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as a = 1,mr = 1; ml = 1; br = 0:5; bl = �0:5. The objective
is to control the system state x to follow a desired trajectory yr(t) =
4 sin(2t). First, we choose the dead-zone inverse v(t) = D̂I(ud(t)) as
in (11) and the filters

_�0 = A0�0 + ky + � _�1 = A0�1 + Y1e2

_� = A0� + e2u

(58)

!̂2 =
p+ k1

p2 + k1p+ k2
I4[!̂] (59)

where Y1 = x
2

k = [k1; k2]
T = [1; 3]T

A0 =
�k1 1

�12 0
=

�1 1

�3 0
: (60)

Then we apply our control design to the plant. In the sim-
ulations, taking c1 = c2 = 2;�a = 0:1; 2 = 0:2;�� =
[0:1; 0:1; 0:1; 0:1]T ; e0 = 1; �1 = 0:02 and the initial parameters
â(0) = 1:5; D̂(0) = 0:4; �̂(0) = [1; 1; 0:4;�0:4]T . The initial state
is chosen as x(0) = 0:4. The tracking error and the controller output
v(t) are shown in Figs. 4 and 5. Clearly, the simulation results verify
our theoretical findings and show the effectiveness of our control
scheme.

VI. CONCLUSION

This note presents an output feedback backstepping adap-
tive controller design scheme for a class of uncertain nonlinear
single-input–single-output system preceded by uncertain dead-zone
actuator nonlinearity. We propose a new smooth adaptive inverse to
compensate the effect of the unknown dead-zone. Such an inverse can
avoid possible chattering phenomenon which may be caused by non-
smooth inverse. The inverse function is employed in the backstepping
controller design. For the design and implementation of the controller,
no knowledge is assumed on the unknown system parameters. Besides
showing stability, we also give an explicit bound on the L2 perfor-
mance of the tracking error in terms of design parameters. Simulation
results illustrates the effectiveness of our schemes.
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Control for Networked Systems With Random
Communication Delays

Fuwen Yang, Zidong Wang, Y. S. Hung, and Mahbub Gani

Abstract—This note is concerned with a new controller design problem
for networked systems with random communication delays. Two kinds of
random delays are simultaneously considered: i) from the controller to the
plant, and ii) from the sensor to the controller, via a limited bandwidth
communication channel. The random delays are modeled as a linear func-
tion of the stochastic variable satisfying Bernoulli random binary distri-
bution. The observer-based controller is designed to exponentially stabilize
the networked system in the sense of mean square, and also achieve the pre-
scribed disturbance attenuation level. The addressed controller design
problem is transformed to an auxiliary convex optimization problem, which
can be solved by a linear matrix inequality (LMI) approach. An illustrative
example is provided to show the applicability of the proposed method.

Index Terms— control, linear matrix inequalities (LMIs), networked
systems, random communication delays, stochastic stability.

I. INTRODUCTION

Recent advances in network technology have led to more and more
control systems whose feedback control loop is based on a network.
This kind of control systems are called networked control systems
(NCSs) [7], [10], [23]. The network itself is a dynamic system and
induces possible delays via network communication due to limited
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Fig. 1. Structure of a networked control system with communication delays.

bandwidth. A realistic networked control system design should take
the communication delays into account, since the delays are widely
known to degrade the performance of the control system [3], [4].
Therefore, in the past decade, the control problem of networked
systems with time-delays has received increasing attention; see, e.g.,
[5], [9], [12], [13], [16], [18], and the references therein.

Since network delays are usually random and time-varying by na-
ture, the existing control methods for deterministic time-delays cannot
be directly used [21]. Recently, there have been significant research ef-
forts on the control problems for networked systems with random de-
lays, where the random network delays have been modeled in various
ways in terms of the probability and characteristics of sources and des-
tinations. For example, in [8], the delay value has been treated as an
unknown variable but with known statistical properties, and the proba-
bilistic delay averaging approach has been employed to determine the
optimal control, independent of the delay value. In [13] the time de-
lays have been assumed to be varying in a random fashion and have
statistically mutually independent transfer-to-transfer probability dis-
tribution. In [16], the random communication delays have been consid-
ered as white in nature with known probability distributions. It should
be mentioned that, among others, the binary random delay has gained
considerable research interests because of its simplicity and practicality
in describing network-induced delays, where the binary switching se-
quence is viewed as a Bernoulli distributed white sequence taking on
values of 0 and 1; see, e.g., [11], [14], [19], [20], and [22].

