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A New Block-Exact Fast LMS/Newton
Adaptive Filtering Algorithm

Y. Zhou, S. C. Chan, and K. L. Ho

Abstract—This correspondence proposes a new block-exact fast
least-mean squares (LMS)/Newton algorithm for adaptive filtering. It
is obtained by exploiting the shifting property of the whitened input of
the fast LMS/Newton algorithm so that a block-exact update can be
carried out in the LMS part of the algorithm. The proposed algorithm has
significantly less computational complexity than, but exact mathematical
equivalence to, the fast LMS/Newton algorithm. Since short block length
is allowed, the processing delay introduced is not excessively large as in
conventional block filtering generalization. Implementation issues and the
experimental results are given to illustrate the principle and efficiency of
the proposed algorithm.

Index Terms—Adaptive filter, block exact, fast least-mean squares
(LMS)/Newton algorithm.

1. INTRODUCTION

Adaptive filtering is frequently employed in communications, con-
trol, and many other applications in which the statistical character-
istics of the signals to be filtered are either unknown a priori or, in
some cases, slowly time varying. Many adaptive filtering algorithms
have been proposed [1], and they can broadly be classified into two
different classes: the least-mean squares (LMS) algorithm and the re-
cursive least-squares (RLS) algorithm. The LMS algorithm has a low
computational complexity of O(L) (where L is the number of taps of
the adaptive filter), but it usually converges slowly. On the contrary, the
RLS algorithm has a fast convergence, but it is more computationally
expensive with a complexity of O( L?). Different approaches have been
proposed to improve the convergence property of the LMS algorithm
and to reduce the complexity of the RLS algorithm. (Interested readers
are referred to the textbooks [1] and [2] for various aspects of these two
algorithms.)

One very efficient class of algorithms is the fast Newton algorithm
[3], [4]. In the fast Newton transversal filters (FNTF) [3] and the fast
LMS/Newton algorithm [4], the input signal to the adaptive filter is
modeled as a low M -order autoregressive (AR) process so that the
Kalman gain vector in the Newton algorithm can be efficiently approx-
imated. This leads to a reduced computational complexity of 2L + 5M
for the FNTF and 2L + 6 for the fast LMS/Newton algorithms. On
the other hand, the convergence rate is considerably improved over the
LMS algorithm. According to [4], the fast LMS/Newton algorithm also
possesses the attractive properties of regular hardware implementation
and more stable adaptation than the FNTF algorithm because of the use
of the LMS algorithm in updating the weight vector. Since AR signal
modeling has been found to provide a sufficiently accurate represen-
tation for many different types of signals, such as speech processing,
it is expected that the FNTF and the fast LMS/Newton algorithm will
find applications in acoustic echo cancellation (AEC) as well as other
related applications [5].

Manuscript received August 16, 2004; revised March 10, 2005. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Fulvio Gini.

The authors are with the Department of Electrical and Electronic Engi-
neering, The University of Hong Kong, Hong Kong SAR, China (e-mail:
yizhou@eee.hku.hk; scchan@eee.hku.hk; klho @eee.hku.hk).

Digital Object Identifier 10.1109/TSP.2005.861099

*

W
x(1) | Unknown
d System
wWm V¥
»{ Adaptive Filter

r

System identification structure.

Fig. 1.

In AEC and many other acoustic problems, large filter length might
be required, and even the 2 L computational complexity is somewhat de-
manding in real-time implementation. Methods for further reducing this
computational complexity are therefore highly desirable. One efficient
scheme is the block adaptive filtering technique [6], [7], where the filter
coefficients are updated once per block of input data of length V. By
exploiting the filtering nature of the adaptive filters, fast filtering/convo-
lution techniques such as fast Fourier transforms (FFTs) and aperiodic
convolution can be applied to achieve significant computational saving.
The main limitation of these traditional block filtering algorithms is that
the block length is usually equal to the filter length. Therefore, a sig-
nificant processing delay will be introduced, especially for long filter
length. In [8], a new block filtering approach called the fast block-exact
LMS (FELMS) algorithm was introduced. The block-exact-based al-
gorithms calculate the filtering errors in blocks using fast convolution
algorithms and update the filter taps every N iterations. They are math-
ematically equivalent to their step-by-step nonblock counterparts with
the same performance and a substantially reduced computational com-
plexity. Moreover, because a smaller block size can be chosen, the delay
introduced is relatively low. Because of these potential advantages, the
block-exact concept has been applied to the FNTF [9], the fast RLS [10],
and the affine projection algorithms (APA) [11]-[13].

