attained) and high numerical accuracy. Letting
P;, 7 =0,1,..., be the progressive estimates of the stabilizing
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solution, we define P; 1 = P; 4+ 6 P;, where d P; is the search
direction or Newton step. Substituting P; into (8)

F(P; +6P))=F(P;) + (A+ BBTP))TsP;

+6P;(A+ BB P;) + 6P;BBT6P;. (13)
Every Newton iteration step is a first-order error correction such
that the sum of the first three terms on the right of (13) goes to

zero, i.e.,

(A+ BBTP))"6P; + 6P;(A+ BBTP;) + F(P;) =0
(14)

which is simply a Lyapunov equation. After each step, (13) is
left with a quadratic residual term. Thus, from the second step,
ie., j = 1, onwards
F(P;) =6P; BBT6P; (15)

which is a low-rank matrix due to B. For compactness, de-
fine the Lyapunov operator £ 4 : R™*™ — R™*™ as L4(P) =
ATP + PA, so that (14) is rewritten as

L, pprp,(6P) + 8P 1 BBTSP 1 =0  (16)
for j = 1,2,.... This reminds us of the Smith method [cf., (4)]
and its associated Krylov matrix factorization. To take full
advantage of the low-rank input/output matrices, we note that
the Smith transformation involves computing the inverse (A+
BBTP; +pI)~!. Letting S, = (A+ BBTP;_; + pI)~! and
using a matrix-inversion lemma, we get

(A+BB™P; +pI)?
= (A+ BB"P;_y +pI + BB 6P;_;)™"

=S, — S,B(I + BY6P;_1S,B)"'BY6P; 1S,. (17)
Therefore, if S, is precomputed, the right-hand side of (17)
requires only an m X m inversion in subsequent steps provided
the same p is used. To sum up, the NSCARE algorithm that
solves (8) is as follows:

NSCARE: Input (A B,C, Py, max _itr ,tol)
Find the shift p corresponding to A+ BBTPO
Ty = (A+ BBTP, — pI);
S, :=(A+BBTPy +pI)*
Solve for 6Py in L3, gprp, (6FP) + F(Fy) = 0 with stan-
dard solvers. In particular, when Py = 0, solve L ;(0Fy) +

CTC=0 using the SmithArnoldi algorithm with input
[(TpSp)T, v/=2pS) CT, max _itr, tol;
j:=1;

While j < max _itr,
Pj = Pj_l + 5Pj_1;
O = BT(SPJ 1,
If convergence is slow, update p by
Fmd shift p corresponding to A+ BBTP;
(A + BBTP —pl);
S,, = (A+ BBTP] +pI)~!
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else use the same shift p and

T, := T, + B6O;
S, =S, — S,B(I +©5,B)10S,;
end if

Solve for 6P; in £ 5, prp (6F;) + 0Te =0
[ie., (16)] using SmlthArnoldl with input
[(TSp)", v/—2pS,) ©T , max _itr, tol];

If the Frobenius norm ||6 Pj||r < tol
Py =P +F;;

Break while loop and return P,;
end if

J=J+1

end while.

The convergence analysis of the NSCARE algorithm follows
closely from those in [22] and [28]. To save space, the main
results are given without elaboration: 1) for a stabilizing initial
guess Py, the subsequent Lyapunov operators in each Newton
step are nonsingular and P;, j =1,2,..., are also stabilizing;
0L <P <P+1<Poc,and3)0<HP — P4 <
Y Ps — P2, Where 7y is a positive constant, i.e., convergence
is quadratic once P; falls into the region of convergence.

In practice, the tolerance parameter tol is set to a small value
such as the machine precision. In the first call to SmithArnoldi
(i.e., finding 0 Py or § P;, depending on the initial condition F),
the number of iterations is the highest and then decreases in
subsequent runs once quadratic convergence is acquired. For a
strictly dissipative system such as an RLC circuit modeled to
high fidelity, it can be shown that there exists a representation
such that strict inequality is satisfied in (6) with P = I (see also
[9] and [14]). It follows that A is stable and the initial guess
of Py =0 is stabilizing. Moreover, since 0 < P; < P, < I,
we have |Px, — P;|| <1, j =0,1,.... In other words, under
the mild assumption of a strictly passive (dissipative) sys-
tem, the quadratic convergence of the NSCARE algorithm is
guaranteed.