Although networked control systems with random time-delays have
been studied for a number of years, there are still some interesting prob-
lems that deserve further research. For example, most literature, in-
cluding our previous works in [20], [21], has dealt with the sensor-to-
controller delays only. Another important type of delays, controller-to-
actuator delays, have not been fully investigated. Also, in the presence
of random network delays, the H1 disturbance rejection performance
has not received enough attention.

It is, therefore, the intention of this note to study the H1 control
problem for a class of networked control systems with both sensor-to-
controller delays and controller-to-actuator delays. These random de-
lays are modeled as a linear function of the stochastic variable satis-
fying Bernoulli random binary distribution. An observer-based con-
troller is designed such that the closed-loop networked control system
is stochastically exponentially stable, and the prescribed H1 distur-
bance attenuation performance is achieved. An LMI approach is de-
veloped to tackle the addressed problem, which can be solved conve-
niently by Matlab LMI toolbox.

Notation: The notationX � Y (respectively,X > Y ) whereX and
Y are symmetric matrices, means that X � Y is positive semidefinite
(respectively, positive definite). fxg stands for the expectation of the
stochastic variablex.Probf � gmeans the occurrence probability of the
event “�.” IfA is a matrix, �max(A) (respectively, �min(A)) means the
largest (respectively, smallest) eigenvalue of A. l2[0;1) is the space
of square integrable vectors, and + is the set of positive integer. In
symmetric block matrices, “�” is used as an ellipsis for terms induced
by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the networked control system with random communication
delays shown in Fig. 1.

The plant is assumed to be of the form

xk+1 = Axk +B2uc;k +B1wk

zk = Dxk
(1)

where xk 2 n is the state, uc;k 2 m is the control input, zk 2 r

is the controlled output, wk 2
q is the disturbance input belonging to

l2[0;1); A; B1; B2, and D are known real matrices with appropriate
dimensions. The measurement with randomly varying communication
delays is described by

yk = Cxk

yc;k = (1� �)yk + �yk�1
(2)

where the stochastic variable � 2 is a Bernoulli distributed white
sequence with

Probf� = 1g = f�g := �� (3)

Probf� = 0g = 1� f�g := 1� �� (4)

and yc;k 2 p is the measured output, yk 2 p is the output, and C is
a known real matrix with appropriate dimension.

In this note, we propose a dynamic observer-based control scheme
for (1) described by

Observer :
x̂k+1 = Ax̂k +B2uc;k + L(yc;k � �yc;k)

�yc;k = (1� ��)Cx̂k + ��Cx̂k�1
(5)

Controller :
uk = Kx̂k

uc;k = (1� �)uk + �uk�1
(6)

where x̂k 2 n is the state estimate of the system (1), �yc;k 2 p is the
observer output, L 2 n�p and K 2 m�n are the observer gain and
controller gain, respectively. The stochastic variable � 2 , mutually
independent of �, is also a Bernoulli distributed white sequence with
expected value ��.
Remark 1: This measurement mode (2) was introduced in [14], and

has been used in [20] and [22]. The output yk produced at a time k
is sent to the observer via a communication channel and arrives at the
time k + �d. If the sampling period is long compared with �d, there
is no need to consider the influence of the delay, i.e., yc;k = yk . If
�d is longer than one sampling period and shorter than two sampling
periods, then the measurement yc;k = yk�1. It can be easily seen that,
at kth sampling time, the actual system output takes the value yk�1
with probability ��, and the value yk with probability 1� ��. Obviously,
if the binary stochastic variable � takes the value 1 consecutively at
different sample times, long time delays would occur.
Remark 2: It is worth mentioning that the control scheme (6) in-

troduces the random communication delay as well. The random delay
mode is similar to that in the measurement but with a different switching
probability, since the control and measurement are carried out through
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the same communication channel with limited bandwidth. With simul-
taneous presence of binary random delays in both the control and mea-
surement structures, the observer design problem becomes much more
involved. On the other hand, all the system matrices (A;B1; B2; C;D)
are assumed to be known, which greatly simplifies our analysis. When
there exist parameter uncertainties, the corresponding robustH1 con-
trol problem with random communication delays becomes more im-
portant, and the results will appear in the near future.

