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A MATRIX PENCIL APPROACH TO THE ROW BY ROW
DECOUPLING PROBLEM FOR DESCRIPTOR SYSTEMS∗

DELIN CHU† AND Y. S. HUNG‡

Abstract. The row by row decoupling problem (RRDP) for descriptor systems is considered
using proportional state feedback and input transformation. Necessary and sufficient conditions for
the solvability of the RRDP are provided. These solvability conditions can be readily verified. A
constructive solution to the RRDP is given so that the desired feedback and input transformation
matrices can be obtained by a numerically reliable procedure.
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1. Introduction. The row by row decoupling problem (RRDP) has played a
central role in classical as well as modern control theory, since it provides a powerful
methodology to reduce a multi-input/multioutput complex system to a set of single
input/single output systems, thus facilitating a decoupled control strategy of such
systems. The row by row decoupling is usually required for ease of system operations,
for example, in the process and chemical industries [1, 2].

Consider descriptor systems of the form{
Eẋ = Ax + Bu,
y = Cx,

(1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, E is singular, x ∈ Rn is the state,
u ∈ Rm is the control input, and y ∈ Rm is the output. It is well known that the
existence and uniqueness of (classical) solutions to (1) are guaranteed if (E,A) is
regular, i.e., det(αE − βA) �= 0 for some (α, β) ∈ C2. The system (1) is said to have
index at most one if the dimension of the largest nilpotent block in the Kronecker
canonical form of (E,A) is at most one [17].

Descriptor systems that are regular and of index at most one can be separated
into purely dynamical and purely algebraic parts (fast and slow modes). If the index
is larger than 1, then impulses can arise in the response of the system if the control
is not sufficiently smooth [7, 17]. Therefore, in the design of feedback control, one
should ensure that the closed-loop system is regular and of index at most one.

If we apply state feedback of the form

u = Fx + Hv(2)

to the descriptor system (1), then the closed-loop system becomes{
Eẋ = (A + BF )x + BHv,
y = Cx.

(3)
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The problem to be considered can be stated as follows.
The RRDP. Given a descriptor system of the form (1), determine a state feedback

matrix F ∈ Rm×n and a nonsingular input transformation matrix H ∈ Rm×m such
that

(a) the pencil (E,A + BF ) is regular and of index at most one;
(b) the closed-loop transfer function matrix

C(sE −A−BF )−1BH is nonsingular and diagonal.(4)

Here C(sE −A−BF )−1BH being nonsingular means that

rank(C(sE −A−BF )−1BH) = m for some s ∈ C.

Before studying the RRDP for the descriptor system (1), we summarize the main
results on the RRDP available in the literature.

The RRDP for linear time-invariant systems of the form{
E ẋ = Ax + Bu,
y = Cx(5)

with E ,A ∈ Rk×k, B ∈ Rk×p, C ∈ Rp×k, and E nonsingular has been investigated
extensively over the last three decades and is still attracting continuing interests
[2, 3, 4, 5, 6, 9, 10, 21]. In particular, because system (5) is equivalent to{

ẋ = E−1Ax + E−1Bu,
y = Cx,

we have the following theorem.
Theorem 1 (see [3]). Given system (5) with E nonsingular, let ci be the ith row

of C. If

ci(E−1A)j(E−1B) �= 0

for some nonnegative integer j, then set

li = min{j ≥ 0 : j is integer satisfying ci(E−1A)j(E−1B) �= 0};

otherwise, set li = k − 1. Define

L =

⎡
⎢⎢⎢⎣

c1(E−1A)l1

c2(E−1A)l2

...
cp(E−1A)lp

⎤
⎥⎥⎥⎦ (E−1B), K =

⎡
⎢⎢⎢⎣

c1(E−1A)l1+1

c2(E−1A)l2+1

...
cp(E−1A)lp+1

⎤
⎥⎥⎥⎦ (E−1B).

Then the RRDP for system (5) is solvable if and only if the matrix L is nonsingular.
In this case, a solution pair (F ,H) is given by

F = −L−1K, H = L−1.

Although Theorem 1 provides an explicit solution for the RRDP of the linear
time-invariant system (5) with E nonsingular, some natural questions remain.

(a) If the RRDP is solvable,
(i) can we solve the RRDP with the additional requirement of stability?
(ii) does numerically reliable solution exist for the RRDP with stability?
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(b) If the RRDP is not solvable, can one resort to a relaxed problem of triangular
decoupling?

Regarding (a)(i), the RRDP with stability for the system (5) has been investigated
in [5, 6] using geometric and structural approaches, giving coordinate-free solvability
conditions. But, the results in [5, 6] cannot lead to numerically reliable methods for
computing a solution to the problem. To address (a)(ii), a numerically reliable method
has been developed in [14] based on orthogonal transformations. If the condition of
Theorem 1 is not satisfied so that the RRDP is not solvable, it is shown in [15] that
a triangular decoupling problem may be solvable under less restrictive conditions.
In [15], explicit solvability conditions are provided with a parameterization of all
solutions to the triangular decoupling problem.

Unfortunately, the above results for the RRDP for the system (5) with E nonsin-
gular cannot be readily extended to the general descriptor system (1). For example,
it is not possible to apply existing results to system (1) by decomposing it into differ-
ential and algebraic parts and then deal with them separately. Instead, it is necessary
to develop a separate theory to handle the RRDP for descriptor systems. The RRDP
for descriptor system (1) has been studied in [7, 11, 19]. In [7], it is shown that the
RRDP for system (1) is solvable using combined proportional and derivative state
feedback if and only if the input-output transfer function is invertible. However, the
use of derivative feedback is undesirable due to noise accentuation and an increase in
the system order. To our knowledge, the solution is still not known for the RRDP of
the descriptor system (1) using only proportional state feedback.

A problem related to the RRDP is the disturbance decoupling problem. Although
the objectives of the RRDP are different from the disturbance decoupling problem,
we will make use of the matrix pencil approach developed in [12, 13] to characterize
necessary and sufficient conditions for the solvability of the RRDP for the system (1).
In this paper, we provide numerically reliable methods for verifying the solvability of
the RRDP for the system (1) and for computing the solution matrices F and H. These
results are new to our knowledge and are valuable, as real descriptor systems with
singular E do exist in practice. However, the RRDP with stability for the descriptor
system (1) remains an open problem.