Remarks:

1) In our NSCARE implementation, p is approximated by
first applying a Lanczos algorithm for x steps on A+
BBTPj to obtain a tridiagonal matrix T), € R"*", x <«
n, whose eigenvalues closely approximate the extremal
eigenvalues of A +BBTPJ». Then, a simple (inverse)
power iteration [21] is used to estimate the magnitude of
the maximum (minimum) eigenvalue of 7}, to form p. The
initial Lanczos process has O(xn?) work and the power
iterations require O(x?) work.

2) When a matrix-inversion lemma is used to update .S,
full-rank inversion is bypassed and the work reduces from
O(n?3) to O(m?). Subsequently, the only O(n?) steps in
NSCARE are the explicit updates of .S,. In case of sparse
matrices wherein the inversion in S, can be done with
O(n?) work, the whole algorithm will further reduce to
an O(n?) one. In our examples later on, it is found that
only one or two shift updates are needed. This is because
when P; is converging quadratically, the norm of 6 P; is
small and has little effect on p.

3) Suppose (9a) is solved with NSCARE in N Newton
steps with Py =0. Let the stabilizing solution be
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Ppin = P, and the number of iterations in
each call to SmithArnoldi be kq,ks,...,kn, and
kr = k1 + ko + - - - + kn. Then, in terms of the outputs
of SmithArnoldi, Prin = >0, (Qk, Ri,)(Qr, Ri,)™
= (QkT RkT)(QkT RkT)T’ where Qk:T = [le T QkN]
and Ry, = diag(Ry,, ..., Rk, ). Thus, referring to (10),
a factor of Py is given by Y = Q. Ri... The factor X
of Qmin is obtained similarly. In our experiments, N is
usually less than ten and k£ is in the order of tens or hun-
dreds regardless of the CARE size; thus, only a medium-
size SVD is needed even for high-order initial models.
Consequently, the NSCARE algorithm also helps to elude
two large-size matrix factorizations and one large-scale
SVD required by the original BST implementation.

IV. PROJECT-AND-BALANCE ALGORITHM

The NSCARE algorithm is suitable for the BST of medium
to large systems (say, orders from hundreds to thousands).
For even higher orders (thousands to millions), it is advisable
to adopt a two-stage project-and-balance approach. The idea
of a stepwise reduction is not new (e.g., in [12] and [15]).
The attention of our paper is on the efficient implementation
of such a scheme. In particular, the first projection step is
carried out by the fast Smith method as in NSCARE. More
importantly, in the second BST step, we introduce an innovative
way of simultaneously solving the dual CAREs at the cost of
essentially one. The step adopts a Hamiltonian approach that
does not rely on low-rank input/output matrices. As a result, it
is by itself an attractive scheme for BST of systems with a large
number of input/output ports.

A. Eigenspace Projection

The first stage of reduction is to select an appropriate sub-
space onto which the original high-order system is projected.
It is therefore well justified to use the (approximate) spans of
W. and W, as they capture (nearly) all state activities. This
idea appeared as dominant subspaces projection in [8] and also
as dominant Gramian eigenspaces method in [17]. The Smith
method together with Krylov iteration are attractive candidates
for the task. For example, the SmithArnoldi algorithm can be
used for extracting the span of, say, W in (4). Suppose the algo-
rithm converges in 7 steps rendering K, (A,, B,) = Q. R,; it
is obvious that @)~ spans the column range of .. A counterpart
@, corresponding to the column range of W, is obtained sim-
ilarly. A Gram—Schmidt (GS) orthogonalization of @),, against
Q@ (columns in ), are already orthogonal) produces an orthog-
onal Qr = GS([Q- Q.]) € R™* k <7+ v, which can be
taken as the projection basis to generate an intermediate model
of order k. Referring to (6), RLC models obtained from MNA
have the properties A + AT <0, B=CT, and D =0 [14].
The passivity of the circuit is then borne out by the fact that
P =1 is a solution satisfying (6). Performing a congruence
transformation of compatible dimensions, we have

