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Design of Linear-Phase Recombination
Nonuniform Filter Banks
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Abstract—This correspondence proposes a novel method for designing a
class of recombination nonuniform filter banks (RNFBs) with the linear-
phase (LP) property. In the structure of the proposed nonuniform filter
bank (FB), certain channels of an -channel uniform FB are merged by
synthesis filters of transmultiplexers (TMUXs), yielding nonuniform sub-
bands. By a detailed analysis of the frequency characteristics of the RNFBs,
we derive the existence and matching conditions that are necessary for
constructing the proposed RNFBs having good frequency responses. With
those conditions being satisfied, the design problem becomes that of a set
of LP uniform FBs. By using the Parks–McClellan algorithm, we are able
to design the near-perfect-reconstruction LP RNFBs in a very simple and
efficient way as demonstrated by two examples.

Index Terms—Recombination nonuniform filter banks (RNFBs), linear
phase (LP), near-perfect reconstruction, transmultiplexer (TMUX).

I. INTRODUCTION

In applications such as image, audio, and speech analysis and coding,
perfect-reconstruction (PR) filter banks (FBs) with nonuniform fre-
quency spacing usually offer considerable flexibility in frequency par-
titioning. A significant amount of research effort has been devoted to
the theory and design of the nonuniform FBs [1]–[5]. One popular de-
sign method is the direct one where a direct structure is adopted [2].
However, this design usually involves nonlinear optimization with a
considerable number of parameters. Another useful approach is the in-
direct method [3], where certain channels of a uniform FB are merged
using the synthesis filters of transmultiplexers (TMUXs), giving rise
to a near-PR recombination nonuniform FBs (RNFBs). It was shown
recently in [4] that it is possible to achieve PR in this structure. A class
of RNFBs based on cosine-modulated FBs (CMFBs) were also pro-
posed. By imposing a simple matching condition on the prototype fil-
ters, we were able to obtain the recombination nonuniform CMFBs
(RN-CMFBs) with low design and implementation complexities and
good frequency characteristics. The advantage of the RNFB is that the
PR property is structurally imposed as long as the original uniform
FB and the recombination TMUXs are PR. Compared with another
merging method in [6] where a simple transformation is used, the gen-
eral recombination TMUX employed in the RNFB can help to create a
single subband with good frequency characteristics.

The majority of the existing work on the nonuniform FB design
cannot maintain linear-phase (LP) property, because of the high com-
plexity associated with phase distribution. In this correspondence, we
propose a novel method for designing RNFBs with LP property. To
begin with, we make two assumptions related to the RNFBs. The first
one is that theM -channel uniform FB alone and the TMUXs alone are
all LP in the recombination structure. The second one is that the number
of channels of the uniform FB and that of the recombination TMUX
are coprime. With this assumption, it is possible for the RNFB to ob-
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tain linear time-invariant (LTI) analysis and synthesis filters, instead
of the original linear periodic time-varying (LPTV) filters. As a result,
the frequency responses of the analysis filters can be optimized directly
and the design procedure can be simplified significantly. In this corre-
spondence, we first study the frequency characteristics of the analysis
filters of the proposed LP RNFBs. Based on the analysis results, the
existence and the matching conditions for obtaining LP RNFBs with
good filter quality are then derived. With those conditions being sat-
isfied, the design of the LP nonuniform FBs becomes that of a set of
LP uniform FBs, and thus the design procedures of the LP uniform
FBs are greatly simplified. Rather than involving the LP paraunitary
FB [7] and the LP FBs by cosine and sine modulation [8], the LP uni-
form FBs introduced in this correspondence are obtained by using the
well-known Parks–McClellan algorithm with transition bands having
cosine roll-off type.

The rest of this correspondence is organized as follows. The fre-
quency characteristics of RNFBs are analyzed in Section II. The ex-
istence and matching conditions are derived in Section III, followed
by the procedures and examples in Section IV and conclusions in Sec-
tion V.

II. FREQUENCY CHARACTERISTICS OF RECOMBINATION

NONUNIFORM FILTER BANKS

Before presenting a detailed analysis of the frequency characteristics
of the RNFBs, let us give a brief introduction on the RNFBs.