Defining the estimation error by

ek := xk � x̂k (7)

we obtain the closed-loop system, as shown in (8) at the bottom of the
page, by substituting (2), (5) and (6) into (1) and (7). We rewrite (8) in
a compact form as follows:

�k+1 = ( �A+ ~A)�k + �Bwk (9)

where �A; ~A, and �B are defined at the bottom of the page.
Since the closed-loop system (9) contains both stochastic quantities

� and �, it is actually a stochastic parameter system, and we need to
introduce the notion of stochastic stability in the mean-square sense
for the problem formulation.

Definition 1: The closed-loop system is said to be exponentially
mean-square stable if with wk = 0, there exist constants � > 0 and
� 2 (0; 1) such that

fk�kk
2g � ��

k fk�0k
2g

for all �0 2
n
; k 2 +

: (10)

With this definition, our objective is to design the controller (6) for
the system (1) such that, for all addressed random communication de-
lays, the closed-loop system (9) is exponentially mean-square stable,
and the H1 performance constraint is satisfied. In other words, we

aim to design a controller such that the closed-loop system satisfies the
following requirements Q1) and Q2) simultaneously.

Q1) The closed-loop system (9) is exponentially mean-square
stable.

Q2) Under the zero-initial condition, the controlled output z
satisfies

1

k=0

fkzkk
2g < 

2

1

k=0

fkwkk
2g (11)

for all nonzero wk , where  > 0 is a prescribed scalar.

III. STABILITY ANALYSIS

In this section, we will investigate the stability conditions for the
closed-loop system (9). The following lemma will be needed in our
derivation.
Lemma 1: Let V (�k) be a Lyapunov functional. If there exist real

scalars � � 0; � > 0; � > 0, and 0 <  < 1 such that

�k�kk
2 � V (�k) � �k�kk

2 (12)

and

fV (�k+1) j �kg � V (�k) � ��  V (�k) (13)

then the sequence �k satisfies

fk�kk
2g �

�

�
k�0k

2(1�  )k +
�

� 
: (14)

Proof: The proof is similar to [17, Th. 2].
The following theorem shows the closed-loop system (9) is expo-

nentially stable in the mean-square sense if an LMI is feasible.
Theorem 1: Given the controller gain matrix K and the ob-

server gain matrix L. The closed-loop system (9) is exponentially
mean-square stable if there exist positive–definite matrices P1; S1; P2,
and S2 satisfying (15), as shown at the bottom of the page, where
�1 = [(1� ��) ��]1=2; �2 = [(1 � ��)��]1=2.

xk+1 = [A + (1� ��)B2K]xk � (1� ��)B2Kek + ��B2Kxk�1 � ��B2Kek�1 � (� � ��)B2Kxk

+(� � ��)B2Kek + (� � ��)B2Kxk�1 � (� � ��)B2Kek�1 +B1wk

ek+1 = [A � (1� ��)LC]ek � ��LCek�1 + (� � ��)LCxk � (� � ��)LCxk�1 +B1wk

(8)

�k =

xk

ek

xk�1

ek�1

�A =

A+ (1� ��)B2K �(1� ��)B2K ��B2K ���B2K

0 A� (1� ��)LC 0 ���LC

I 0 0 0

0 I 0 0

~A =

�(� � ��)B2K (� � ��)B2K (� � ��)B2K �(� � ��)B2K

(� � ��)LC 0 �(� � ��)LC 0

0 0 0 0

0 0 0 0

�B =

B1

B1

0

0

P2 � P1 � � � � � � �

0 S2 � S1 � � � � � �

0 0 �P2 � � � � �

0 0 0 �S2 � � � �

A+ (1� ��)B2K �(1� ��)B2K ��B2K ���B2K �P�11 � � �

0 A � (1� ��)LC 0 ���LC 0 �S�11 � �

B2K �B2K �B2K B2K 0 0 ���21 P�11 �

LC 0 �LC 0 0 0 0 ���22 S�11

< 0 (15)
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Proof: Define a Lyapunov functional