T T AT
i e | U
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Itis easily seen that the system (Q} AQy, QF B, CQ, 0) inher-
its passivity from its parent. Using techniques in [9] and [30],
this system with a zero D matrix can be transformed into an
equivalent one with D + DT > 0, from which the CAREs for
BST can be derived.

B. Solving Dual CAREs

The intermediate passive model from projection is then
subject to BST to achieve further reduction with guaranteed
passivity. Many algorithms exist for solving a CARE via identi-
fying the stable invariant subspace of an associated Hamiltonian
matrix (e.g., in [22], [25], and [31]). While this is sufficient for
the stabilizing solution, information about the unstable invariant
subspace is just a few steps away and not utilized. We show
that with slight extra effort, the stable and unstable invariant
subspaces can be completely separated, which in turn enables
the joint solution of the dual CAREs in (9). Consider the
Hamiltonian matrices H and H’, corresponding to (9a) and
(9b), respectively

i
"= [_éTé

it e

R RT
BB }7 H“:[_BBT —A]' (19)

_AT

If X is an eigenvalue of a Hamiltonian matrix, then so is —\.
Since H and H' are real, eigenvalues apart from the real and
imaginary axes occur even in quadruple (A, —\, A, —\). By our
assumption of a minimal passive system, H has no eigenvalues
on the imaginary axis, and the stable and unstable invariant
subspaces can be decoupled, namely

X2 A O
Xoo 0 Ay

where Ag contains the stable eigenvalues and A, the unsta-
ble ones. A well-known fact is that X;; is invertible and
Poin = X21X1’11 > 0. A key observation is that from H' =

?. é (-H) ? é , we also get Quin = X12X521 >0.In
other words, all information about P,,;, and Q,;, are contained
in (20). The decoupling of the invariant subspaces can be
achieved by standard ways (e.g., Grassmann manifolds [32]).
Nonetheless, for completeness of this paper and interested prac-
titioners, we propose a fast-converging quadruple-shift bulge-
chasing SR algorithm for completely separating the stable and
unstable invariant subspaces of a Hamiltonian matrix. The
implementation details of this special SR algorithm are given
in the Appendixes.

As in NSCARE, the most expensive step in this two-stage al-
gorithm is the full matrix inversion (O(n?) work) in computing
A, in the first-stage Smith transformation. Apart from this, all
other operations in the projection stage are at most O(n?). The
intermediate model in the second-stage BST is much smaller
(k < n) and imposes a minor burden on the overall cost. It
should be stressed that the subspace separation technique here
is independent of the projection applied in Section IV-A. As a

(20)

Xo1

X1 X2 X11
H =
[ Xao Xo1
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Fig. 1.

result, it can also be employed in direct BST to approximately
double the speed of solving dual CAREs.

V. NUMERICAL EXAMPLES

All numerical experiments in this section were carried out
in the MATLAB R14 environment on a 3-GHz 3G-RAM PC
with many applications running. The NSCARE algorithm, the
project-and-balance algorithm together with the quadruple-shift
SR procedure in the Appendixes, as well as the Newton method
with and without line search [28] were coded and executed as
MATLAB script (text) files. For comparison, we also employed
the MATLAB CARE solver routines ARE and CARE that
implement the Hamiltonian-based Schur vector and eigenvalue
methods, respectively (see [22] and references therein). In
addition, the prebuilt FORTRAN 77 routine slcares, a numer-
ically reliable and efficient implementation of the Schur vector
method, was invoked from the subroutine library in systems and
control theory (SLICOT) library [27] via a MATLAB gateway.