The paper is organized as follows. Some necessary preliminary results for matrix
pencils are collected in section 2. In section 3, necessary and sufficient solvability
conditions as well as a numerically reliable algorithm for the RRDP of descriptor
system (1) are established. Concluding remarks are included in section 4.

2. Preliminaries. The following two lemmas are basic results for matrix pencils
and will be needed in the development to be given in the next section.

Lemma 2 (see [12, 14]). Given E ,A ∈ Rn×n,B ∈ Rn×m, C ∈ Rp×n, and D ∈
Rp×m with E nonsingular,

(i)

C(sE − A)−1B + D = 0

if and only if

D = 0, max
s∈C

rank

[
sE − A B

C 0

]
= n;

(ii) assume

rank
[
sE − A B

]
= n ∀s ∈ C.
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Then

max
s∈C

rank

[
sE − A B

C −D

]
= n

if and only if

C = 0, D = 0.

Lemma 3. Given E ,A ∈ Rn×l,B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m,
(i)

max
s∈C

rank

[
sE − A B

C −D

]
≥ rank(E) + rank(D);

(ii) if E and D are of full row rank, then

max
s∈C

rank

[
sE − A B

C −D

]
= n + p.(6)

Proof. Part (i). We can assume without loss of generality that

D =

[ τ m− τ

D11 0
0 0

]
}τ
}p− τ

with D11 nonsingular and rank(D) = rank(D11) = τ . Denote

B =
[ τ m− τ

B1 B2

]
, C =

[
C1

C2

]
}τ
}p− τ

,

and let the generalized upper triangular form [8, 20] of[
sE − A + B1D−1

11 C1 B2

C2 0

]

be

P
[

sE − A + B1D−1
11 C1 B2

C2 0

]
Q

μ1 μ2 μ3 μ4

=

⎡
⎢⎢⎢⎢⎣
sΘ11 − Φ11 sΘ12 − Φ12 sΘ13 − Φ13 sΘ14 − Φ14

0 sΘ22 − Φ22 sΘ23 − Φ23 sΘ24 − Φ24

0 0 sΘ33 − Φ33 sΘ34 − Φ34

0 0 0 sΘ44 − Φ44

⎤
⎥⎥⎥⎥⎦

}ν1

}μ2

}μ3

}ν4

,

where P and Q are orthogonal, Θ11 is of full row rank, Θ44 is of full column rank,
Θ22 is nonsingular, and

rank(sΘ11−Φ11) = ν1, rank(sΘ33−Φ33) = μ3, rank(sΘ44−Φ44) = μ4 ∀s ∈ C.
(7)
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Now we have that

rank(E) = rank

⎡
⎢⎢⎣

Θ11 Θ12 Θ13 Θ14

0 Θ22 Θ23 Θ24

0 0 Θ33 Θ34

0 0 0 Θ44

⎤
⎥⎥⎦ = ν1+μ2+rank(Θ33)+μ4 ≤ ν1+μ2+μ3+μ4

and the equality rank(D) = τ yield that

maxs∈C rank

[
sE − A B

C −D

]

= maxs∈C rank

⎡
⎣ sE − A B1 B2

C1 −D11 0
C2 0 0

⎤
⎦

= maxs∈C rank

[
sE − A + B1D−1

11 C1 B2

C2 0

]
+ τ

= maxs∈C rank

⎡
⎢⎢⎣

sΘ11 − Φ11 sΘ12 − Φ12 sΘ13 − Φ13 sΘ14 − Φ14

0 sΘ22 − Φ22 sΘ23 − Φ23 sΘ24 − Φ24

0 0 sΘ33 − Φ33 sΘ34 − Φ34

0 0 0 sΘ44 − Φ44

⎤
⎥⎥⎦ + τ

= ν1 + μ2 + μ3 + μ4 + τ ≥ rank(E) + rank(D).

Part (ii). Since E and D are of full row rank, by part (i) we obtain that

max
s∈C

rank

[
sE − A B

C −D

]
≥ rank(E) + rank(D) = n + p.

But, it is obvious that

max
s∈C

rank

[
sE − A B

C −D

]
≤ n + p.

Hence,

max
s∈C

rank

[
sE − A B

C −D

]
= n + p.

The next lemma provides necessary and sufficient conditions for a matrix pencil
to be regular and of index at most one.

Lemma 4 (see [7, 17]). Let E,A ∈ Rn×n. The following statements are equiva-
lent.

(i) (E,A) is regular and of index at most one.
(ii) rank

[
E AS∞(E)

]
= n, where S∞(E) denotes a matrix with orthogonal

columns spanning the right nullspace of matrix E.
(iii) deg(det(sE −A)) = rank(E).

3. Main results. The purpose of this section is to present necessary and suffi-
cient solvability conditions as well as a numerically reliable algorithm for the RRDP
of descriptor system (1). For this purpose, first we transform the RRDP for descrip-
tor system (1) into the RRDP for a linear time-invariant system using orthogonal
transformations.
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Theorem 5. Given system (1), there exist nonnegative integers n1, n2, n3, ñ2,
and ñ3 and orthogonal matrices U, V,Q ∈ Rn×n, and W ∈ Rm×m with

Q =

[ n1 n2 + n3

Q11 Q12

Q21 Q22

]
}n1

}n2 + n3
(8)

such that n1 + n2 + n3 = n1 + ñ2 + ñ3 = n, Q11 is nonsingular, and⎡
⎣ Q11 Q12 0

0 I 0
0 0 I

⎤
⎦[

U 0
0 I

]⎡⎣ sE −A | B
−−− − −−
C | 0

⎤
⎦[

V 0
0 W

]

=

⎡
⎢⎢⎢⎢⎣

n1 n2 n3 ñ2 m− ñ2

sE11 −A11 −A12 sE13 −A13 | 0 B12

−A21 −A22 sE23 −A23 | B21 0
0 0 sE33 −A33 | 0 0

−−−−− −−− −−−−− − −−− −−−
C1 C2 C3 | 0 0

⎤
⎥⎥⎥⎥⎦

}n1

}ñ2

}ñ3

}m

,(9)

where E11 and B21 are nonsingular, and sE33 − A33 is of full column rank for any
s ∈ C.