The structure of an L-band RNFB is shown in Fig. 1. In this struc-
ture, ml subchannels of an M -channel uniform FB are merged by an
ml-channel TMUX, where l = 0; � � � ; L, thereby producing nonuni-
form subbands with a sampling rate of ml=M . At the synthesis sec-
tion, the analysis filters of the TMUX are used to produce theml sub-
bands. Similar merging can be performed for other consecutive chan-
nels. Notice that themodulation operation associated with the constants
c0 � cM�1 and c�10 � c�1M�1 do not affect the PR condition. They are
introduced to suppress the undesirable spurious response, which we
will explain later in Section III. It was observed in [4] that if the uni-
form FB and the TMUXs are PR, then the nonuniform FB will also be
PR. This is because if the input signals of the TMUX as indicated by the
dotted line in Fig. 1 can be approximately reconstructed at the output of
the TMUX, the merging operation is equivalent to the introduction of
a certain delay in the ml channels. If these delays are compensated in
other branches, the whole structure is PR. This structural PR property
simplifies the design of the nonuniform FB, which was already demon-
strated by the RN-CMFBs in [4] and [5].

Because the analysis filters of the RNFB are in general LPTV, their
design can be complicated. Fortunately, ifM andml are coprime, it is
possible to come up with an LTI representation of the analysis filters
by interchanging the order of the decimator and interpolator [4]. With
this coprime assumption in mind, we will examine in some details the
frequency characteristics of the analysis filters in the rest of this section.

To begin with, let us study the equivalent LTI representation of the
RNFB. Consider the merging of the subbands in Fig. 1. If ml and M
are coprime, then the decimator (M) and the interpolator (ml) can
be interchanged. Moreover, using the noble identity [9],Hr +i(z) and
Gl;i(z); i = 0; . . . ; ml � 1 can be moved across the interpolator and
decimator, where rl are the starting index of the merged channels of
the M -channel uniform FB. It gives the following equivalent LTI rep-
resentation of the analysis filter:

Ĥl(z) =

m �1

i=0

cr +iH
(
r +iz

m )Gl;i(z
M): (1)
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Fig. 1. Structure of linear-phase recombination nonuniform filter banks.

It should be noticed that if the starting index of the merged channel
is odd, the inputs of the TMUX have to be modulated by the sequence
(�1)n in the corresponding channels [2] so as to overcome the spectral
inversion, an inherent problem of nonuniform FBs. It can be verified
that the modulator of (�1)n commutes either with the up-sampler or
with the down-sampler so that the analysis filters can be represented as
the cascade of certain LTI filter with the modulator.

Consider the interpolated filter Gl;i(z
M ) in (1). Here, we assume

that the ml-channels to be merged are taken from the M -channel
uniform FB with the channel index rl; rl + 1; � � � ; rl +ml � 1. The
merging operation is performed by employing the synthesis filters
Gl;i(z) of the ml-channel TMUX. Since the PR condition of a uni-
form TMUX is identical to that of a 1-skewed FB, the TMUX can be
derived from a 1-skewed FB [10]. Let fG0

l;i FB(z);Gl;i FB(z)g and
fG0

l;i(z);Gl;i(z)g; i = 0; � � � ;ml � 1 be the analysis/synthesis filter
pairs of a uniform FB and a 1-skewed FB respectively. Then, we have
G0

l;i(z) = G0

l;i FB(z) and Gl;i(z) = z�1Gl;i FB(z). In other words,
if Gl;i(z) and G0

l;i(z) in Fig. 1 are the synthesis and analysis filters
of a 1-skewed ml-channel FB, then they constitute a TMUX. For
notational convenience, we shall use H(!) to denote H(ej!) in the
rest of the paper. By using Gl;i(!) = e�j!Gl;i FB(!), (1) becomes

Ĥl(!) =

m �1

i=0

cr +iHr +i(ml!)Gl;i(M!)

= e�j!
m �1

i=0

cr +iHr +i(ml!)Gl;i FB(M!)