First, we study randomly generated strictly passive systems,
with A + AT < 0 and rank-one B and C, satisfying the settings
in (1). The CARE in (9a) was formed and solved by various
solvers, as depicted in Fig. 1(a). For fairness, solutions from
NSCARE were computed to the same or better accuracy than
those by other solvers. Though all these solver algorithms are of
O(n?) complexity, they behave quite differently. In particular,
NSCARE easily handles orders as high as 1500, while others
require intensive computation well below 1000. Perhaps more
importantly, NSCARE scales favorably with increasing model
order, e.g., at 500, it is at least 20 times faster and 50 times faster
at 800. To investigate the effect of increasing ranks in B and C,
Fig. 1(a) also includes the curves whereby the ranks of B and

(a) CPU time for solving single CARE. (b) CPU time for doing MOR.

(b)

C equal the CARE order divided by 100 and 50, respectively.
Block Arnoldi algorithms were used in these cases. It is seen
that the growth in computation is relatively mild and is more
obvious at higher orders. In practical systems, however, the
ranks of B and C (associated with number of input/output
ports) usually remain constant and seldom grow with model
order. This justifies the use of NSCARE whenever ranks of B
and C are low. Fig. 2(b) shows the convergence of the NSCARE
iterates at several CARE orders, wherein the relative residual
|P; — Pmin|le/||Pminl|® (|| © ||¢ being the Frobenius norm of a
matrix) is plotted. Expectedly, a quadratic rate is observed since
NSCARE is simply an efficient implementation of the Newton
method. Fig. 2(a) plots the convergence of the iterates in the
SmithArnoldi algorithm when solving for § P in the first step of
NSCARE (which for § P;s are similar). The rate is superlinear,
which is again expected because the Smith method, being
a special case of ADI, inherits the superlinear convergence
of the latter.

Fig. 1(b) plots the CPU time for realizing BST and the
project-and-balance algorithm. Rank-one B and C' are used.
BST requires solving two CAREs plus matrix factorizations, so
the time curves corresponding to different solvers, compared
with their counterparts in Fig. 1(a), are generally more than
double. As stated in the remarks in Section III, for models
with low-rank input/output matrices, BST/NSCARE has the
additional advantage of eluding large-scale matrix factoriza-
tions and SVDs. On the other hand, the project-and-balance
algorithm employed an intermediate model of order about
50 at all CARE orders. Its curve corresponds to the sum of
projection time and BST time, in contrast to the direct BST in
other curves. As the intermediate model order remains almost
constant, the time for BST (using the proposed SR algorithm) is
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independent of the original model order. From the figure, it can
be seen that NSCARE and the project-and-balance algorithm
consume similar resources and are superior to conventional
BST implementations.

Next, we apply NSCARE and the project-and-balance
scheme towards some large-scale MOR problems. The first
example results from the extraction of an on-chip planar square
spiral inductor suspended over a copper plane [23]. The ini-
tial model of order 500 is reduced using different schemes
including PRIMA [1], low-rank square root (LRSR) [13],
[23], the proposed project-and-balance algorithm [19], BST
with NSCARE [18], and BST with conventional solvers. The
PRIMA model is set to the same order as that from BST/
NSCARE. The frequency response and error plots are shown in
Fig. 3, and the CPU times and final model orders are tabulated
in Table I. It should be noted that if the Hamiltonian solver
routines (in this case, slcares and CARE) could be modified to
implement the complete subspace separation of Section IV-B,
the time in solving the dual CAREs would have been approxi-
mately halved, but even so, BST/NSCARE is still more efficient
due to the exploitation of low-rank B and C'. From the figure
and table, with a comparable model order, PRIMA exhibits a
bigger mismatch over the frequency axis. Models from BST,
unsurprisingly, tend to have better global accuracy [12], [19]. In
our two-stage project-and-balance implementation, the initial
model was first reduced to an intermediate model of order 100
(the same in the next two examples), followed by BST using
the proposed SR algorithm. The excellent accuracy can be at-
tributed to the effectiveness of dominant eigenspace projection
in capturing most state activities, as has been observed in [17].
Another possible reason is the better numerical conditioning in
a stepwise reduction.
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(a) Superlinear convergence of iterates in SmithArnoldi algorithm. (b) Quadratic convergence of iterates in NSCARE, at several CARE orders.