Proof. The form (9) is constructed in [23].
In the following, we give a system interpretation of the form (9).
With respect to the coordinate transformations in the form (9), the system (1)

can be expressed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

([
Q11 Q12

0 I

]
UEV

)
V T ẋ =

([
Q11 Q12

0 I

]
UAV

)
V Tx

+

([
Q11 Q12

0 I

]
UBW

)
WTu,

y = (CV )V Tx,

(10)

where V Tx represents the transformed state vector and WTu the transformed input.
Let

V Tx =

⎡
⎣ x̃
x2

x3

⎤
⎦ }n1

}n2

}n3

, WTu =

[
u1

u2

]
}ñ2

}m− ñ2
.(11)

Then system (10) is equivalent to⎧⎪⎪⎨
⎪⎪⎩

E11
˙̃x + E13ẋ3 = A11x̃ + A12x2 + A13x3 + B12u2,

E23ẋ3 = A21x̃ + A22x2 + A23x3 + B21u1,
E33ẋ3 = A33x3,
y = C1x̃ + C2x2 + C3x3.

(12)

Because sE33 − A33 is of full column rank for any s ∈ C, according to [22], we know
that

x3 = 0 ∀t ≥ 0.

Consequently, E33ẋ3 = A33x3 is a redundant subsystem (associated with x3 con-
strained to be zero). As the redundant subsystem has a zero trajectory x3 = 0, we
can delete this part. Therefore, (1) is reduced to
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• a regular subsystem (with nonsingular E11)⎧⎪⎪⎨
⎪⎪⎩

E11
˙̃x = A11x̃ +

[
B12 A12

] [ u2

x2

]
,

y = C1x̃ +
[

0 C2

] [ u2

x2

]
;

(13)

• an algebraic subsystem (associated with x2)

0 = A21x̃ + A22x2 + B21u1.(14)

The algebraic part of the system results in the algebraic condition (14), which must
be satisfied. This can be taken as an algebraic constraint on the feasibility of the
system (1). Since B21 is nonsingular, we can always find an input u1 to ensure that
the descriptor system (1) is consistent. If we consider[

u2

x2

]
= ũ

as a new input and choose u1 = −B−1
21 (A21x̃ + A22x2), then the regular subsystem

(13) becomes {
E11

˙̃x = A11x̃ +
[
B12 A12

]
ũ,

y = C1x̃ +
[

0 C2

]
ũ,

(15)

and the algebraic constraint (14) is satisfied. The regular subsystem (15) preserves
the finite zeros of the descriptor system (1), as shown in the next corollary.

Corollary 6. Given a descriptor system (1), let the form (9) be determined.
Then the finite zeros of system (1) are the same as those of system (15).

Proof. The finite zeros of systems (1) and (15) are the finite eigenvalues of matrix
pencils [

A− sE B
C 0

]
and

[
A11 − sE11 B12 A12

C1 0 C2

]
,

respectively. By construction, B21 is nonsingular and sE33−A33 has full column rank
for any s ∈ C. Hence, we obtain by means of the form (9) that matrix pencils[

A− sE B
C 0

]
and

[
A11 − sE11 B12 A12

C1 0 C2

]

have the same finite eigenvalues. Therefore, systems (1) and (15) have the same set
of finite zeros.

After removing the redundant subsystem E33ẋ3 = A33x3 and assuming that the
algebraic consistency (14) is satisfied, it is therefore natural to focus on the regular
subsystem (15) of the descriptor system (1).

The following lemma shows that the form (9) can be used to characterize the
existence of a feedback matrix F such that the pencil (E,A + BF ) is regular and of
index at most one.

Lemma 7. Given a descriptor system of the form (1), there exists a matrix F
such that the pencil (E,A + BF ) is regular and of index at most one if and only if

n3 = ñ3, E23 = 0, E33 = 0.(16)
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Proof. For any F ∈ Rm×n, denote

WTFV =:

[ n1 n2 n3

F11 F12 F13

F21 F22 F23

]
}ñ2

}m− ñ2
.(17)

We have [
Q11 Q12

0 I

]
U(sE −A−BF )V

=

⎡
⎣ sE11 −A11 −B12F21 −A12 −B12F22 sE13 −A13 −B12F23

−(A21 + B21F11) −(A22 + B21F12) sE23 − (A23 + B21F13)
0 0 sE33 −A33

⎤
⎦ .(18)

Necessity. Let F ∈ Rm×n be such that the pencil (E,A + BF ) is regular and of
index at most one. Then by the regularity of (E,A + BF ) we have

max
s∈C

rank(sE −A−BF ) = n,

which together with (18) yields that

max
s∈C

rank(sE33 −A33) = ñ3.

Note that sE33 −A33 is of full column rank for any s ∈ C. Thus,

ñ3 = n3.(19)

Since the pencil (E,A + BF ) is regular and of index at most one, sE33 − A33 is of
full column rank for any s ∈ C, and we have using Lemma 4(iii) and (19) that

rank(E) = deg(det(sE −A−BF ))

= deg(det

([
sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

])
+ deg(det(sE33 −A33))

= deg(det

([
sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

])
≤ rank(E11)

= n1.(20)

Because E11 ∈ Rn1×n1 is nonsingular, we also have

rank(E) = rank(E11) + rank

[
E23

E33

]
= n1 + rank

[
E23

E33

]
.(21)

Hence, we obtain

E23 = 0, E33 = 0,(22)

which together with (19) give the condition (16).
Sufficiency. Assume condition (16) holds. It follows that ñ2 = n2 and rank(E) =

n1. Let

F12 = −B−1
21 (A22 + I), F11, F13, F21, F22, and F23 are arbitrary.(23)

By Lemma 4(ii), we know that (E,A+BF ) is regular and of index at most one.
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In Corollary 6, it is shown that systems (1) and (15) have the same set of finite
zeros. In the next result it will be shown that the RRDP for descriptor system (1)
can be reduced to the RRDP for the linear time-invariant system (15).

Theorem 8. Given a descriptor system (1), the RRDP for system (1) is solvable
if and only if the condition (16) holds and, furthermore,

the RRDP for system (15) is solvable;(24)

i.e., there exist matrices F and H with H nonsingular such that

TF,H(s) = ((C1 +
[
0 C2

]
F)(sE11−A11−

[
B12 A12

]
F)−1

[
B12 A12

]
+
[
0 C2

]
)H

(25)

is nonsingular and diagonal.
Proof. For any F ∈ Rm×n and H ∈ Rm×m, denote WTFV as in (17), and let

H̃ = WTH.(26)

Clearly, if H is nonsingular, then H̃ is nonsingular. We will first prove “necessity”
and then “sufficiency.”

