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High-Gain and Wide-Band Single-Layer Patch
Antenna for Wireless Communications

Chi-Lun Mak, Member, IEEE, Hang Wong, Member, IEEE, and Kwai-Man Luk, Fellow, IEEE

Abstract—A technique employing the use of parallel feeds is
applied to the recently proposed -probe coupled patch antenna
design. By employing only two -probes, with proper separa-
tion, for feeding one single patch, a twin- -probe coupled patch
antenna is designed with both high-gain (10 dBi) and wide-band
[25%, standing wave radio (SWR) 1 5] characteristics. In
addition, the 1-dB-gain bandwidth is around 26%, which covers
the impedance bandwidth. Furthermore, a noticeable suppression
of cross-polarization radiation is observed. Simulation results are
in good agreement with those noteworthy characteristics obtained
from experiments. The proposed antenna is suitable for modern
mobile communication applications.

Index Terms—High-gain antenna, -probe, low cross-polariza-
tion, wide-band antenna.

I. INTRODUCTION

I T IS well known that patch antennas offer many advantages,
such as low profile, light weight, conformability, etc. How-

ever, conventional patch antennas have major weaknesses of
narrow bandwidth and low gain [1]. Generally, both the band-
width and gain will increase with substrate thickness (up to cer-
tain limit), but decrease with increasing dielectric constant [2],
[3]. Indeed, there are many different methods proposed in the
literature to tackle the narrow-bandwidth problem [4]–[12] or
the low-gain limitation [13]–[16], but not for both weaknesses
together. Furthermore, a low-profile single patch antenna, which
is simultaneously high in gain and wide in bandwidth, does not
appear to be available yet.

One common method for bandwidth enhancement is using
parasitic patches, either in co-planar [5]–[7] or stacked geometry
[8], and such a design can yield a bandwidth up to around 25%
[standing wave radio (SWR) ]. However, no noticeable im-
provement in gain was seen. On the other hand, although the gain
can be improved to around 10 dBi (estimated) [15] by enlarging
the separation between the driven patch and the stacked parasitic
patch to approximate , the tradeoff is narrow in bandwidth,
around 2%-3%. The gain can also be increased in co-planar
geometry by placing the parasitic patches adjacent to the fed
patch to form an array [16], but its gain bandwidth is not wide
enough for most applications. Besides, the major disadvantage
of using parasitic elements is an unfavorably large antenna size.
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Another popular method for bandwidth enhancement is by
employing a coaxial probe to feed a slotted patch on an electri-
cally thick substrate (0.08–0.1 ) of low dielectric constant [9],
[10]. The achievable bandwidth can be 30% (SWR ) with a
gain around 6–8 dBi within the operating bandwidth.

In this paper, based on the idea of using parallel feeds [17],
we propose a simple twin-feed structure with two inphased

-probes [11] to further enhance the gain to 10 dBi while main-
taining the wide-band performance. In addition, the achieved
1-dB-gain-bandwidth is also wide enough to cover the oper-
ating bandwidth. Both measurement and simulation results will
be presented.

II. TWIN -PROBE COUPLED PATCH ANTENNA

The idea of the proposed feed structure is designated as a twin-
feed design. A prototype designed at , with two in-
phased -probes, is fabricated as shown in Fig. 1. A copper patch
has thickness of 0.3 mm , width 44 mm ,
and length 22 mm . The aspect ratio of the
patch is equal to 2.0. The patch is supported by two small cubic
foam spacers of thickness 6 mm . The
fundamental mode of the patch is simultaneously ex-
cited by the two inphased -shaped probes (with probe radius

0.5 mm), which are separated by 28.6 mm and
connected to the microstrip feed network mounted on the other
side of the ground plane. The simple T-shaped power divider is
etched on a Duriod substrate with 2.33 and thickness of
1.5748 mm (0.062 in). The square ground plane has side length of
100 mm . The two -shaped probes have the same size
of vertical arm =4.5 mm and horizontal arm 12
mm . From Fig. 1(b), they have zero inset distance (i.e.,

) with respect to the patch. The characteristic impedance
of the feed line are and , with line width
of 4.877 and 1.41 mm, respectively. A SubMiniature Version A
(SMA) launcher is connected to the end of the feed line.

III. MEASUREMENT AND SIMULATION RESULTS

A. Experiments

In order to demonstrate the effectiveness of the proposed
twin-feed design, another prototype is fabricated for compar-
ison, which is identical to the proposed antenna except that only
one -probe is used instead. With zero inset distance
again, the arm lengths of this single -probe are slightly
adjusted ( 3.5 mm and =8 mm) for the best impedance
matching. The performances of the two prototypes are mea-
sured by an HP8510-C Network Analyzer, a compact range
with ORBIT/FR MiDAS Far-Field Antenna Measurement and
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Fig. 1. Geometry of twin-L-probe coupled patch antenna. (a) Perspective and (b) side views.