The second example is the simulation of a wire model with
500 repeated RLC sections in Fig. 4(a), producing a model
of order 1000 [20]. For simplicity, identical sections are used.
The input and output are taken as the voltage and current into
the first section, respectively. The reduction results are shown
in Fig. 5 and Table 1. As before, PRIMA is less accurate
in approximating the original response, while models from
other schemes have almost indistinguishable responses from
the original. The third example in Fig. 4(b) depicts another
wire modeling wherein the center loop is repeatedly inserted to
generate a model of order 1000. Again, similar observations can
be drawn from Fig. 6 and Table I. To this end, a few technical
details are worth mentioning.

1) Runtimes of BST/NSCARE and the project-and-balance
algorithm are comparable to “fast” algorithms such as
PRIMA and LRSR. In fact, BST/NSCARE is about an
order faster than conventional BST realizations.

2) LRSR does not guarantee passivity of the reduced state-
space model. A passivity test and enforcement may be
needed before the reduced model is connected for global
simulation.

3) Projection-type algorithms like PRIMA and the first stage
of the project-and-balance algorithm require the initial
(passive) state space to be in a certain form [2], [12]
(essentially for (18) to hold) and this is not always
convenient or feasible. BST, on the other hand, poses
no constraints on the internal structure of the state-space
model.

4) BST avoids the selection of expansion points and final
model order as in PRIMA, which would involve a priori
knowledge of the original response.
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Fig. 3. (a) Frequency responses of spiral inductor and reduced-order models. (b) Deviation from original response.

TABLE 1
CPU TIMES AND REDUCED MODEL ORDERS (TIME/ORDER) FOR VARIOUS SCHEMES WITH TIME OF PRIMA NORMALIZED TO ONE

| PRIMA | LRSR | Proj. & Bal. [ BST/NSCARE | BST/slcares | BST/CARE

Inductor (1.76) (1.58) (7.65) (66.67) (79.94)
Order=500 (0.02) (1.00) (0.73) (6.04) (5.84)
1/10 | 1.78/9 | 2.58/10 8.38/10 7271/ 11 85.78 /11
Wire 1 (1.19) (5.05) (7.31) (107.75) (117.33)
Order=1000 (0.003) (0.15) (0.003) (6.87) (7.23)
1/5 | 1.19/6 5.20/8 7.31/5 114.62/5 124.56/ 8
Wire 2 (1.26) (4.83) (7.41) (103.53) (115.45)
Order=1000 (0.003) (0.12) (0.006) (6.82) (6.17)
1/6 |1.26/8 49579 7.42/6 110.35/6 121.62/9
Note:
1. The upper bracket in Proj. & Bal. is the time for projection and the lower bracket is the time
for BST.

2. The upper bracket in the direct BST (LRSR) is the time for solving dual CAREs (Lyapunov
equations) and the lower bracket is the time for matrix factorizations.

5) From our experiments, it is seen that reduced-order mod-
els from BST/NSCARE generally have a lower order for
the same accuracy.

To summarize, both NSCARE and the project-and-balance
algorithm are important candidates in large-scale reduction
problems. These control-theoretic approaches generally pro-
duce reduced-order models of high global accuracy. The al-
gorithms can be applied individually or together to enable
the deployment of previously impractical large-scale passivity-
preserving MOR. As a general guideline, for very high model
order (millions), the projection-type method is used to bring
the order down to thousands or hundreds. It is then followed by
BST to further compress the order down to hundreds or tens.