Necessity. Let F ∈ Rm×n and H ∈ Rm×m with H nonsingular be such that the
pencil (E,A + BF ) is regular, of index at most one, and (4) is true. Then condition
(16) of the theorem follows directly from Lemma 7. Note that the condition (16)
implies that

ñ2 = n2, rank(E) = n1.(27)

We have shown in the proof of Lemma 7 that (20) holds, from which it follows that
the pencil ([

E11 0
0 0

]
,

[
A11 + B12F21 A12 + B12F22

A21 + B21F11 A22 + B21F12

])

is regular and of index at most one. Hence, by Lemma 4(ii), we have that A22+B21F12

is nonsingular. Now a simple calculation yields that

C(sE −A−BF )−1BH

=
[
C1 C2 C3

]⎡⎣sE11 −A11 −B12F21 −A12 −B12F22 sE13 −A13 −B12F23

−(A21 + B21F11) −(A22 + B21F12) −(A23 + B21F13)
0 0 −A33

⎤
⎦
−1

×

⎡
⎣ 0 B12

B21 0
0 0

⎤
⎦ H̃

=
[
C1 C2

] [ sE11 −A11 −B12F21 −A12 −B12F22

−(A21 + B21F11) −(A22 + B21F12)

]−1 [
0 B12

B21 0

]
H̃

= TF,H(s),

(28)

where

F =

[
F21 − F22(A22 + B21F12)

−1(A21 + B21F11)
−(A22 + B21F12)

−1(A21 + B21F11)

]
,(29)

H =

[
−F22(A22 + B21F12)

−1 I
−(A22 + B21F12)

−1 0

] [
B21 0
0 I

]
H̃.(30)
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Since H̃, B21, and A22 + B21F12 are nonsingular, so is H. Hence, the nonsingularity
and diagonality of C(sE − A − BF )−1BH imply that TF,H(s) is nonsingular and
diagonal. This is equivalent to the solvability of the RRDP for system (15).

Sufficiency. We will prove the sufficiency constructively. Assume that conditions
(16) and (24) hold. Condition (16) implies that n2 = ñ2, and so the system (15) is
square. From the condition (24) there are matrices F and H with H nonsingular and

F =

[
F1

F2

]
}m− n2

}n2

such that TF,H(s) is nonsingular and diagonal. Let (F,H) be determined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
B21 0
0 I

]
WTF =

[
F2 −A21 −I −A22 0

F1 0 0

]
V T ,[

B21 0
0 I

]
WTH =

[
0 In2

Im−n2 0

]
H,

(31)

partition F as in (17), and define H̃ by (26). We have that A22 + B21F12 = −I
and (29) and (30) hold. By condition (16) and the proof of the sufficiency of Lemma
7, (E,A + BF ) is regular and of index at most one. Moreover, (28) yields that
C(sE −A−BF )−1BH is nonsingular and diagonal.

In general,
[

0 C2

]
�= 0, and, consequently, Theorem 1 cannot be extended to

system (15). Hence, we reduce the RRDP for system (15) to the one for a system of
the form (5) via the following factorization.

Theorem 9. Given a descriptor system (1) and assuming that the form (9) has
been determined, then there exist orthogonal matrices U ,V, and W and a permutation
matrix P such that

[
U 0
0 P

]⎡⎣ sE11 −A11 | B12 A12

−−−− − −− −−
C1 | 0 C2

⎤
⎦[

V 0
0 W

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1 μ2 ν m + n2 − ñ2 − ν

sE11 −A11 sE12 −A12 | B11 B12

−A21 sE22 −A22 | B21 B22

0 sE32 −A32 | 0 0
−−−−− −−−−− − −−−− −−−−−−

C11 C12 | D11 0
0 C22 | D21 0

⎤
⎥⎥⎥⎥⎥⎥⎦

}μ1

}τ2
}τ3

}ν
}m− ν

,(32)

where μ1 + μ2 = μ1 + τ2 + τ3 = n1, E11 and D11 are nonsingular,
[
B21 B22

]
is of

full row rank, and

rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]
= μ1 + τ2 ∀s ∈ C,(33)

max
s∈C

rank

[
sE32 −A32

C22

]
= μ2.(34)

Proof. The forms (32) are constructed in [23].
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Let

VT x̃ =

[
x11

x21

]
}μ1

}μ2
, WT ũ =

[
u11

u21

]
}ν
}m + n2 − ñ2 − ν

, Py =

[
y1

y2

]
}ν
}m− ν

.

(35)

Then system (15) is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E11ẋ11 + E12ẋ21 = A11x11 + A12x21 + B11u11 + B12u21,[
E22

E32

]
ẋ21 =

[
A22

A32

]
x21 +

[
A21 B21

0 0

] [
x11

u11

]
+

[
B22

0

]
u21,

y1 = C11x11 + C12x21 + D11u11,
y2 = C22x21 + D21u11.

(36)

Now, the nonsingularity of E11 implies that[
E22

E32

]

is nonsingular. So, if B22 is nonsingular, we take u11 = 0, and we denote v21 =
u21 + B−1

22 A21x11, then the system (36) becomes⎧⎨
⎩
[

E22

E32

]
ẋ21 =

[
A22

A32

]
x21 +

[
B22

0

]
v21,

y2 = C22x21

(37)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E11ẋ11 = (A11 − B12B−1
22 A21)x11 +

(
A12 − E12

[
E22

E32

]−1 [ A22

A32

])
x21

+

(
B12 − E12

[
E22

E32

]−1 [ B22

0

])
v21,

y1 = C11x11 + C12x21.

The main feature of system (37) is that it is a linear time-invariant system of the form
(5) because [

E22

E32

]

is nonsingular.
Remark 1. In the descriptions above, we set u11 = 0 to motivate how the system

(37) may be deduced from the system (15) by a particular choice of the input. Hence,
if the RRDP for the system (15) is solvable, so must the RRDP for the system
(37) (i.e., the latter is a necessary condition for the former). However, whether the
RRDP for the system (15) is solvable or not should not depend on the choice of the
input. Indeed, in Theorem 10, we show that a necessary and sufficient condition for
the solvability of the RRDP for the system (15) can be expressed in terms of the
solvability of the RRDP for the system (37) independent of the choice of the input,
and an examination of the proof of Theorem 10 will reveal that we never make use of
u11 = 0 in the proof. To summarize, the descriptions above are just a simple argument
intended to introduce the form of the system (37) for easy reference in Theorem 10;
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otherwise, the choice u11 = 0 is not used in the rigorous proof of the equivalence
between the RRDPs for the systems (15) and (37).