Fig. 2. Measured results of SWR and gain of both prototypes.

Analysis System (Horsham, PA). As for the gain measurement,
a NARDA-643 standard gain horn is used.

Fig. 2 shows comparisons of the measured results of gain
and SWR of both prototypes. As seen from the SWR curves,

both antennas have wide impedance bandwidth of 25% (SWR
) from 4.42 to 5.7 GHz. From the gain curves, it is

obvious to see that the proposed antenna has a better gain of
10 dBi, which is stable across the operating bandwidth with
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TABLE I
COMPARISONS OF THE MEASURED RESULTS BETWEEN THE TWO PROTOTYPES

Fig. 3. Measured radiation patterns at 4.5, 5.0, and 5.6 GHz of (a) the single-L-probe coupled patch antenna and (b) the twin-L-probe coupled patch antenna.

1-dB-gain bandwidth of 26%. Comparing with the maximum
gain of the single- -probe coupled patch of 8 dBi, there is an
about 2.0-dB improvement. The improvement is much more
significant at the upper region, 5–5.7 GHz, of the operating

band, an approximately 3–6-dB difference in gain is observed.
The increase in gain is mainly due to the effective suppression
of cross-polar radiation. The measured results are tabulated in
Table I.
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Fig. 4. Simulated and measured results of SWR and gain of the single-L-probe coupled patch.

Fig. 5. Simulated and measured results of SWR and gain of the twin-L-probe coupled patch.

TABLE II
COMPARISONS OF THE SIMULATED RESULTS BETWEEN THE TWO PROTOTYPES

As for the comparisons of radiation patterns, Fig. 3 shows
the measured results at 4.5, 5.0, and 5.6 GHz for both an-
tennas. In Fig. 3(a), the cross-polar level in the -plane of the
single- -probe coupled patch is relatively high, especially at
5.6 GHz (upper band), where the cross-polar level is higher
than the co-polar level. The higher cross-polar radiation is due
to a stronger high-order mode radiation at a higher frequency
and unwanted radiation from the vertical arm. In contrast, in
Fig. 3(b), the cross-polar radiation of the proposed antenna
is significantly suppressed, around 17 dB across the entire
operating bandwidth. For both antennas, the broadside patterns
are stable across the operating bandwidth and the beamwidth
at the -plane is around 56 on average, which is slightly
narrower than that at the -plane of approximately 60 . Such
phenomenon coincide with that obtained by simulations, which
will be presented as follows.

B. Simulations

Simulation studies are performed using a commercial
method-of-moments (MoM)-based electromagnetic (EM) sim-
ulator—Zeland-IE3D (Zeland Software, Inc., Fremont, CA).
A very short vertical feeding via has been employed for feed
excitation instead of using the edge-feed method, as shown
in Fig. 1(a), due to the inaccuracy of IE3D in modeling edge
feed in a structure having finite ground plane. Figs. 4 and 5
show the comparisons between the simulated and measured
results (SWR and gain) for both antennas and good agreements
are observed. The simulation results are tabulated in Table II.
Most importantly, the simulation confirms that the gain can
be increased by using the proposed twin-feed design and, at
the same time, maintain a wide-band performance. Moreover,
Fig. 5 also verifies the wide gain-bandwidth feature.
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Fig. 6. Simulated radiation patterns at 4.5, 5.0, and 5.6 GHz of (a) the single-L-probe fed patch antenna and (b) the twin-L-probe coupled patch antenna.

Fig. 6 presents simulated radiation patterns of both antennas
at 4.5, 5.0, and 5.6 GHz. In comparison with the measured pat-
terns, as shown in Fig. 3, good agreements are observed again, es-
pecially the stable and quite symmetric patterns at both principle
planes across the operating bandwidth. In addition, the simulated
patterns verify the beamwidth at the -plane is slightly narrower
than that at the -plane. Furthermore, in Figs. 3(b) and 6(b), the
simulation verifies that the cross-polar level in the -plane is
suppressed significantly by the proposed design.

IV. PARAMETRIC STUDIES

In order to investigate the effects of various parameters
on the performance of the proposed antenna, especially the

aspect ratio and the probe-to-probe separation , we
have performed parametric studies using the IE3D simulator,
which are believed to be efficient and convenient. Throughout
the studies, infinite ground-plane, air-substrate, zero-thickness
metallic layers are assumed for relatively fast computations.
Therefore, there are bit differences in simulation models when
compared with that used for the actual antenna (Fig. 1), as
discussed in Section III-B. Another discrepancy is that the
feed line on the air substrate is now located on the same side
as the patch, above the infinite ground plane. At this moment,
edge feed can be employed in the simulations, since infinite
ground plane is being used. The obtained results are useful in
providing design guideline for antenna designers. Throughout
the simulation studies, two parameters are kept constant, which
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Fig. 7. Parametric studies: simulated results of maximum gain versus S=W .