In this correspondence, a new block-exact version of the fast
LMS/Newton algorithm is proposed. The main difficulty in deriving
such a block-exact algorithm is that the input is whitened by AR
modeling before going through the LMS update. As a result, the
structure of the LMS/Newton algorithm differs considerably from the
LMS algorithm. Fortunately, it is found that the whitened input of the
LMS/Newton algorithm also possesses the shifting property, which is
a key property in deriving the FELMS algorithm. Using this property
and the block-exact concept, a new block-exact update for the LMS part
in the LMS/Newton algorithm is derived. The resulting algorithm is
mathematically equivalent to the original fast LMS/Newton algorithm,
but its computational complexity is significantly lower. On the other
hand, due to the differences in the inputs of the fast LMS/Newton and
the LMS algorithms, the proposed block-exact algorithm has a slightly
higher complexity than, but a similar structure to, the FELMS algorithm.

This correspondence is organized as follows. The conventional fast
LMS/Newton algorithm is described in Section II. The proposed block-
exact fast LMS/Newton algorithm and its implementation issues are
presented in Section III. Experimental results and comparisons are pre-
sented in Section IV. Finally, conclusions are drawn in Section V.

II. THE FAST LMS/NEWTON ALGORITHM

Without loss of generality, consider the identification of an un-
known system with impulse response W™ shown in Fig. 1. The
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unknown system and the adaptive filter with impulse response W (1)
are simultaneously excited by an input signal xz(n). The adaptive
filter continuously adjusts its weight coefficients to minimize certain
performance criterion such as the mean-square error (MSE) of the
instantaneous estimation error e(n), which is the difference between
the desired signal d(n) and the filter output y(n). do(n) is the output
of the unknown system, and 70(n) represents any possible modeling
error and/or background noises. In the Newton algorithm, the weight
update equations are given by

e(n) =d(n) — X" (n)W(n) (1)
Wn+1)=W(n)+pu- e(n)Ril(n)X(n) (2)

where B (n) is the inverse of the estimated input covariance matrix,
and p is the step size that controls the convergence, tracking speed,
and the steady-state error of the algorithm. In the FNTF and the fast
LMS/Newton algorithms, the input z(n) is modeled as an M -order AR
process (usually M < L) so that R (n) can be efficiently approx-
imated using linear prediction method. As a result, the computational
complexity of the basic Newton method can be significantly reduced,
similarly to that of the LMS algorithm, while offering significant per-
formance improvement. More precisely, in the fast LMS/Newton al-
gorithm, the input covariance matrix R(n) is decomposed using the
Cholesky factorization [1] so that its inverse can be written as

R (n) = Lyr(n)D ™ *(n) Ly (n) 3)

where Lys(n) is an L X L lower triangular matrix consisting of the
coefficients of the backward predictors. However, due to the AR model
assumption of the input, it can be simplified to (4), shown at the bottom
of the page, where the element ap ;(n) is the ith coefficient of the
pth-order backward predictor for (), and D(n) is a diagonal matrix

375

whose ith element is the estimated power of the ith backward predic-
tion error.

In [4], two algorithms with different structural complexity and ap-
plicability are presented. The algorithm presented in this paper is based
on Algorithm 2, which has a much simpler structure than Algorithm 1
and, hence, is more suitable for hardware implementation.