When the ranks of input/output matrices are low, NSCARE
provides a fast means for implementing BST. When there are
a large number of input/output ports, NSCARE may not be
advantageous and the solution of dual CAREs through subspace
separation may be considered due to its independence on the
number of ports. Preservation of passivity, in addition to stabil-
ity, in the reduced-order models is guaranteed throughout the
process.

VI. CONCLUSION

This paper has described two algorithms for fast and accurate
passivity-preserving MOR. The first algorithm is a Newton-
method variant based on Smith and Krylov methods, called
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Fig. 4. (a) One RLC section of wire modeling. (b) Another RLC modeling. For simplicity, values are used in all sections: Ry = Ry, = 0.1, Ro = R¢c = 1.0,

C=0.1,and L =0.1.
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Fig. 5. (a) Frequency responses of first wire model and its reduced-order models. (b) Deviation from original response.

NSCARE, which exploits low-rank input/output matrices to
quickly solve a CARE. It can help avoid two large-size matrix
factorizations and one large-size SVD in traditional BST. The
second algorithm is an efficient implementation of a two-
stage project-and-balance reduction procedure. The first stage

consists of dominant eigenspace projection, again using the fast
Smith method. Moreover, applying the novel idea of separating
the stable and unstable invariant subspaces of a Hamiltonian
matrix, the second stage solves two dual CAREs in BST at
the cost of slightly more than one. An effective quadruple-shift
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SR algorithm has also been introduced for the operation. The
proposed techniques can be applied individually or together.
Numerical examples have confirmed their computational ef-
ficiency and excellent reduction accuracy over conventional
realizations.

APPENDIX I
QUADRUPLE-SHIFT SR ALGORITHM
Defining J = {_OI 0 ] , a matrix S is called symplectic if

STJS = J. A similarity transform of a Hamiltonian matrix by
symplectic matrices preserves its Hamiltonian structure. Here,
we present an effective implementation of the SR algorithm
[33] for invariant subspace separation. It is assumed that H is
already in the J-tridiagonal form (see [31] and later remarks)

a C1 b1
a9 b1 C2
br—1
H— a be-1 ¢k
q1 —a1
q2 —asz
L gk —ag |
(21

The SR algorithm transforms H into a block J-upper-triangular
form to reveal the eigenvalues. The three types of symplec-

(b)

(a) Frequency responses of second wire model and its reduced-order models. (b) Deviation from original response.

tic transforms being used in the SR algorithm are [33] the
following.
* Algorithm J—Givens Rotation

c 9 ] : 22)

J(i,e,8) = [—S &
Here, C, S € R*** are the diagonal matrices C' = I, +
(c—1)esel and S = se;el, where e; is the ith unit vector.
The choice of ¢ and s is standard [21]. Algorithm J
zeroes a single entry in the lower half of a column in a
Hamiltonian matrix. Given i, 1 < i < k, and z € R?*, we
have J(i,¢, s)x =y, where yi+; = 0 (subscript indexes
the k + 7 entry).

* Algorithm H—Householder Transform

. v 0
H(i,l,w) = [O \Il} (23)
Here, VU =diag(l;_1,P,Ix—j—i+1) and P=1 —

2wa/wTw. Again, the choice of w € RI, 2<1
<k—1i+4+1, is standard [21], [33]. Algorithm H is
used to zero multiple entries in a column of length [
on the upper half of the Hamiltonian matrix. Given ¢,
1<i<k-—1, and z € R?*, we have H(i,l,w)x =y,
where Y11 = yiro = = Yip-1 = 0.

* Algorithm G—Gaussian Elimination

. 0 ¢ N el -o
G(lav)|:0 @1:|7 G(i,v) 1|: 0 @]
(24)
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Here, © = I} +[(1+v?) /4 —1](e;qe] | + e;el) and
® = (v(1 +v2) Y4 (e; 1€} +esel ). Algorithm G ze-
roes a single entry in the upper half of a column of the
Hamiltonian matrix when yj, = 0 (algorithm .J does not
work) and yg1;1 #0. Given i, 2 <i < k, z € R2k we
have G(i,v)x = y, where y; = 0.