Vk = x
T

k P1xk + x
T

k�1P2xk�1 + e
T

k S1ek + e
T

k�1S2ek�1 (16)

where P1; P2; S1, and S2 are positive–definite matrices. It follows
from (8) that

fVk+1jxk; . . . ; x0; ek; . . . ; e0g � Vk

= x
T

k+1P1xk+1 + e
T

k+1S1ek+1

+ x
T

k P2xk + e
T

k S2ek � x
T

k P1xk

� x
T

k�1P2xk�1 � e
T

k S1ek � e
T

k�1S2ek�1

= f[A + (1� ��)B2K]xk � (1� ��)B2Kek

+ ��B2Kxk�1 � ��B2Kek�1g
T
P1f[A+ (1� ��)B2K]xk

� (1� ��)B2Kek + ��B2Kxk�1 � ��B2Kek�1g

+ f[A� (1� ��)LC]ek � ��LCek�1g
T
S1

� f[A� (1� ��)LC]ek � ��LCek�1g

+ f(� � ��)2g[B2Kxk

�B2Kek �B2Kxk�1 +B2Kek�1]
T
P1

� [B2Kxk �B2Kek �B2Kxk�1 +B2Kek�1]

+ f(� � ��)2g[LCxk � LCxk�1]
T

� S1[LCxk � LCxk�1] + x
T

k P2xk + e
T

k S2ek

� x
T

k P1xk � x
T

k�1P2xk�1 � e
T

k S1ek � e
T

k�1S2ek�1: (17)

Noting that f(� � ��)2g = (1� ��) �� and f(� � ��)2g = (1� ��)��,
we have

fVk+1jxk; . . . ; x0; ek; . . . ; e0g � Vk

= f[A+ (1� ��)B2K]xk � (1� ��)B2Kek

+ ��B2Kxk�1 � ��B2Kek�1g
T

� P1f[A + (1� ��)B2K]xk

� (1� ��)B2Kek + ��B2Kxk�1 � ��B2Kek�1g

+ f[A� (1� ��)LC]ek � ��LCek�1g
T
S1

� f[A� (1� ��)LC]ek � ��LCek�1g

+ (1� ��) ��[B2Kxk �B2Kek �B2Kxk�1

+B2Kek�1]
T
P1

� [B2Kxk �B2Kek �B2Kxk�1 +B2Kek�1]

+ (1� ��)��[LCxk � LCxk�1]
T
S1[LCxk � LCxk�1]

+ x
T

k P2xk + e
T

k S2ek � x
T

k P1xk

� x
T

k�1P2xk�1 � e
T

k S1ek � e
T

k�1S2ek�1

= �
T

k ��k (18)

where (19), as shown at the bottom of the page, holds. By Schur com-
plement, (15) implies that � < 0. We know from (15) that

fVk+1jxk; . . . ; x0; ek; . . . ; e0g � Vk

= �
T

k ��k � ��min(��)�Tk �k < ���Tk �k (20)

where

0 < � < minf�min(��); �g

� := maxf�max(P1); �max(S1); �max(P2); �max(S2)g: (21)

From (20), we have

fVk+1jxk; . . . ; x0; ek; . . . ; e0g

�Vk < ���Tk �k < �
�

�
Vk := � Vk: (22)

Therefore, by Definition 1, it can be verified from Lemma 1 that the
closed-loop system (9) is exponentially mean-square stable. This com-
pletes the proof.

IV. H1 CONTROLLER DESIGN

Different from the standard H1 performance formulation, we shall
use the expression (11) to describe the H1 performance of the sto-
chastic system, where the expectation operator is utilized on both the
controlled output and the disturbance input, see [1] for more details.
Theorem 2: Given a scalar  > 0. The system (9) is exponentially

mean-square stable and the H1-norm constraint (11) is achieved for
all nonzero wk , if there exist positive definite matrices P1; S1; P2 and
S2, and real matrices K and L satisfying (23), as shown at the bottom
of the next page.

Proof: It is obvious that (23) implies (15), hence it follows from
Theorem 1 that the system (9) is exponentially mean-square stable.