= e�j!D(!) (2)

where

D(!) =

m �1

i=0

cr +iHr +i(ml!)Gl;i FB(M!): (3)

Let

Hr +i(ml!) = Ar +i(!) = A+
r +i(!) + A�

r +i(!) (4a)

Gl;i FB(M!) = Bi(!) = B+
i (!) +B�

i (!) (4b)

where A+
r +i(!) and A�

r +i(!) correspond to the responses of
Ar +i(!) for positive and negative values of ! in [��=ml; �ml],
respectively. Since the periods of Hr +i(!) and Gl;i FB(!) are
2�, the period of Ar +i(!) is 2�ml and that of Bi(!) is 2�M .
Similarly, B+

i (!) and B�

i (!) correspond to the responses of Bi(!)
in [��M; �=M ].

Our objective is to study the conditions on Hr +i(!) and
Gl;i FB(!) such that Ĥl(!) will possess the desirable fre-
quency characteristics. To simplify the analysis, we assume

that 1) the stopband cutoff frequencies of Hr +i(!) lie within
[((rl + i)�=M � �=(2M)); ((rl + i+ 1)�=M + �(2M))]
and 2) the stopband attenuation is sufficiently high that it can be
treated as zero outside the region. Hence, only adjacent channels
overlap in their magnitude responses.

Those assumptions also apply to Gl;i FB(!) with the stopband
cutoff frequencies in the range [(i�=ml��=(2ml)); ((i+1)�=ml+
�=(2ml))].

We now turn to D(!) in (3). Substituting (4a) and (4b) into (3), we
get D(!) = 4

j=1
Dj(!), where

D1(!) =

m �1

i=0

cr +iA
+
r +i(!)B

+
i (!)

D2(!) =

m �1

i=0

cr +iA
+
r +i(!)B

�

i (!)

D3(!) =

m �1

i=0

cr +iA
�

r +i(!)B
+
i (!)

D4(!) =

m �1

i=0

cr +iA
�

r +i(!)B
�

i (!): (5)

It is noticed that only the terms D1(!) and D2(!) need to be studied
as given below since D3(!) andD4(!) are their conjugates.

To well analyze the termsD1(!) andD2(!), we focus on their fre-
quency support. Denote the frequency support of a function Q(!) as
Supp(Q), that is, if ! =2 Supp(Q), then Q(!) = 0. It can be shown
that

Supp(Hr +i(!))

= 2p� + (rl + i)
�

M
�

�

2M
; 2p�

+ (rl + i+ 1)
�

M
+

�

2M

[ 2p� � (rl + i+ 1)
�

M
+

�

2M
; 2p�

� (rl + i)
�

M
�

�

2M
(6a)

Supp(Gl;i FB(!))

= 2q� + i
�

ml

�
�

2ml

; 2q�

+ (i+ 1)
�

ml

+
�

2ml

[ 2q� � (i+ 1)
�

ml

+
�

2ml

; 2q�

� i
�

ml

�
�

2ml

(6b)
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where p and q are integers. Since the period of
Hr +i(ml!)Gl;i FB(M!) is 2�, we need only focus on the range
�� � ! � �. We notice that p and q satisfy

jpj � bml=2c and jqj � bM=2c (7)

in �� � ! � �. Here, bxc denotes the nearest integer less than or
equal to x. From (4a) and (6a), we have

Supp(Ar +i(!)) = Supp(A+r +i(!))[ Supp(A�r +i(!))

=
p

x+p;r +i [
p

x�p;r +i

where

x+p;r +i =
2p�

ml

+ rl + i�
1

2

�

mlM
;
2p�

ml

+ rl + i+
3

2

�

mlM

= [s+p;r +i; t
+
p;r +i]; (8a)

x�p;r +i =
2p�

ml

� rl + i+
3

2

�

mlM
;
2p�

ml

� rl + i�
1

2

�

mlM

= [s�p;r +i; t
�

p;r +i]; p = �0;�1;�2; . . . :

(8b)

Furthermore, by substituting (4b) into (6b), we have

Supp(Bi(!)) = Supp(B+
i (!))[ Supp(B�i (!))

=
q

y+q;i [
q

y�q;i

where

y+q;i =
2q�

M
+ i�

1

2

�

mlM
;
2q�

M
+ i+

3

2

�

mlM

= [u+q;i; v
+
q;i]; (9a)

y�q;i =
2q�

M
� i+

3

2

�

mlM
;
2q�

M
� i�

1

2

�

mlM

= [u�q;i; v
�

q;i]; q = �0;�1;�2; . . . : (9b)

It can be seen that the lengths of these intervals are all equal to I =
2�=(mlM).