The following theorem shows that we can reduce the RRDP for system (15)
further to the RRDP for system (37).

Theorem 10. Given a descriptor system (1), suppose the forms (9) and (32)
have been determined. Assume that the condition (16) is true. Then the RRDP for
system (15) is solvable if and only if

D21 = 0, B22 is nonsingular,(38)

and, furthermore,

the RRDP for system (37) is solvable.(39)

Proof. Since n3 = ñ3 in the form (9), n2 = ñ2 and

m + n2 − ñ2 − ν = m− ν, B12 ∈ Rμ1×(m−ν), B22 ∈ Rτ2×(m−ν).(40)

Necessity. Assume that F and H with H nonsingular solve the RRDP of system
(15), TF,H(s) defined by (25) being diagonal and nonsingular. Let

WTFV =

[ μ1 μ2

F11 F12

F21 F22

]
}ν
}m− ν

, WTHPT =

[ ν m− ν

H11 H12

H21 H22

]
}ν
}m− ν

.(41)

Since P is a permutation matrix, PTF,H(s)PT is also diagonal and nonsingular, or,
equivalently,[

T11(s) T12(s)
T21(s) T22(s)

]

=

⎛
⎜⎝[

D11 0
D21 0

]
+

[
C11 + D11F11 C12 + D11F12

D21F11 C22 + D21F12

]

×(U(sE11 −A11 −
[
B12 A12

]
F)V)−1

⎡
⎣ B11 B12

B21 B22

0 0

⎤
⎦
⎞
⎠[

H11 H12

H21 H22

]

= PTF,H(s)PT

is diagonal and nonsingular; here

T11(s) ∈ Rν×ν , T12(s) ∈ Rν×(m−ν), T21(s) ∈ R(m−ν)×ν , T22(s) ∈ R(m−ν)×(m−ν),

so we get

T11(s) and T22(s) are diagonal and nonsingular, T12(s) = 0, T21(s) = 0.

Hence, we have

D11H12 +
[
C11 + D11F11 C12 + D11F12

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

×

⎡
⎣ B11H12 + B12H22

B21H12 + B22H22

0

⎤
⎦

= T12(s) = 0,
(42)
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D21H11 +
[
D21F11 C22 + D21F12

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

×

⎡
⎣ B11H11 + B12H21

B21H11 + B22H21

0

⎤
⎦

= T21(s) = 0.(43)

Thus, Lemma 2(i) gives that

D11H12 = 0, D21H11 = 0.(44)

Since D11 and [
H11 H12

H21 H22

]

are nonsingular, we have

H12 = 0, D21 = 0, H11 and H22 are nonsingular.(45)

Using (45), (43) becomes

[
0 C22

]
(U(sE11−A11−

[
B12 A12

]
F)V)−1

⎡
⎣ B11 + B12H21H−1

11

B21 + B22H21H−1
11

0

⎤
⎦ = 0.(46)

By Lemma 2(i) and properties (34) and (46), we get

n1 = μ1 + μ2 = maxs∈C rank

⎡
⎢⎢⎣U(sE11 −A11 −

[
B12 A12

]
F)V

⎡
⎣B11 + B12H21H−1

11

B21 + B22H21H−1
11

0

⎤
⎦

[
0 C22

]
0

⎤
⎥⎥⎦

= maxs∈C rank

⎡
⎢⎣
sE11 − A11 − B11F11 − B12F21 sE12 − A12 − B11F12 − B12F22 B11 + B12H21H−1

11

−A21 − B21F11 − B22F21 sE22 − A22 − B21F12 − B22F22 B21 + B22H21H−1
11

0 sE32 − A32 0

0 C22 0

⎤
⎥⎦

= maxs∈C rank

[
sE11 −A11 − B11F11 − B12F21 B11 + B12H21H−1

11

−A21 − B21F11 − B22F21 B21 + B22H21H−1
11

]
+ μ2

≥ rank(E11) + rank(B21 + B22H21H−1
11 ) + μ2 (by Lemma 3(i))

= μ1 + μ2 + rank(B21 + B22H21H−1
11 ).

(47)

Thus,

B21 + B22H21H−1
11 = 0,(48)

which implies that

rank(B22) = rank
[
B21 B22

]
.(49)
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By construction,
[
B21 B22

]
is of full row rank (= τ2). Hence,

rank(B22) = τ2.(50)

Note that E11 is nonsingular and B22 is of full row rank (see (50)); Lemma 3(ii) yields
that

max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B12

−A21 − B21F11 − B22F21 B22

]
= μ1 + τ2.(51)

Since

T22(s) =
[
0 C22

]
(U(sE11−A11−

[
B12 A12

]
F)V)−1

⎡
⎣ B12

B22

0

⎤
⎦H22 ∈ R(m−ν)×(m−ν)

is diagonal and nonsingular, and E11 ∈ Rn1×n1 , we have using (34), (50), (51), and
the nonsingularity of H22 and E11 that

n1 + (m− ν) = μ1 + μ2 + (m− ν)

= max
s∈C

rank

⎡
⎢⎢⎣ U(sE11 −A11 −

[
B12 A12

]
F)V

⎡
⎣ B12

B22

0

⎤
⎦H22[

0 C22

]
0

⎤
⎥⎥⎦

= max
s∈C

rank

⎡
⎢⎢⎣
sE11 −A11 − B11F11 − B12F21 sE12 −A12 − B11F12 − B12F22 B12H22

−A21 − B21F11 − B22F21 sE22 −A22 − B21F12 − B22F22 B22H22

0 sE32 −A32 0
0 C22 0

⎤
⎥⎥⎦

= max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B12

−A21 − B21F11 − B22F21 B22

]
+ μ2

= (μ1 + τ2) + μ2 (by Lemma 3(ii)).

Hence,

τ2 = m− ν.(52)

Since B22 ∈ Rτ2×(m−ν) (see (40)), it follows from (50) and (52) that B22 is nonsingular,
which together with (45) proves that condition (38) of the theorem holds.