Note that the (M + 1)th through the Lth rows of Lys(n) are shifted
version of each other. To simplify notation, let us define the extended
input and coefficient vectors of X (n) and W (n) as follows:

Xi(n) = [e(n+M),...oa(n),.oxln = L= M+1)]" )
We(n) =[w_r(n),...,wo(n), -, wria—1(n)]". ©)
By freezing the first M and last M unnecessary elements of W (n)

to zero during all iterations and denoting the resultant vector as W(n ),
the fast LMS/Newton algorithm can be written as

e(n)=d(n—M)—X"(n—MW(n) (7)
W(n+1)=W(n)+ 2ue(n)uq(n) (8)
uq(n) = Lo (7L)D_1 (n)L1(n)XE(n) )

where D™ (n) is a diagonal matrix with appropriate dimension and its
ith diagonal element is the estimated power of the :th element of the
vector Ly (n)X g(n). Li(n) and L2(n) are, respectively, (L + M) x
(L+2M) and L x (L + M) matrices shown in (10) and (11) at the
bottom of the page. By exploiting the shifting property of u,(n) and
L,(n)Xg(n), it is possible to reduce the computational complexity
of the algorithm to 2L + 60 multiplications and additions for each
iteration. The predictor parameters can be efficiently calculated using
a lattice predictor and the Levinson—Durbin algorithm. The details can
be found in [4].

[ 1 0 s 0 0 0 0 - 07
ar1(n) 1 0 0 0 0 0
Ly(n) = |am,m(n)  any—1(n) --- 1 0 0 0
0 ayv(n—1) amai(n—1) 1 0 0 0
L 0 0 0 0 0 azwww(n — L+ M+ 1) (IVA,;/,A/[fl('n —L+M+1) 1]
C))
Li(n) =
apm,m(n)  ay m—1(n) - 1 0o ..~ 00 0 0 0 0
0 ay,pm(n—1) apy,(n—1) 1 .- 0 0 0 0 0 0
0 0 0 0 0 0 apy m(n —L—M+2) apyyyyy(n—L—-—M42) ... 1 0
0 0 0 0 0 0 0 apy pm(n—L—M+1) apy1(n—L—M+1) 1
(10)
Lo(n) =
1 ‘lM,l(”) aA[,A,[(n) Q <o 0 0 0 0
0 1 apv,m—1(n—1) ay,pm(n—1) -+ 0 0 0 0
(11
0 0 0 0 1 apq(n—L+2) ap pm(n—L42) 0
0 0 0 0 0 1 cooay m—1(n—L4+1) apy y(n—L+1)
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III. PROPOSED BLOCK-EXACT FAST LMS/NEWTON ALGORITHM

For simplicity, let us assume that the block length /V is a factor of the
filter length, i.e., L = N P. The following equations can be obtained
by iterating (7) and (8) for [NV consecutive time steps:

em—N4+1)=din—N-M+1)
—X"m-N-M+1)W(mn-N+1)
eln—N+2)=d(n—N-M+2)
—XTn-N-M+2)Wn-N+2)
=din—N-M+2)
—X'"n-N-M+2)Wn-N+1)
—2pue(n =N+ 1D)X"(n—=N - M +2)
X wqa(n—N+1)

en)=dn=M)=X"(n=MW(n-N+1)—---.

We can thus rewrite the error sequence of the fast LMS/Newton al-
gorithm at time intervalsn — N +1,n — N 4+ 2,...,n — 1,n more
compactly in matrix form as

e(n)=d(n) —X(n—M)W(n—N+1)—8Sne(n) (12)
[e(n =N +1),e(n—N+2),....e(n)]" and
,d(n — M)

where e(n) =
dn)=[dn—N-M+1),diln—N—-M+2),...
are both N x 1 vectors and

X"(n—N-M+1)
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in deriving the FELMS are still applicable, after appropriate modi-
fications. In the block-exact algorithm, the filter weight is adjusted
once per data block instead of being updated at every data sample. Its
block update recursion can be readily derived by beginning from the
step-by-step update of (8) and combining properly the resulting equa-
tions for all time steps within the current block, as follows:
Whn+1)=W(n-—-N+1)+2uU.(n)e(n) (14)
where U,(n) = [wa(n — N + 1),ua(n — N +2),...,uq(n)] isa
L x N matrix. Further, e(n) on both sides of (12) can be combined to
give
[S(n)+ Ie(n) =d(n) — X(n — M)W(n—-N+1)
e(n) =[S(n) + I '[d(n) — X(n — M)W (n — N +1)]
=G(n)[d(n) — X(n — M)W(n — N + 1)].
s)