Now we are ready to make the conclusion on D1(!) and D2(!) in
terms of the Supp(Q).
D1(!) : In D1(!) = m �1

i=0
cr +iA

+
r +i(!)B

+
i (!), the support

of fA+r +i(!)B
+
i (!)g is Supp(x+p;r +i \ y

+
q;i). To determine whether

they overlap each other, we examine the difference between the starting
locations of the two intervals. From (8a) and (9a), we get

s+p;r +i � u+q;i = (pM � qml + rl=2)I: (10)

For even rl, we define an integer r0l with r0l = rl=2. Then, from (10)
we have

s+p;r +i � u+q;i = (pM � qml + r0l)I: (11)

Notice that, for odd rl, the similar derivation can be carried out and the
same conclusion will be obtained. Therefore, we will only discuss the
case when rl is even. If

pM � qml + r0l = 0 (12)

then the two interval overlap exactly. Since M and ml are coprime,
the solution of p and q in (12) is unique in the range of (7). For p and
q satisfying (12), fA+r +i(!)B

+
i (!)g has the frequency support given

by

Supp(A+r +i(!)B
+
i (!)) = [s+p;r +i; u

+
q;i] = [s+p;r +i; t

+
p;r +i]:

The corresponding frequency support of D1(!) is

Supp(D1) =
i=0;���;m �1

Suppf[s+p;r +i; t
+
p;r +i]g

=
�

2mlM
(4pM + 2rl � 1);

�
�

2mlM
(4pM + 2rl + 2ml + 1) : (13)

The bandwidth of D1(!) in [��; �] is (1 + 1=ml)�=M . Note, the
support is measured after the interpolator " ml. Therefore, the support
in the original rate is (1 + 1=ml)ml�=M . An ideal filter will have a
support ofml�=M . It constitutes the desired passband of Ĥl(!).
D2(!) : Consider D2(!) with D2(!) = m �1

i=0
cr +i

A+r +i(!)B
�

i (!).
Again, we examine the difference between the starting locations of

A+r +i(!) and B
�

i (!). From (8a) and (9b), we have

s+v;r +i � u�q;i = pM � qml + r0l + i+
1

2
I: (14)

Because of the term (1=2) on the right-hand side of (14), the sum inside
the bracket cannot be zero. Further, if

pM � qml + r0l + i = 0 (15a)

or

pM � qml + r0l + i = �1 (15b)

then the transition bands ofA+r +i(!) andB
�

i (!) can still overlap with
s+p;r +i � u�q;i = �I=2 corresponding to (15a) and (15b). These two
supports in D2(!), denoted by F+

i and F�

i , can be expressed as the
overlapping ofA+r +i withB�

i either on the left-hand or the right-hand
sides of A+r +i. More precisely, we have

[s+p;r +i; t
+
p;r +i] \ [u�q;i; v

�

q;i] = [s+p;r +i; v
�

q;i] = F+
i (16a)

[s+p;r +i; t
+
p;r +i] \ [u�q;i; v

�

q;i] = [u�q;i; t
+
p +i] = F�

i (16b)

each having a length of �=(mlM). It can be easily verified thatF+
i+1 =

F�

i . The overlapping of A+r +i with B�

i will give rise to the undesir-
able spurious response in D2(!) as indicated in (17).

Introducing the indicator function of F as EF , i.e.,

EF (!) =
1; if ! 2 F

0; if ! =2 F
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we have E
F

= E
F

. In this way, D2(!) can be expressed as fol-

lows:

D2(!) =

m �1

k=0

cr +iA
+
r +i(!)B

�

i (!)