Using the nonsingularity of B22, we have from (48) that

H21H−1
11 = −B−1

22 B21,(53)

which gives that

B11 + B12H21H−1
11 = B11 − B12B−1

22 B21.(54)

From (47), (48), and (54), we obtain

μ1 = max
s∈C

rank

[
sE11 −A11 − B11F11 − B12F21 B11 − B12B−1

22 B21

−A21 − B21F11 − B22F21 0

]

= max
s∈C

rank

[
sE11 − A11 − B11F11 − B12F21 − B12B−1

22 (−A21 − B21F11 − B22F21) B11 − B12B−1
22 B21

−A21 − B21F11 − B22F21 0

]

= max
s∈C

rank

[
sE11 −A11 + B12B−1

22 A21 − (B11 − B12B−1
22 B21)F11 B11 − B12B−1

22 B21

−A21 − B21F11 − B22F21 0

]
.
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Consequently, we have

μ1 = max
s∈C

rank

[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21

−A21 − B21F11 − B22F21 0

]
.(55)

Because (33) holds and B22 is nonsingular,

μ1 + τ2 = rank

[
sE11 −A11 B11 B12

−A21 B21 B22

]

= rank

[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21 0

−A21 B21 B22

]
∀s ∈ C,

which gives that

rank
[
sE11 −A11 + B12B−1

22 A21 B11 − B12B−1
22 B21

]
= μ1 ∀s ∈ C.(56)

Thus, by applying Lemma 2(ii) to (55) we get

A21 + B21F11 + B22F21 = 0.(57)

Since B22 is nonsingular, B21F12 + B22F22 = B22F̃22 with F̃22 = B−1
22 B21F12 + F22,

and

C22

[
sE22 −A22 − B22F̃22

sE32 −A32

]−1 [ B22

0

]
H22

=
[

0 C22

]
(U(sE11 −A11 −

[
B12 A12

]
F)V)−1

⎡
⎣ B12

B22

0

⎤
⎦H22

is diagonal and nonsingular. Hence, the condition (39) of the theorem follows.
Sufficiency. We will prove the sufficiency constructively. Assume that conditions

(38) and (39) hold. Since n3 = ñ3 implies n2 = ñ2, the system (37) is square. From
the condition (39) there are matrices F̃22 and H22 such that

T22(s) = C22

[
sE22 −A22 − B22F̃22

sE32 −A32

]−1 [B22

0

]
H22 is diagonal and nonsingular.(58)

Define (F ,H) by ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
D11 0
B21 B22

]
WTHPT =

[
I 0
0 B22H22

]
,

[
D11 0
B21 B22

]
WTFV =

[
−C11 −C12

−A21 B22F̃22

]
.

(59)

and partition WTFV and WTHPT as in (41). A direct calculation yields that

D11H11 = I, B21F12 + B22F22 = B22F̃22,(60)

and, furthermore,

TF,H(s) = PT

[
I 0
0 T22(s)

]
P
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is diagonal and nonsingular. Therefore, F and H above solve the RRDP for system
(15).

By combining Theorems 1, 8, and 10 we obtain the following result, which presents
explicit and numerically verifiable necessary and sufficient solvability conditions for
the RRDP of system (1).

Theorem 11. Given a descriptor system (1) and assuming that the forms (9)
and (32) have been determined, then the following statements are equivalent:

(i) The RRDP for descriptor system (1) is solvable.
(ii)

(a) n3 = ñ3, E23 = 0, E33 = 0,

(b) D21 = 0, B22 is nonsingular,

and the RRDP for linear time-invariant system (37) is solvable.
(iii) The conditions in (a) and (b) above hold and

(c) L is nonsingular,

where L is defined as follows.
Let ci be the ith row of C22. If

ci

([
E22

E32

]−1 [A22

A32

])j ([
E22

E32

]−1 [B22

0

])
�= 0

for some nonnegative integer j; then set

li = min{j ≥ 0 : j is integer satisfying

ci

([
E22

E32

]−1 [ A22

A32

])j ([
E22

E32

]−1 [ B22

0

])
�= 0};

otherwise, set li = μ2 − 1. Define

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

([
E22

E32

]−1 [ A22

A32

])l1

c2

([
E22

E32

]−1 [ A22

A32

])l2

...

cm−ν

([
E22

E32

]−1 [ A22

A32

])lm−ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

([
E22

E32

]−1 [ B22

0

])
.(61)

It is well known that it is ill-conditioned to compute the matrix L in Theorem
11(iii). Hence, Theorem 11(iii) cannot be used for the purpose of numerical compu-
tation [18]. Fortunately, the RRDP for system (37), in which[

E22

E32

]

is nonsingular, has been reinvestigated, and a numerically reliable algorithm has been
developed using orthogonal transformations in [14, 16]. As a result, Theorem 11(ii),
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the proofs of Theorems 8 and 10, and the work in [14, 16] can be used as a basis
for devising a numerically reliable algorithm for solving the RRDP for the descriptor
system (1) as follows.

Algorithm 1.

Input: Matrices E,A,B, and C of the system (1) with E singular.
Output: Solution (F,H) of the RRDP for system (1) if the solution exists.
Step 1. Compute the form (9); check conditions in (a) of Theorem 11(ii). If these
conditions are satisfied, go to Step 2; otherwise, conclude that “The RRDP is not
solvable” and stop.
Step 2. Compute the form (32); check condition in (b) of Theorem 11(ii). If these
conditions are satisfied, go to Step 3; otherwise, conclude that “The RRDP is not
solvable” and stop.
Step 3. Verify the solvability conditions of the RRDP for the linear time-invariant sys-
tem (37) and compute a solution (F̃22,H22) (if possible) using the algorithm developed
in [16].
Step 4. Solve the 4 linear equations in (59) and (31) to get (F,H). Output (F,H)
and stop.

In Algorithm 1, Steps 1, 2, and 3 are implemented using only orthogonal trans-
formations, and the equations in Step 4 can be solved by existing reliable methods in
MATLAB software. Therefore, Algorithm 1 is numerically reliable.

In the following we present a numerical example to illustrate Algorithm 1. In
this example, all calculations were carried out using MATLAB 5.3 on a HP 712/80
workstation with IEEE standard; i.e., the machine accuracy is about ε ∼= 10−16. For
the sake of space limitation, we display only the matrices in systems (1), (15), and
(37) and the computed (F,H). But, all other data produced by Algorithm 1 can be
obtained from us on request.