G(n) is a lower triangular matrix that can be factored further as the
product of component matrices as

G(n) = Gn_1(n)Gn—2(n)--- Gi(n)

where G';(n), as shown in (16), has nonzero elements only appearing
at the (i + 1)th row in the lower triangular part (see (16), shown at
the bottom of the page). Apparently, the second term on the right-hand
side of (15) represents a fixed coefficient filtering of the input within
a block of length V. This characteristic can be utilized to reduce the
computational complexity. Toward this end, we first rewrite it as

X' (n— N = M+2) X(n = M)W(n— N+ 1) = Avex(mWa(n = N +1)(7)
X(n—M)= . where
X% (n - M) Anxn(n) =
is an N x L matrix, and [An—i(n) Anx(n) Aon_3(n) Asn—2(n)T
An_2(n) An—_i(n) Asn_3(n)
r 0 0 0 <o 07 . .
si(n—N+2) 0 0 e 0 (18)
s2iln = N+3) siln—N+3) 0
S(n’) = . . . A1 (71) . A]\r (n)
Ao(n) Ai(n) An_2(n) Anx—1(n) ]
’ ’ - : is a block-Toeplitz matrix whose block element
L sn—i(n) sn—2(n) si(n) 0
si(n) = 2;1,X1 (n—Mu,(n—14), i=1,2,...,N—-1 (13) Ain)=[z(n—M —j),za(n =M - N —j),...,
asn—M—-Ni—j),...,.2(n—M—-L+N—j
Note, in the FELMS algorithm, the input vector X (n) will be used in- v(n ' ! ‘J)T . I(n' + TJ)]
stead of the whitened input u,(n) shown above. Fortunately, both of for j=0,1,....2N =2; i=0,1,....(L/N) -1
them satisfy the shifting property, and hence most of the techniques (19)
[ 1 0 0 07
0 1
0
Gi(n)=|-s;(n—N+i+1) —sisi(n—=—N+i+1) —siln—N+i+1) 1 (16)
0 0 0 0
: 0
0 0 0 0 0 1
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isal x (L/N) vector, and

Wy(n—N+1)
= [UJOT(H - N+ 1),1111T(n, - N4+1),...,

T o, . r
wy_o(n—N+1),wn_(n — N+ 1)]

wip(n—N+1)
= [Why WEt Ny v o s WhpNiyeoe ,wk_,_L_N]T (n—N+1),
for k=0,1,....N=1; i=0,1,....(L/N) =1

isan (L/N) x 1 vector.
Likewise, W (n) and U4 (n) in (14) can be reorganized in a similar
way. By defining
Bj(n) =[ua(n —j),ua(n — N —3),...,ua(n— Ni—j),...,
wa(n — L+ N—7j)] (20)

forj = 0,1,...,2N — 2;¢ = 0,1,...,(L/N) — 1;U.(n) can be
partitioned to form

Brxn(n) =
[By_1(n) Bn(n) Bon_3(n) Ban—2(n)]
By_2(n) Bn—i(n) By _3(n)
B (n) : By (n)
Bo(n) Bi(n) Bn_2(n) Bn_i(n) ]
21

The update of G(n) in (15) can be efficiently implemented by utilizing
the relationship between successive calculations. More precisely, at the
current update, the elements in the first column can be expressed re-
spectively in terms of those in the last row at the previous update, as
shown in (22) at the bottom of the page. The remaining elements along
each subdiagonal can be updated one after another using the results ob-
tained in (22), as follows:

sitn+1)=s;(n)+2pfx(n — M + Nua(n—i+1)

—x(n—M —L+ Dugs(n—i—L+1)] (23)

There are altogether N (N —1)/2 such elements to be updated. Since
in (22) and (23) the second summation items in the brackets have been
obtained at time n — L, only a total of N? — N — 1 multiplications and
(3/2)N(N — 1) additions are required. Summarizing, we can obtain
the following equivalent block-exact version of the fast LMS/Newton
algorithm:

e(n) =Gn)[d(n) — Anxn(n)Wx(n — N + 1)]
Wa(n+1)=Wnx(n—N+1)42uBhyn(n)e(n).