=

m �1

i=0

cr +i A+
r +i(!)B

�

i (!)EF

+ A+
r +i(!)B

�

i (!)EF

= cr A
+
r (!)B

�

0 (!)EF

+

m �2

i=0

cr +i+1A
+
r +i+1(!)B

�

i+1(!)EF

+ cr +iA
+
r +i(!)B

�

i (!)EF

+ cr +m �1A
+
r +m �1(!)B

�

m �1(!)EF
: (17)

The term, m �2
i=0 (cr +iA

+
r +i(!) B�i (!)EF

+ cr +i+1

A+
r +i+1(!)B

�

i+1(!)EF
), which we call the “cross-term,” is

the source of the spurious response. More specifically, it causes
bumpings in the stopband of Ĥl(!) in (1), which was first observed
in [4] for RN-CMFBs. It can be verified that the frequency interval
Supp(D2(!))� F+

0 � F�m�1 constitutes the stopband of Ĥl(!). In
what follows, we will establish the condition such that the spurious
response in (17) can be forced to zero. This is achieved by imposing an
appropriate value on the multiplication constant cr +i and a matching
condition of the two filtersHr +i(!) andGl;i FB(!) in the LP RNFB.

III. CONDITIONS FOR LINEAR-PHASE RECOMBINATION

NONUNIFORM FILTER BANKS

Before proceeding to the selection of cr +i and the discussion of the
matching condition, let us briefly review some basic properties of LP
filters. If an LP filter H(!) has a symmetric (antisymmetric) impulse
response h(n), then we say H(!) is symmetric (antisymmetric). For
Hr +i(ml!) and Gl;i FB(M!) (see (4a) and (4b)), if Ar +i(!) and
Bi(!) are symmetric, then we have

A+
r +i(!) = e�j�! AR

r +i(!)

B+
i (!) = e�j�! BR

i (!)

A�r +i(!) = e�j�! AR
r +i(!)

B�i (!) = e�j�! BR
i (!) : (18)

Similarly, if Ar +i(!) and Bi(!) are antisymmetric, we have

A+
r +i(!) = je�j�! AR

r +i(!)

B+
i (!) = je�j�! BR

i (!)

A�r +i(!) = �je�j�! AR
r +i(!)

B�i (!) = �je�j�! BR
i (!) (19)

where AR
r +i(!) and BR

i (!) are the amplitude responses,
� = mlNM=2 and � = MNm =2. NM and Nm are the filter
lengths of the M -channel FB and the ml-channel TMUX, respec-
tively.

Note that, in M -channel LP FBs, the analysis filters are always
having alternate symmetry (i.e., alternative symmetric and anti-sym-
metric). In our correspondence, we assume that Ar +i(!) and Bi(!)
are symmetric when i is even, and antisymmetric when i is odd.
The same assumption is applied to Hr +i(!) and Gl;i FB(!). Next,
we will derive the condition on the constant cr +i with which the
existence of LP RNFBs with good frequency responses is ensured. Let
us start with the analysis of D1(!) in terms of the passband flatness
and then proceed to the analysis of D2(!) in terms of the spurious
response suppression in the stopband.

Passband Flatness: D1(!) can be further written by (20), shown
at the bottom of the page. As mentioned earlier,D1(!) constitutes the
passband of Ĥl(!). Therefore, at the transition band of A+

r +i(!) and
B+
i (!), the term inside the bracket of (20) should add up to a constant.

To this end, cr +i and cr +i+1 should satisfy

cr +i = �cr +i+1: (21)

Spurious Response Suppression: As mentioned earlier, the support
of D2(!), except F+

0 and F�m�1, corresponds to the stopband of
Ĥl(!), and the cross-term might appear. Recall (17), which is an
expression of D2(!). The term inside the bracket ( � ) can be written
as

cr +iA
+
r +iB

�

i EF
+ cr +i+1A

+
r +i+1B

�

i+1EF

= e�j(�+�)!
cr +i A

R
r +i(!) BR

i (!)

+cr +i+1 AR
r +i+1(!) BR

i+1(!)
: (22)

In order to eliminate the cross-term (22), we need to choose cr +i =
�cr +i+1, a condition that is exactly same as (21). It is evident that
to meet both the requirements of “passband flatness” and “spurious re-
sponse suppression,” cr +i and cr +i+1 must have the relation of (21).
We refer to (21) as the existence condition with which good frequency
characteristics of LP LTI RNFBs can be warranted.

Having satisfied the condition in (21), (22) becomes

cr +iA
+
r +iB

�

i EF
+ cr +i+1A

+
r +i+1B

�

i+1EF

= e�j(�+�)!cr +i AR
r +i(!) BR

i (!)