Example 1. Given a system of the form (1) with

E =

⎡
⎣−2.114533471754 −1.370853194916 1.736011048459 −0.777424723706 0.15552253682 −2.56440325995

1.981948836367 1.026489453419 −1.105079726788 1.060541636692 0.15747945272 1.83814732774
−1.127692341885 −0.738768389781 0.831143443676 −0.430676489733 0.07468092963 −1.60807586863
−0.854341367338 −0.769620562458 0.940592064356 −0.149518153491 0.18927466491 −1.19013292159
0.959445385414 0.382758195679 −0.738961628069 0.400705245192 −0.09207348992 1.47285621736
1.096197281699 0.333111128291 −0.419336283785 0.700588861755 0.14595331319 1.23474652554

⎤
⎦,

A =

⎡
⎣ −2.496603142235 −3.027855453825 3.468783236849 0.841588723375 −0.389109896897 −3.758198911069

2.915229861871 2.562626759424 −2.641568611375 0.232761516265 −0.025600000866 4.225601295896
−2.9425385772285 −3.2106922758844 3.4465197574242 −0.1313124529388 −0.175539883543 −3.956516650065
−2.489894380756 −2.570286952960 1.313484388828 0.586156437213 0.670989681583 −3.581315152567
−0.021382994553 −0.390533814618 0.523695683833 0.011304370558 0.011554521246 −0.807953060870
1.419644861011 0.660544600602 −0.674155524801 0.845044224805 −0.061255771247 1.272523221691

⎤
⎦,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.2981194205345 0.2863134942399 0.2343502478597
−0.1599567951551 −0.0253643526707 0.2901408282503
0.2845183665656 0.1741030084725 −0.2934607414939
−0.4542405355796 −0.2318865773690 0.0001128595941
0.1872510988007 −0.0171206916918 −0.0015501494030
−0.3507039683173 0.0264223889745 0.4739000261467

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =
[
−0.166889510228 0.038161721675 0.362202814343 0.989416167409 −0.191104341881 0.172703849180
0.010071486000 0.008210117004 0.005330380954 0.012683631440 0.010082426509 −0.026547375104

−1.212588186646 −0.619627725178 0.990749246465 −0.455865810296 0.152486891422 −1.845755890228

]
,

E is singular with rank(E) = 5.
By performing Step 1 of Algorithm 1 we get the form (9) with

n1 = 5, n2 = ñ2 = 1, n3 = ñ3 = 0, E23 and E33 are nonexistent,

E11 =

[
−1.81412863731296 0.42421095468505 −1.05025682473091 3.17662461567576 −1.81554610479108
−2.28707883576749 0.58790381967586 −0.87731476780594 3.11620021773695 −2.16544496029582
−0.48446826993548 0.42267233234963 −0.15485265545682 0.41083294329550 −0.28637255352499
−0.44261627208646 −0.22062625954174 −0.18343402237887 1.30497574966312 −1.04899876010130
0.73772319004855 −0.40897839106130 0.02906644815678 −0.44508380911416 0.59700805882825

]
,
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A11 =

[
−2.82399053295603 −1.54190993452611 −1.18141927967749 6.87716695193563 −2.85898044575291
−3.48328679385907 −0.57668298994711 −1.79073168993224 7.63482380219169 −3.24859841311216
0.68284133476315 0.51353758146361 0.55962161514123 −1.87270290373406 0.62638380994589
0.27344305777165 −0.35875365745341 −0.07124731006193 0.14804286298798 0.46447362716188

−0.23342751856190 −1.00663606035709 −0.06650585078729 1.15561346009253 −0.39823667919127

]
,

[
B12 A12

]
=

⎡
⎢⎢⎢⎢⎣
−0.29338446075126 −0.22855442644477 −0.66970485705469
0.02262609006324 0.57657906855771 −0.24241575506484
−0.03965740026352 −0.07378004229509 0.01290081567965
−0.32758200246128 −0.43860929198782 −0.44527719790514
−0.14453716656447 −0.41240236312705 −0.25082197786380

⎤
⎥⎥⎥⎥⎦ ,

C1 =
[
−0.49764149376588 0.26436703986119 −0.37975128183368 −0.52558936731624 −0.33982643711893
−0.00466385565791 0.01770707047205 −0.01384911053026 −0.00520420774033 0.02470573280247
1.07461245340293 −0.12658398822948 0.34423979427567 −1.76367786178704 1.44010323440087

]
,

C2 =

⎡
⎣ 0.59356291253968

0
0

⎤
⎦ .

So, the condition (16) is true.
Next, we perform Step 2 of Algorithm 1 to get the form (32) with

μ1 = 1, μ2 = 4, τ2 = 2, τ3 = 2, ν = 1, D21 = 0, B22 is nonsingular,

[
E22

E32

]
=

⎡
⎣ 0.18497650851300 0.21650255217584 −1.42163757723914 0.06052836892962

0.14215088563157 0.08522385113982 −6.06459778219956 1.67086227506901
0.00000000000000 0.00753734517815 −0.05947922313868 0.05399731930089
−0.13125083366301 −0.20761568732362 −1.17186177742605 −0.20101487098613

⎤
⎦,

[
A22

A32

]
=

⎡
⎣ 1.98285434904403 1.32236482538160 −6.66396698837071 2.82024406998733

2.52659314741932 1.78106640040819 −8.93198215464291 3.05066915354195
−0.00000000000000 0.01488524911679 0.06423512937203 −0.04810327759609
−0.25920285056388 −0.41001322791008 0.12457919258231 0.11493631853526

⎤
⎦,

[
B22

0

]
=

⎡
⎢⎢⎣
−0.17545104068710 −0.03097433768157
−0.13911242684627 0.26719805271403

0 0
0 0

⎤
⎥⎥⎦ ,

C22 =

[
0 0 0 0.03412545630891
0 0 −2.35658869878193 0.95930344402099

]
.

Hence, the condition (38) holds.
Then, by performing Step 3 of Algorithm 1, we get a solution (F̃22,H22) to the

RRDP for system (37):

F̃22 =
[

9.802293309432168 5.646580746820156 −35.08609913450191 14.41371812628298
−3.301832971710871 −3.096022324474101 10.20273393604259 −1.043725946131937

]
and

H22 =

[
0.9996702178578495 −0.7886455744849721

−0.02.567986619979914 0.6148480770444584

]
.

Finally, by solving the four linear equations in Step 4 of Algorithm 1, we get

H =

⎡
⎣ −0.17686381243266 −0.46126177248064 −0.11010692440574

−5.21439030830574 −0.29532442684054 0.55048173448973
1.10055215419784 0.83667261229188 −0.82755442430760

⎤
⎦ ,
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F =
[

2.2179774813366 3.178794801661 −4.860781467075 0.199813884087 0.281334640565 8.543338100611
6.031618125212 7.960378436260 −7.806500773764 4.155869542985 0.747155047430 9.384264975229

−16.361782614150 −16.151965525174 14.586848000379 −0.397781332210 0.589084350377 −24.14475367080

]
.