(24a)
(24b)

Similar to the FELMS algorithm in [8], the matrix multiplications of
A;(n)and B;(n) in (24) can be implemented using the fast convolution
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algorithms in [14] and [15] or FFT. Here, we give an example with
N = 2 for the purpose of illustration.

Rewrite the second items on the right-hand side of (24a) and (24b)
into (25a) and (25b) as follows:

o allm]e-n

Ay(wy 4+ wy) + (A2 — Ay )un
- {A1 (wo +wi) — (A — Ao)tﬂo} (n—1) 25
BT Bl le(n-1)
o]
BT (e(n— 1)+ ¢(n)) — (By — Bo)e(n)
- {Bip(e(n — 1 +en)+ (By—B)Te(n — 1)] - (25b)

According to the definitions of (19) and (20), we have

(A1 — Ag) = [za(n — M — 1),za(n = M = 3),...,

xa(n —M —L+1)] (26)
(B1 — By) = [uga(n — 1), uga(n —3),...,
uaa(n — L+ 1)] @n

where za (n) = #(n) —z(n+1) and uaa (n) = wa(n) —ua(n+1).

It can be easily verified that only the first items xa(n — M — 1)
in (26) and wqa (n — 1) in (27) need to be calculated for each update,
and the remaining elements can be acquired from the calculation of
(A1 — Ag) and (B;1 — By) at the previous update step. Similar com-
putational savings also apply to (A> — A1) and (B2 — By ). This prop-
erty can be generalized to other cases where different block lengths NV
are selected. In these cases, only the first items of (A; — A,_1) and
(Br — Bp_1),k = 2N —2,2N — 3,...,2,1 are required to be up-
dated for each iteration.

When N = 2, S(n) only comprises of one element, its update is

si(n) = si(n—2)+ 2p[z(n — M)us(n —1)
4+ z(n— M — Dua(n — 2)
—x(n—M — L)us(n—L—-1)
—ax(n—M —L—1)u,(n—L—-2)].

The block-exact fast LMS/Newton algorithm with a block length of
N = 2 described by (24) and (25) requires 3L + 3 multiplications
and 4L + 10 additions plus another 12M operations for updating u.,.
Compared with 4L multiplications and 4 L additions plus the 12M op-
erations cost for updating #, needed by the conventional algorithm, the
block-exact scheme reduces 25% of the total number of multiplications
with only a slight increase in additions. For the special case N = 2",
the FFT can be employed, and the computational complexity of the
proposed algorithm is

2(3/2)"L+2"(3-2" —3)/2+ 2" -6M multiplications
202(3/2)" — )L+ 2" (2" = 1)

+4-3" —2+2"-6M additions.

siln—N+i+1)=s;(n—N)+2u

=0

an—M—-N4+i—j+Du(n—N—-j+1)

—Z:v(n—A[—L—N—l—i—j—l—l)ua(n—L—N—j—l—l) ,

j=0

fori=1,....N—1. (22)
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TABLE 1