� AR
r +i+1(!) BR

i+1(!) :

Obviously, if jAR
r +i(!)jjB

R
i (!)j = jAR

r +i+1(!)jjB
R
i+1(!)j, then the

cross-term will be zero. This additional condition on Ar +i(!) and
Bi(!) can be realized as the following matching condition:

Ar +i(!) = Bi(!)

or equivalently

Hr +i(ml!) = Gi(M!): (23)

D1(!) =

m �1

i=0

cr +iA
+
r +i(!)B

+
i (!)

= cr A
+
r (!)B

+
0 (!) + � � �+ cr +iA

+
r +i(!)B

+
i (!) + � � �+ cr +m �1A

+
r +m �1(!)B

+
m �1(!)

= e�j(�+�)!
cr AR

r (!) BR
0 (!) � cr +1 AR

r +1(!) BR
1 (!)

+cr +2 AR
r +2(!) BR

2 (!) � � � � cr +m �1 AR
r +m �1(!) BR

m �1(!) � � �
: (20)
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This condition can be satisfied by properly choosing the filter lengths
and setting the stopband and passband cutoff frequencies of the filters
of the M -channel FB and ml-channel TMUX. More details can be
found in Section IV.

With the cross-term eliminated, D2(!) in (17) reduces to

D2(!) = cr A
+
r B

�

0 EF
+ cr +m �1A

+
r +m �1B

�

m �1EF
:

(24)

This means that there is no bumping appear in the stopband of Ĥl(!).
In addition, it can be easily verified that ! 2 F+

0 and ! 2 F�m�1
belong to the transition band of Ĥl(!).

From the above discussion, we can see that cr +i has acted simply
as a sign indicator. For simplicity, we choose

cr +i =
1; for even i

�1; for odd i

in the following discussion. Hence, the equivalent LTI filters can be
written simply as follows:

Ĥl(z) =

m �1

i=0

(�1)iHr +i(z
m )Gl;i(z

M): (25)

IV. DESIGN PROCEDURES AND EXAMPLES

There are basically two main steps involved in the design of the pro-
posed FB: a) designing the original FB and the recombination FB sepa-
rately with the restriction of the existence and the matching conditions
described in the last section and b) merging them accordingly. The de-
tailed design procedures are summarized below.

1) Design theM -channel LP uniform FB and theml-channel LP
recombination FB with alternate symmetry property. The de-
sign of the LP filter can be done by using the Parks–McClellan
algorithm with the ideal magnitude response of the transition
band having the form of cosine roll-off function.

2) Obtain the corresponding FB-based TMUX as Gl;i(!) =
e�j!Gl;i FB(!).

3) If all starting indexes rl are even, the subbands of the
M -channel FB can be merged directly by using the syn-
thesis filters of the ml-channel TMUX.

4) If any rl is odd, the sequence (�1)n should be multiplied to the
corresponding channels before merging the subbands.

5) Compensate for the delays introduced by the TMUXs in other
branches of the M -channel uniform FB to make sure that the
all branches experience the same amount of delay.

As mentioned previously, we want the magnitude response of the
transition band of the analysis filters to follow a cosine roll-off char-
acteristic. It makes sure that the sum of the square amplitude of two
adjacent filters in their transition band is closed to unity so that the
FB is approximately power complementary and is near-PR [9]. More
specifically, for the kth analysis filterHk(z) of theM -channel uniform
FB, the low-frequency transition band and the high-frequency transi-
tion band are expected to be, respectively

cos
!lk p � !

!lk p � !lk s

�
�

2

and

cos
! � !hk p

!hk s � !hk p

�
�

2
: (26)

Fig. 2. Linear-phase recombination nonuniform filter bank with sampling
factors (3=4; 1=4). (a) Equivalent structure of the analysis banks with LTI
analysis filter. (b) Magnitude responses of Ĥ (!) (low-pass filter) and Ĥ (!)
(high-pass filter).