Now we verify that the above pair (F,H) is a solution of the RRDP for system
(1). By computing the SVD of E using MATLAB code svd.m we obtain orthogonal
matrices W,W ∈ R6×6 such that (WEW,W (A + BF )W,W (BH), CW) is of the
following form:

WEW =

[ 5 1

Θ11 0
0 0

]
}5
}1 , W (A + BF )W =

[ 5 1

Φ11 Φ12

Φ21 Φ22

]
}5
}1 ,

WBH =

[
Ψ1

Ψ2

]
}5
}1 , CW =

[ 5 1

Υ1 Υ2

]
,

where Θ11 is nonsingular and Φ22 = −1.00000000000004 �= 0. Thus, the pencil
(E,A + BF ) is regular and of index at most one. Furthermore, a simple calculation
by using MATLAB code

C(sE −A−BF )−1BH
= tf

(
ss
(
Θ−1

11 (Φ11 − Φ12Φ
−1
22 Φ21),Θ

−1
11 (Ψ1 − Φ12Φ

−1
22 Ψ2), (Υ1 − Υ2Φ

−1
22 Φ21),−Υ2Φ

−1
22 Ψ2

))
yields that

C(sE −A−BF )−1BH =

⎡
⎣ T11(s) T12(s) T13(s)

T21(s) T22(s) T23(s)
T31(s) T32(s) T33(s)

⎤
⎦

with

⎡
⎣T11(s)
T21(s)
T31(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5−5.466s4+9.888s3−5.912s2−4.865×10−14s−2.039×10−28

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

s3−3.950s2+3.90s+1.732×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.292 × 10−15

− s3−3.949s2+3.900s+2.252×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 3.444 × 10−14

⎤
⎥⎥⎥⎦ ,

⎡
⎣T12(s)
T22(s)
T32(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5+1.811s4−16.65s3+25.82s2−15.20s−7.119×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 4.613 × 10−16

0.005079s4−0.02776s3+0.05022s2−0.03003s−2.034×10−15

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

s3−3.896s2+5.276s−2.929
s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.958 × 10−14

⎤
⎥⎥⎥⎦ ,

⎡
⎣T13(s)
T23(s)
T33(s)

⎤
⎦ =

⎡
⎢⎢⎢⎣

s5−8.802s4−6.047s3+13.74s2+3.245×10−15s−2.693×10−30

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 × 1.895 × 10−16

s2−1.841s−0.2652
s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28 3.659 × 10−15

0.07654s4−0.4184s3+0.7568s2−0.4526s+2.889×10−14

s5−5.466s4+9.888s3−5.912s2−3.147×10−14s−7.126×10−28

⎤
⎥⎥⎥⎦ .

Although the off-diagonal elements of C(sE−A−BF )−1BH are not exactly zero, the
numerator coefficients of all off-diagonal terms are of an order of magnitude O(10−14)
that are attributed to numerical rounding error. Thus, C(sE − A − BF )−1BH is
for practical purposes diagonal and nonsingular. This can also be demonstrated by
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a step response analysis: it has been found that the response to steps or sinusoidal
inputs applied on each separate control channel of the closed-loop system effectively
gives terms on the off-diagonal parts which are about O(10−14). Hence, the above
pair (F,H) is a solution of the RRDP for system (1).

Remark 2. We can also verify that C(sE − A − BF )−1BH in Example 1 is
diagonal as follows.

Let (BH)i denote the ith column of BH ( i = 1, 2, 3). We obtain orthogonal ma-
trices Wi and Wi (i = 1, 2, 3) by computing the controllable staircase forms [20] of the
pairs (sE−A−BF, (BH)i) (i = 1, 2, 3) such that (Wi(sE−A−BF )Wi,Wi(BH)i, CWi)
(i = 1, 2, 3) are of the following forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(sE −A−BF )W1 =

[ 4 2

sΘ
(1)
11 − Φ

(1)
11 sΘ

(1)
12 − Φ

(1)
12

0 sΘ
(1)
22 − Φ

(1)
22

]
}4
}2 ,

W1(BH)1 =

[
Ψ

(1)
1

0

]
}4
}2 , CW1 =

⎡
⎢⎣

4 2

Υ
(1)
11 Υ

(1)
12

Υ
(1)
21 Υ

(1)
22

Υ
(1)
31 Υ

(1)
32

⎤
⎥⎦ }1

}1
}1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W2(sE −A−BF )W2 =

[ 4 2

sΘ
(2)
11 − Φ

(2)
11 sΘ

(2)
12 − Φ

(2)
12

0 sΘ
(2)
22 − Φ

(2)
22

]
}4
}2 ,

W2(BH)2 =

[
Ψ

(2)
2

0

]
}4
}2 , CW2 =

⎡
⎢⎣

4 2

Υ
(2)
11 Υ

(2)
12

Υ
(2)
21 Υ

(2)
22

Υ
(2)
31 Υ

(2)
32

⎤
⎥⎦ }1

}1
}1

,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W3(sE −A−BF )W3 =

[ 4 2

sΘ
(3)
11 − Φ

(3)
11 sΘ

(3)
12 − Φ

(3)
12

0 sΘ
(3)
22 − Φ

(3)
22

]
}4
}2 ,

W3(BH)3 =

[
Ψ

(3)
3

0

]
}4
}2 , CW3 =

⎡
⎢⎣

4 2

Υ
(3)
11 Υ

(3)
12

Υ
(3)
21 Υ

(3)
22

Υ
(3)
31 Υ

(3)
32

⎤
⎥⎦ }1

}1
}1

,

where ∥∥∥∥∥
[

Υ
(1)
21

Υ
(1)
31

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

∥∥∥∥∥
[

Υ
(2)
11

Υ
(2)
31

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

∥∥∥∥∥
[

Υ
(3)
11

Υ
(3)
21

]∥∥∥∥∥
2

/‖C‖2 = O(10−15),

and

‖Υ(1)
11 ‖/‖C‖ = O(1), ‖Υ(2)

21 ‖/‖C‖ = O(1), ‖Υ(3)
31 ‖/‖C‖ = O(1).

Therefore, C(sE −A−BF )−1BH is diagonal.
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4. Conclusions. We have presented necessary and sufficient conditions for the
solvability of the RRDP for descriptor systems. A numerical procedure, which is
implementable and reliable, has been provided to verify these solvability conditions
and compute the solution matrices.
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