TABLE III
PARAMETRIC STUDIES: SUMMARY OF THE SIMULATED GAIN OF THE PROPOSED DESIGN WITH DIFFERENT PATCH WIDTHS

Fig. 8. Parametric studies: simulated results of maximum cross-polar level versus S=W .

are 22 mm and 6 mm. In addition, parameters such as
, , , and are slightly adjusted, if necessary, to maintain

the wide impedance bandwidth characteristic.

A. Antenna Gain

By employing the proposed twin-coupling design, especially
for a wider patch with , we find that without re-
ducing the impedance bandwidth, there are noticeable improve-
ments in gain as well as the gain bandwidth. Fig. 7 describes
the maximum gain verses for different patch width .
We can see the maximum gain of a patch is achieved when is
around 0.5 W–0.7 W. Moreover, the wider the patch width ,
the higher the maximum gain can be achieved. Table III sum-
marizes such observations. However, the tradeoff of using wider
patch will be a higher cross-polar radiation level are discussed
later.

B. Cross-Polar Radiation

Fig. 8 shows the maximum value of cross-polar level, in the
-plane at 5 GHz, with different values of . It is obvious to

see that a wider patch will give a higher cross-polar level. Fur-
thermore, for each patch employing the proposed design (i.e.,

), the lowest cross-polar level can be achieved when
equals half-wavelength. For example, when 44 mm, the
lowest cross-polar level of 27.72 dB occurs when 0.68 W
(i.e., 30 mm), which is half-wavelength of 5 GHz. Table IV
summaries such noticeable results.

Fig. 9 shows the maximum value of the cross-polar level for
different across frequency of patch with 44 mm. In this
figure, a local minimum is clearly observed at the lower band;
for example, for the curve of 0.75 W (33 mm), the minima
is find at frequency about 4.5 GHz, so .
Such phenomenon becomes less obvious for smaller than 0.68
W, but suppression in cross-polar level can still be observed.
It is important to notice that although we can have sharp local
minima of cross-polar level in the lower region of the operating
bandwidth, the tradeoff is a relative higher level in the upper re-
gion. Therefore, we need to optimize the overall performance by
choosing an appropriate value of . In addition to the goals of
high gain and wideband, we have chosen one set of parameters,

44 mm and 28.6 mm =0.65),
for real performance testing. The experiments were already dis-
cussed in Section II with measurement results shown in Sec-
tion III.
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TABLE IV
PARAMETRIC STUDIES: SUMMARY OF THE SIMULATED RESULTS OF THE CROSS-POLAR LEVEL OF THE PROPOSED DESIGN

Fig. 9. Parametric studies: simulated results of maximum cross-polar level versus frequency.

V. DISCUSSIONS

The proposed twin- -coupled structure can simultaneously
tackle the narrow-bandwidth and low-gain problems of patch
antenna for the following reasons. First, as the two in-phased

-probes excite the same mode for radiation, the higher-
order modes of , , etc., excited by each probe, will
cancel each other due to their opposite directions. The end-fire
higher-order mode is weakly excited, since the positions
of the two probes are located near the -field minimum of this
mode. Other end-fire higher-order modes are insignificant as
their resonant frequencies are further away. Second, due to the
array effect, the radiation contributed by the vertical parts of the
two -probes will interact each other. When they are suitably
separated, the cross-polarization at angles close to the broadside
direction of the patch can be significantly suppressed. Hence,
the antenna gain can be effectively improved across the oper-
ating bandwidth. Third, the twin-feed structure allows a wide
patch to be well excited and, along with the thick substrate with
low dielectric constant, high antenna gain is definitely expected.
Finally, the -probe coupling technique [11], [12] can easily
provide the important wide-band performance.

VI. CONCLUSION

A dual-feed technique is introduced to the wide-band -probe
coupled patch antenna to further enhance its performance. The
proposed design, namely a twin- -probe coupled patch antenna,
is a one-layered single patch with simultaneously high-gain and
wide-band features. High gain of 10 dBi is achieved across the
wide operating band of 25% (SWR ) since the 1-dB-gain
bandwidth is 26%. Measured results have been verified by a se-
ries of simulation studies. Parametric studies have also been per-
formed using Zealand-IE3D, effects of varying the aspect ratio

and probe-to-probe distance have been investigated in details,
which can provide design guideline for antenna designers. An-
tenna array can be designed using the proposed antenna element
to further increase the gain, which is suitable for mobile com-
munication applications such as base station antenna and other
high-gain antenna designs.
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