Next, for any nonzero wk , it follows from (8) and (18) that

fVk+1g � fVkg+ z
T

k zk � 
2

w
T

k wk

=
�k

wk

T

�
�+ ~DT ~D BT

3 P1B1 +BT

4 S1B1

BT

1 P1B3 +BT

1 S1B4 BT

1 (P1 + S1)B1 � 2I

�
�k

wk
(24)

where

~D = [D 0 0 0] (25)

B3 = [A + (1� ��)B2K

� (1� ��)B2K ��B2K � ��B2K] (26)

B4 = [0 A� (1� ��)LC 0 � ��LC]: (27)

� =

A+ (1� ��)B2K �(1� ��)B2K ��B2K ���B2K

0 A� (1� ��)LC 0 ���LC

B2K �B2K �B2K B2K

LC 0 �LC 0

T
P1 0 0 0

0 S1 0 0

0 0 (1� ��) ��P1 0

0 0 0 (1� ��)��S1

�

A+ (1� ��)B2K �(1� ��)B2K ��B2K ���B2K

0 A� (1� ��)LC 0 ���LC

B2K �B2K �B2K B2K

LC 0 �LC 0

+

P2 � P1 0 0 0

0 S2 � S1 0 0

0 0 �P2 0

0 0 0 �S2

: (19)
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By Schur complement, (23) implies that

�+ ~DT ~D BT

3 P1B1 +BT

4 S1B1

BT

1 P1B3 +BT

1 S1B4 BT

1 (P1 + S1)B1 � 2I
< 0: (28)

Thus, we have

fVk+1g � fVkg+ z
T
k zk � 

2
w
T
k wk < 0: (29)

Now, summing up (29) from 0 to 1 with respect to k yields

1

k=0

fkzkk
2g < 

2

1

k=0

fkwkk
2g+ fV0g � fV1g: (30)

Since �0 = 0 and the system (9) is exponentially mean-square stable,
it is straightforward to see that

1

k=0

fkzkk
2g < 

2

1

k=0

fkwkk
2g: (31)

This ends the proof.

Note that at this stage, the condition (23) is not an LMI, hence, cannot
be solved by Matlab LMI Toolbox. In the following, we first convert the
condition (23) into an LMI with matrix equation constraint, and then
formulate a convex problem.

Without loss of generality, we make the following assumption.
A1: The matrix B2 is of full-column rank, i.e., rank(B2) = m.
The following theorem presents how to convert the condition (23)

into an LMI with matrix equality constraint.
Theorem 3: Given a scalar  > 0. System (9) is exponen-

tially mean-square stable and the H1-norm constraint (11) is
achieved for all nonzero wk , if there exist positive–definite matrices
P1 2 n�n; S1 2 n�n; P2 2 n�n, and S2 2 n�n, and real
matrices M 2 m�n; N 2 n�p; P 2 m�m such that (32) and
(33), as shown at the bottom of the page, hold. Moreover, the controller
parameters are given by

K = P
�1
M L = S

�1

1 N: (34)

Proof: By Schur complement, the condition (23) is equivalent to
(35), as shown at the bottom of the page, where H11 = P1A + (1 �
��)P1B2K;H22 = S1A � (1� ��)S1LC .

P2 � P1 � � � � � � � � �

0 S2 � S1 � � � � � � � �

0 0 �P2 � � � � � � �

0 0 0 �S2 � � � � � �

0 0 0 0 �2I � � � � �

A+ (1� ��)B2K �(1� ��)B2K ��B2K ���B2K B1 �P�11 � � � �

0 A� (1� ��)LC 0 ���LC B1 0 �S�11 � � �

B2K �B2K �B2K B2K 0 0 0 ���21 P�11 � �

LC 0 �LC 0 0 0 0 0 ���22 S�11 �

D 0 0 0 0 0 0 0 0 �I

< 0 (23)

P2 � P1 � � � � � � � � �

0 S2 � S1 � � � � � � � �

0 0 �P2 � � � � � � �

0 0 0 �S2 � � � � � �

0 0 0 0 �2I � � � � �

P1A + (1� ��)B2M �(1� ��)B2M ��B2M ���B2M P1B1 �P1 � � � �

0 S1A� (1� ��)NC 0 ���NC S1B1 0 �S1 � � �

B2M �B2M �B2M B2M 0 0 0 ���21 P1 � �

NC 0 �NC 0 0 0 0 0 ���22 S1 �

D 0 0 0 0 0 0 0 0 �I

< 0 (32)