Notice that only the specifications for positive frequencies are given
since the magnitude function is even. Here, !lk p and !lk s are the pass-
band and stopband cutoff frequencies of the low-frequency transition
band; and!hk p and !hk s are the passband and stopband cutoff frequen-
cies of the high-frequency transition band. We have !lk s < !lk p <
!hk p < !hk s and the transition bandwidth being �! = !lk p �

!lk s = !hk s � !hk p. For the low-pass filter H0(z) and high-pass
filter HM�1(z), there is only one transition band for each: a high-fre-
quency transition band forH0(z) and a low-frequency transition band
for HM�1(z). The cutoff frequencies of all the filters of M -channel
FB are as follows:

!lk p = (k�=M) + (�!=2) = !hk�1 s;

!lk s = (k�=M)� (�!=2) = !hk�1 p; k = 1; . . . ;M � 1:

(27)

The design for the LP uniform FBs and TMUXs can be done by using
the Parks–McClellan algorithm inMatlab, where the relative weighting
of the passband and stopband errors are chosen to be identical.

We will now present two design examples based on the method de-
scribed above. To show flexibility in choosing numbers of channels of
the FB and TMUX, we give the two examples being with differentM
andml (even and odd). In these examples, we assume that the uniform
LP FBs have equal filter lengths for simplicity.

Example 1: Consider an LP RNFB with sampling factors
(3=4; 1=4). It is constructed by merging the first three channels
of a four-channel uniform LP FB with a three-channel recombina-
tion LP TMUX. In the original FBs H0(z) and H2(z) are chosen
to be symmetric and H1(z) and H3(z) are antisymmetric. In the
recombination TMUX,G0(z) and G2(z) are chosen to be symmetric,
while G1(z) is antisymmetric. As mentioned earlier, the use of a
cosine-roll-off transition band allows us to solve the filter design
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Fig. 3. Linear-phase recombination nonuniform filter bank with sampling
factors (2=5; 3=5). (a) Equivalent structure of the analysis banks with LTI
analysis filter. (b) Magnitude responses of Ĥ (!) (low-pass filter) and Ĥ (!)
(high-pass filter).

problem by using the Parks–McClellan algorithm in Matlab. In addi-
tion, the matching condition in (23) is much easier to be satisfied by
choosing NM=M = Nm =ml. As an example, we choose the lengths
of the three- and four-channel FBs to be 63 and 84, respectively. In
this example, according to (27), the passband and stopband cutoff
frequencies of the analysis filters of the four-channel original FB are
as follows: for H0(z); !

h
0 p = 0:1 � (2�); !h0 s = 0:15 � (2�); for

H1(z); !
l
1 s = 0:1�(2�); !l1 p = 0:15�(2�); !h1 p = 0:225�(2�)

and !h1 s = 0:275� (2�). The cutoff frequencies of the other analysis
filters can be defined similarly. The passband and stopband cutoff
frequencies of the synthesis filters of the three-channel recombination
TMUX are set similar to that of theM -channel FB withml replacing
M in (27). Here, we have m0 = 3. Following the design procedures
described above, we obtained the RNFB. The equivalent structure of
the FB with the resulting LTI analysis filters is shown in Fig. 2(a).
The magnitude responses of the equivalent LTI analysis filters Ĥ0(!)
(low-pass filter) and Ĥ1(!) (high-pass filter) are shown in Fig. 2(b). In
this example, Ĥ1(!) = H3(!), whereH3(!) is the original high-pass
filter of the four-channel uniform FBs since no merging operation in
this channel of the original uniform FB. This system is approximately
PR and the reconstruction error is about 10�3 and the aliasing errors
is also about 10�3.

Example 2: This example is an LP RNFB with sampling factors
(2=5;3=5). By the above design procedure, we obtain the equivalent
LTI analysis filters as shown in Fig. 3. The lengths of the two-, three-,
and five-channel FBs are 50, 75, and 125, respectively. The reconstruc-
tion error is about 10�3, and the aliasing errors is also about 10�3.

It can be seen from the above examples that the design of the pro-
posed near-PR LP RNFBs is very simple, and good filter quality is
achieved.

V. CONCLUSION

This correspondence presented a novel designmethod of LP RNFBs.
By analyzing the properties of the analysis filters of the RNFB, we

derived the existence and the matching conditions so as to obtain
LP RNFBs. Based on the obtained conditions, we proposed a design
method that is very simple but with good frequency characteristics as
demonstrated by two design examples.
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