COMPUTATIONAL COMPLEXITY COMPARISON OF THE PROPOSED ALGORITHM AND ITS NONBLOCK COUNTERPART

Filter | Block AR Fast LMS/Newton Algorithm Block Exact Fast LMS/Newton
Length | Length | Process Algorithm
L N Order Number of Number of Number of Number of
M Additions Multiplications Additions Multiplications
32 4 5 376 376 394 280
128 16 5 4576 4576 3586 2136
512 32 5 33728 33728 18378 10224
1024 64 5 132992 132992 57378 31296
Copy the coefficients
r—————= __T ______ A
| Pri(n+M) |
| |
| |
|
x(n) , bM(n+A/f) Y ' 1
> H,, () (X 2 Hy, (z27)
A
y ug (n)
ELZI W(n+1)= «—
z W (n) + 2 pe(n)u, (n)
lL e(n)
N-1
) T(n-M
| W(z)= Zwi m)="" dn )
i=0 - +
(@
8@
X
d(n-M) g
-M-1
x(n ) . + >o
—’K
. 4
-1
x(n—M)‘ z ¥ |x(r-M -2)>x(r-M -1)
oa o8
AD& x(n=-M-1)—x(n—-M) —
; o
+
d(n-M-1)
e(n—-1)
Block Exact Fast/LMS Newton _e(n—D+e(n)
> Algorithm N=2 Se(n)
Copy the coefficients
Fe-- T T LT T T T A
Eﬂ | Pif (n+ M) |
| |
A I [
L N v
x(r) (5 e ol w0
s Hy, (2) X Z VN Hy, (27)

(b)

Fig. 2. Implementation block diagrams for (a) fast LMS/Newton algorithm and (b) block-exact fast LMS/Newton algorithm.

The computational complexities of the proposed algorithm and its
nonblock counterpart for different block length N and filter length
L are summarized in Table 1. It can be seen that significant savings
in arithmetic operation is achieved by the proposed block-exact algo-
rithm. A closer look at (24) also reveals that except for the additional

cost for updating u, (i.e., whitening the input using a low-order AR
process, which is quite small compared with the rest), the computa-
tional complexity of the proposed algorithm is rather close to that of
the FELMS algorithm in [8]. Two main differences are: first, in addi-
tion to calculating (A — Ay _1 ), the vector subtraction (B, — Bj_1) in
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Fig. 3. Adaptive echo cancellation.

(24) has to be computed, whereas this is unnecessary in the FELMS be-
cause it solely deals with «:(n). Fortunately, due to the computational
saving in updating (By — Bjy_1), only 2N — 2 extra additions are
needed for each iteration. The second difference lies in the updating of
S(n) in (22) and (23). Due to the presence of u,(n), the “one mul-
tiplication” saved in FELMS cannot be exempted from the proposed
algorithm. This results in N — 1 more multiplications in each itera-
tion for the proposed algorithm. As mentioned previously, our work is
based on the fast LMS/Newton algorithm 2 in [4], which is simpler in
structure and thus more suitable for hardware implementation. A block
diagram depicting this algorithm is reprinted from [4] in Fig. 2(a). Sim-
ilarly, it is found in [8] that the block-exact technique we employ also
has an efficient implementation structure. This structure is very reg-
ular, which is attractive for hardware or very large scale integration
(VLSI) implementation. Based on these structures, the block diagram
for implementing the proposed algorithm with block length N = 2 is
derived and plotted in Fig. 2(b). It is worth noticing that, because of
the similarity between the FELMS algorithm and our proposed algo-
rithm, many properties of the former is also applicable to the latter. For
example, like FELMS, the proposed algorithm requires fewer opera-
tions than its nonblock counterpart as long as P > 2- (P = L/N).
However, if N is of the same order of magnitude as L, the proposed
algorithm will require more operations. By compromising the update
of S(n) and the utilization of the fast FIR technique, an “optimum”
value n,¢ for the proposed algorithm can also be approximated. The
block length V' can thus be chosen with the same order as 7pt. Since
the generalization of such relevant conclusions in [8] to the proposed
algorithm is rather straightforward, and also due to the space limitation,
these issues are not elaborated further in this paper.