P1B2 = B2P (33)

P2 � P1 � � � � � � � � �

0 S2 � S1 � � � � � � � �

0 0 �P2 � � � � � � �

0 0 0 �S2 � � � � � �

0 0 0 0 �2I � � � � �

H11 �(1� ��)P1B2K ��P1B2K ���P1B2K P1B1 �P1 � � � �

0 H22 0 ���S1LC S1B1 0 �S1 � � �

�1P1B2K ��1P1B2K ��1P1B2K �1P1B2K 0 0 0 �P1 � �

�2S1LC 0 ��2S1LC 0 0 0 0 0 �S1 �

D 0 0 0 0 0 0 0 0 �I

< 0 (35)



516 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 3, MARCH 2006

Letting

B2P = P1B2 M = PK N = S1L (36)

we can conclude that (35) is equivalent to (32).
On the other hand, since the matrix B2 is full column rank, the

columns of matrices B2 and P1B2 are all linearly independent with
P1 > 0. Hence, if (32) is satisfied, we have

rank(P ) � rank(B2P) = rank(P1B2) � rank(B2) = m (37)

which implies that the matrix P must be nonsingular. Therefore, (34)
is obtained from (36), and the proof is complete.

We are now in a position to discuss how to solve the equality con-
straint in (33). For the matrixB2 of full-column rank, there always exist
two orthogonal matrices U 2 n�n and V 2 m�m such that

~B2 := UB2V =
U1

U2
B2V =

�

0
(38)

where U1 2 m�n and U2 2 (n�m)�n, and
� = diagf�1; �2; . . . ; �mg, where �i (i = 1; 2; . . . ;m) are
nonzero singular values of B2.

Lemma 2: Let the matrix B2 2 n�m be of full-column rank. If
matrix P1 has the following structure:

P1 = UT
P11 0

0 P12
U = UT1 P11U1 + UT2 P22U2 (39)

where P11 2 m�m > 0 and P22 2 (n�m)�(n�m) > 0, and
U1 and U2 are defined in (38), then there exists a nonsingular matrix
P 2 m�m such that B2P = P1B2.

Proof: The proof is similar to that of [6, Lemma 3], and is thus
omitted.

Theorem 4: Given a scalar  > 0. The system (9) is expo-
nentially mean-square stable and the H1-norm constraint (11) is
achieved for all nonzero wk if there exist positive–definite matrices
P11 2 m�m; P22 2 (n�m)�(n�m); S1 2 n�n; P2 2 n�n

and S2 2 n�n, and real matrices M 2 m�n; N 2 n�p

such that (40), as shown at the bottom of the page, holds, where
P1 := UT1 P11U1 + UT2 P22U2, and U1 and U2 come from (38).
Moreover, the controller parameters are given by

K = V ��1P�1
11 �V TM L = S�1

1 N: (41)

Proof: Since there exist P11 > 0 and P22 > 0 such that P1 =
UT1 P11U1+U

T
2 P22U2, where U1 and U2 are defined in (38), we com-

pute P as follows from B2P = P1B2

P1U
T �

0
V T = UT

�

0
V TP (42)

i.e.,

UT
P11 0

0 P12

�

0
V T = UT

�

0
V TP (43)

which implies that

P�1 = V ��1P�1
11 �V T : (44)

Thus, (41) is obtained from (34) and (44), and the rest of the proof
follows from Theorem 3.

So far the controller has been designed which satisfies the require-
ments Q1) and Q2). Due to the advantages of LMI formulations, the
results in Theorem 4 also suggest the following optimization problem
that would be interesting to control engineers.