Algorithms J and H use orthogonal symplectic ma-
trices, while algorithm G uses a nonorthogonal sym-
plectic matrix of condition number condz[G (4, v)] = (1 +
v2)Y2 4 o).

Implicit Quadruple-Shift SR Algorithm

As in modern implementations of the QR algorithm
[21], the SR counterpart utilizes Implicit S bulge chasing
such that all computations are in the real domain. Single-
and double-shift strategies are investigated in the technical
report version of [31], in which the shifts are chosen
from the real and imaginary axes only. Our implementa-
tion waives this constraint and complies better with the
quadruple occurrence of eigenvalues away from the axes.
A proven heuristic to speed up convergence is to choose
the four shifts as eigenvalues of the 4 x 4 subblock
[cf., 21)]

(Ij 0 Cj bj
N, — 0 Qi1 bj Cjt+1 (25)
J q;j 0 ‘ —aj; 0
0 gjm 0 —ajn

where j = k — 1 in the first iteration and gradually de-
creases when the J-tridiagonal matrix deflates [21], [33].
Defining the expression a; = a? + ¢;¢;, the characteristic
polynomial of (25) is found to be

84 — (ij + ij+1)82 + Q0541 — b?qj'q]'+1 = 0. (26)

The roots of (26) are used as shifts. Analogous to the
Implicit @) theorem in the QR algorithm, the first column
of the following matrix product is required for Implicit S
similarity transform:

PN =(H—N)(H+N)(H—-N)(H+X)
=H" — 2Re(N*)H*+|\|'I
:H4—(aj—|—aj+1)H2+(ozjozj+1—b?qjqjﬂ)l. (27)

Reusing the definition of o;; and a MATLAB-style repre-
sentation, the first columns of H2 and H* are

oF +biqige

boq biqi(on + az)
9 L 4 b1q1b2go
H ( al) = 0 ) H ( 71) = 0
0 0

(28)

Setting H; := H and using algorithm H to find an
H(1,3,w) such that H(1,3,w)p(A)e; is a multiple

of e;, the bulge chasing begins by forming Hj :=
H(1,3,w)H H(1,3,w)T and II:= H(1,3,w)T. An
example Hy € R¥2*12 Jooks like

X X X X X X X i
X X X X X X X
X X X X X X X
X X X X X X
X X X X
X X X
X X X X X X
X X X X X X
X X X X X X
X X
X X
X X |

To restore the J-tridiagonal structure, we refer to the
following matrix. Circles represent zeroing of entries and
asterisks stand for newly generated entries. The (9, 1)
entry is zeroed using Hz := J(3,¢,s)H2J(3,¢,5)T and
the update IT := I1.J(3, ¢, s)™. The entry at (7, 3) is au-
tomatically zeroed due to the (Hamiltonian) structure-
preserving symplectic transform. Similarly, algorithm J is
used to zero (8, 1). Then, (3, 1) is zeroed by algorithm
H with H(2,2,w), followed by algorithm G for (2, 1).
Next, on the right half, (9, 7) and (8, 7) are zeroed by
two times of algorithm .J, and on the upper right quadrant,
(4, 7) and (3, 7) are zeroed with algorithm H with
H(2,3,w). Consequently, the bulge is pushed to the lower
right and the process is continued until it is completely
driven out

X & ® X X ® & ]
® X X X X X X ok
® X X % ® X X X x
ok ® X X X X
X * % X X X
X X X
X & ® X & ®
® X X % ® X X %
® X X ok ® X X ok
* ok X * ok X
X X
X X