IV. SIMULATION RESULTS

We now verify the efficiency and the mathematical equivalence of
the proposed block-exact fast LMS/Newton algorithm with its non-
block counterpart using computer simulations of an acoustic echo can-
cellation problem. The system model is depicted in Fig. 3. The input
signal z(n) is modeled as a speech signal using an AR process with co-
efficients [1 —0.65 0.693 —0.22 0.309 —0.177] as given in [4]. The
echo path impulse response, which is a realistic one and has a length of
128, is given as m (k) by the ITU-T recommendation G.168 [17]. The
background noise 7o(n) is a white Gaussian random sequence with
variance 5,270 (n) = 0.0001. For simplicity, no double-talk is assumed
to present and the block length is N = 4. As in [4], we compare the
proposed algorithm and its nonblock counterpart with the normalized
LMS (NLMS) algorithm [1]. The step sizes of the various algorithms
were appropriately chosen so that they have identical steady-state MSE.
The results are averaged over 100 independent runs. From Fig. 4, it can
be seen that the MSE curves of the proposed algorithm and its orig-
inal counterpart are identical, which substantiates their mathematical
equivalence. Fig. 5 shows the residual echoes obtained by the various
algorithms. These simulation results comply well with those obtained
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in [4]. Regarding the performance analysis of the FNTF and related
Newton algorithms, readers are referred to [18], [19], and [4] for more
information.

V. CONCLUSION

A new block-exact fast LMS/Newton algorithm for adaptive filtering
is presented. The proposed algorithm is mathematically equivalent to
its original counterpart but has a substantially reduced computational
complexity. Since short block length is allowed, the processing delay
introduced is not excessively large as in conventional block algorithm
generalization. Implementation issues and the experimental results are
also presented to reveal the principle and efficiency of the proposed
algorithm. Together with the good numerical stability, the proposed
algorithm may be a good alternative to the block-exact FNTF algorithm
[9] in applications where long adaptive filters are required.
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On the Spectral Factor Ambiguity of FIR Energy
Compaction Filter Banks

Andre Tkacenko and P. P. Vaidyanathan

Abstract—This paper focuses on the design of signal-adapted finite-im-
pulse response (FIR) paraunitary (PU) filter banks optimized for energy
compaction (EC). The design of such filter banks has been shown in the
literature to consist of the design of an optimal FIR compaction filter
followed by an appropriate Karhunen-Loéve transform (KLT). Despite
this elegant construction, EC optimal filter banks have been shown to
perform worse than common nonadapted filter banks for coding gain,
contrary to intuition. Here, it is shown that this phenomenon is most
likely due to the nonuniqueness of the compaction filter in terms of its
spectral factors. This nonuniqueness results in a finite set of EC optimal
filter banks. By choosing the spectral factor yielding the largest coding
gain, it is shown that the resulting filter bank behaves more and more like
the infinite-order principal components filter bank (PCFB) in terms of
numerous objectives such as coding gain, multiresolution, noise reduction
with zeroth-order Wiener filters in the subbands, and power minimization
for discrete multitone (DMT)-type nonredundant transmultiplexers.

Index Terms—Compaction filter, energy compaction, multirate filter
bank, principal components filter bank.

I. INTRODUCTION

A signal-adapted filter bank is any multirate filter bank whose filters
depend on the nature or statistics of its input. The problem of the design
of optimal signal-adapted multirate filter banks has been of interest to
the signal processing community on account of its applications in data
compression, signal denoising, and digital communications [11], [15],
[16]. A typical model for the filter bank used is the M -channel maxi-
mally decimated filter bank [14] shown in Fig. 1(a). Here, the subband
processors { P } need not be linear and are typically scalar quantizers,
constant multipliers, or threshold devices.

An equivalent polyphase representation [14] of the filter bank of
Fig. 1(a) is shown in Fig. 1(b). The analysis filters {H(z)} and
synthesis filters {F%(z)} are, respectively, related to the analysis
polyphase matrix H(z) and synthesis polyphase matrix F(z) as
follows [14]:

[(Ho(z) Hi(z)
[Fo(:) Fl(Z)

Hu—i(2)]" =H(:Y)a(z)

Fu_i(2)] =a(x)F"). (D)

Here, a(z) denotes the M X 1 advance chain vector given by

M-1T

and the tilde notation denotes the paraconjugate [14] of any system
(ie., A(z) 2 AT(1/2%) for any A(2)).

From here on, we will assume that the M -fold blocked signal vector
x(n) from Fig. 1(b) is wide sense stationary (WSS) with a known
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