P1) The optimal H1 control problem

min
P >0;P >0;P >0;S >0;S >0;M;N

 subject to (40): (45)

V. SIMULATION EXAMPLE

In this section, we aim to demonstrate the effectiveness and applica-
bility of the proposed method. For this purpose, we study the networked
control problem for an uninterruptible power system (UPS). Our ob-
jective is to control the PWM inverter, through networks, such that the
output AC voltage is kept at the desired setting and undistorted, while
maintaining robustness against the disturbances in the load. We con-
sider the UPS with 1 KVA. The discrete-time model (1) can be obtained
with sampling time 10 ms at half-load operating point as follows [15]:

A =

0:9226 �0:6330 0

1:0 0 0

0 1:0 0

B1 =

0:5

0

0:2

B2 =

1

0

0

(46)

D = [0:1 0 0]

C = [23:738 20:287 0] �� = 0:1: (47)

Case 1) In this case, we want to design an H1 controller (6) with
random communication delay �� = 0:1 and disturbance attenuation
level  = 1. This case is exactly concerned with the addressed H1
control problem in Theorem 4. We provide one solution by solving
LMI (40) and obtain the observer gain and controller gain as follows:

K = [�0:5784 0:4843 � 0:2121]

L = [0:0032 0:0078 0:0059]T :

When we choose the initial conditions as x0 = [1 0 0]T ; x̂0 =
[0 0 0]T and the disturbance input as nonlinear load wk = 1=k2,
the simulation results of the state responses are given in Fig. 2.

P2 � P1 � � � � � � � � �

0 S2 � S1 � � � � � � � �

0 0 �P2 � � � � � � �

0 0 0 �S2 � � � � � �

0 0 0 0 �2I � � � � �

P1A + (1� ��)B2M �(1� ��)B2M ��B2M ���B2M P1B1 �P1 � � � �

0 S1A� (1� ��)NC 0 ���NC S1B1 0 �S1 � � �

�1B2M ��1B2M ��1B2M �1B2M 0 0 0 �P1 � �

�2NC 0 ��2NC 0 0 0 0 0 �S1 �

D 0 0 0 0 0 0 0 0 �I

< 0 (40)
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Fig. 2. H1 control with  = 1.

Fig. 3. H1 control with min = 0:8088.
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Case 2) We now wish to design the controller (6) with random com-
munication delay �� = 0:1 such that the H1 performance is mini-
mized, i.e., we want to solve the problem P1). Solving the optimization
problem (45) using LMI Toolbox yields the minimum value min =
0:8088 and

K = [�0:5960 0:5549 � 0:1587]

L = [0:0069 0:0147 0:0096]T :

Similar to the first case, the simulation results of the state responses are
given in Fig. 3.

VI. CONCLUSION

In this note, a novel control problem has been considered for
networked systems with random communication delays. The H1
observer-based controller has been designed to achieve a desired
H1 disturbance rejection level. The controller has been obtained by
solving an LMI. Simulation results have demonstrated the feasibility
of our control scheme. One of our future research topics would be the
design of controllers for networked systems with long random delays.
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Stability of Quaternionic Linear Systems

Ricardo Pereira and Paolo Vettori

Abstract—The main goal of this paper is to characterize stability
and bounded-input–bounded-output (BIBO)-stability of quaternionic
dynamical systems. After defining the quaternion skew-field, algebraic
properties of quaternionic polynomials such as divisibility and coprime-
ness are investigated. Having established these results, the Smith and
the Smith–McMillan forms of quaternionic matrices are introduced and
studied. Finally, all the tools that were developed are used to analyze
stability of quaternionic linear systems in a behavioral framework.

Index Terms—Behaviors, quaternions, stability.

I. INTRODUCTION

This paper deals with stability, which is a very common issue in
many areas of applied mathematics. In particular, for input/output dy-
namical control systems, it will focus on bounded-input– bounded-
output (BIBO) stability which is especially important for control sys-
tems in the presence of disturbances: roughly speaking, it ensures that
small perturbations in the control do not cause diverging errors in the
output.

The systems which are here considered take values in the quaternion
skew-field , that was discovered by Sir Rowan Hamilton in 1843.
These hypercomplex numbers may be favorably used to describe
phenomena occurring in areas such as electromagnetism and quantum
physics [1] by means of a compact notation that leads to a higher
efficiency in computational terms [2].

In particular, they are a powerful tool in the description of rotations.
Indeed, by identifying 3 with a subset of , the expression qvq�1

represents the rotation of a vector v 2
3 by an angle and about a

direction that are specified by q 2 (see, e.g., [3]). It is not uncommon
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