As the iteration proceeds, some of the b;s become neg-
ligibly small and the problem size deflates as in the
QR algorithm. Ultimately, the SR algorithm reduces the
J-tridiagonal matrix into decoupled 2 x 2 and 4 x 4
subblocks. The stability and passivity of the intermedi-
ate model (Section IV-A) implies the absence of purely
imaginary eigenvalues. Using the procedures in [33], the
2 X 2 (4 x 4) subblock can then be transformed into
an upper (block) triangular form with the upper left
(block) entry containing the eigenvalue(s) with negative
real part(s). The example that follows show an upper block
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triangular form with interleaved 2 x 2 and 4 x 4 subblocks
(lifted into appropriate planes). The subblocks in the upper
left (lower right) quadrant contain all the stable (unstable)
eigenvalues. Appendix II studies the zeroing of the upper
right quadrant to eventually arrive at (20)

o " -
X X X X
X X X X
X X
X X X X
X X X X
X
X X
X X
X
X X
L X >< -
Remarks:
1) An alternative to perform the projection in the project-

2)

3)

and-balance algorithm is by an implicitly restarted
Lanczos algorithm [31]. In that case, H is readily in
J-tridiagonal form, but the projection basis may not be
as good as the dominant eigenspace in capturing state
transitions.

JHESS algorithm in [33] can be used to transform a
Hamiltonian matrix into J-tridiagonal form. The exis-
tence of this transformation is strongly dependent on
the first column of the similarity transform matrix [31].
The set of these breakdown-free vectors is dense in
R2k. Should breakdown (or near breakdown) occur due
to high condition numbers in algorithm G, a differ-
ent projection basis Q); in Section IV-A is chosen by
varying the order and/or number of columns in Q-
and .. If the implicitly restarted Lanczos algorithm
is used [31], then it is a simple matter of invoking an
implicit restart.

Convergence of the quadruple-shift SR algorithm is ex-
cellent (usually within ten iterations) under mild condi-
tions. In the few cases where algorithm G produces a
very large condition number (only during early iterates),
an exceptional shift is performed and the process is
continued [33]. In the BST of the intermediate model,
the transformation to J-tridiagonal form requires O (k?)
work (not required in implicitly restarted Lanczos), while
that of the SR algorithm is O(k?). As mentioned, k <
n and the cost of the second stage of the project-and-
balance algorithm is insignificant.

APPENDIX II
SEPARATION OF INVARIANT SUBSPACES

We introduce additional symplectic transforms for each type
of subblock, at a small cost, to completely separate the stable
and unstable invariant subspaces. This brings about the solution
of the dual CAREs in (9) at the complexity of practically one.

1) 2 x 2 Subblock
Let N; be an ordered subblock taken from the j, £ 4 j
plane of the 2k x 2k matrix

N
N
where —A; < 0 and ; is nonzero (otherwise, no process-
ing is required). Defining the 2 x 2 symplectic matrix

12N
TJ"[ 0 QAJJ (30)

it is easy to verify that Tj’lNJ—Tj gives the diagonal
matrix diag(—X\;, A;). Lifting T} into the j, k£ + j plane
and updating II completes the subspace separation in this
subblock.
2) 4 x 4 Subblock
Let N; be an ordered subblock taken from the j, j + 1,
k+ 7,k 4+ 7 + 1 plane of the 2k x 2k matrix

A
N; = { v _A]T] 31)
J

where A, Q; (:Q}“) are 2 X 2 matrices. Assume A; con-
tains the stable eigenvalues —A;, ,Xj whose real parts
are negative. The key to separating the subspaces is to
realize that the column range of U; = (N; + A\ 1)(N; +
;1) spans the unstable invariant subspace. A simple
manipulation shows

> . (32)

Aij — QJA]T + QRG()\)Q]
—4Re(\)AT

On the right-hand side of (32), denoting the upper parti-

tion by Z; and the lower partition by Z5, we define

_ [z z
o-[5 2]

It is easy to see that F}; is well defined (Z3 invertible) and
symplectic. Moreover, ijlN i F; gives diag(A;, —AJT).
Lifting F} into the j, j + 1, k + 7, K+ j + 1 plane and
updating II completes the subspace separation in this
subblock. Finally, we have HII = [Idiag(Ag, —AL), and
solutions to the dual CAREs can be extracted from II
as in (20).

span(U;) = span (

(33)
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