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A MATRIX PENCIL APPROACH TO THE ROW BY ROW
DECOUPLING PROBLEM FOR DESCRIPTOR SYSTEMS*
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Abstract. The row by row decoupling problem (RRDP) for descriptor systems is considered
using proportional state feedback and input transformation. Necessary and sufficient conditions for
the solvability of the RRDP are provided. These solvability conditions can be readily verified. A
constructive solution to the RRDP is given so that the desired feedback and input transformation
matrices can be obtained by a numerically reliable procedure.
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1. Introduction. The row by row decoupling problem (RRDP) has played a
central role in classical as well as modern control theory, since it provides a powerful
methodology to reduce a multi-input/multioutput complex system to a set of single
input/single output systems, thus facilitating a decoupled control strategy of such
systems. The row by row decoupling is usually required for ease of system operations,
for example, in the process and chemical industries [1, 2].

Consider descriptor systems of the form

{E:’c:Az—i—Bu,

(1) y = Cuz,

where E,A € R"*", B € R™™ C € R™*", E is singular, x € R" is the state,
u € R™ is the control input, and y € R™ is the output. It is well known that the
existence and uniqueness of (classical) solutions to (1) are guaranteed if (E,A) is
regular, i.e., det(aF — BA) # 0 for some (o, ) € C?. The system (1) is said to have
index at most one if the dimension of the largest nilpotent block in the Kronecker
canonical form of (E, A) is at most one [17].

Descriptor systems that are regular and of index at most one can be separated
into purely dynamical and purely algebraic parts (fast and slow modes). If the index
is larger than 1, then impulses can arise in the response of the system if the control
is not sufficiently smooth [7, 17]. Therefore, in the design of feedback control, one
should ensure that the closed-loop system is regular and of index at most one.

If we apply state feedback of the form

(2) u=Fz+ Hv
to the descriptor system (1), then the closed-loop system becomes

3) Ei = (A+ BF)x+ BHv,
y=Cz.
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The problem to be considered can be stated as follows.

The RRDP. Given a descriptor system of the form (1), determine a state feedback
matrix F' € R™*™ and a nonsingular input transformation matrix H € R™*™ such
that

(a) the pencil (E, A+ BF) is regular and of index at most one;

(b) the closed-loop transfer function matrix

(4) C(sE—A—BF)"'BH is nonsingular and diagonal.
Here C(sE — A — BF)"'!BH being nonsingular means that
rank(C(sE — A— BF)"'BH) =m for some s € C.

Before studying the RRDP for the descriptor system (1), we summarize the main
results on the RRDP available in the literature.
The RRDP for linear time-invariant systems of the form

Ei = Az + Bu,
(5) {y:Car

with £, 4 € RF*F B € R¥*?, ¢ € RP** and £ nonsingular has been investigated
extensively over the last three decades and is still attracting continuing interests
[2, 3,4, 5, 6,9, 10, 21]. In particular, because system (5) is equivalent to

=& Az + £ Bu,
y =Cuz,

we have the following theorem.
THEOREM 1 (see [3]). Given system (5) with £ nonsingular, let ¢; be the ith row
of C. If

G(ETTAY(ETB)£0
for some nonnegative integer j, then set
l; =min{j > 0: j is integer satisfying ¢;(E"1A)(E71B) # 0};

otherwise, set l; =k — 1. Define

cl(E7TA)R c(E7TA)
Cg(gilA)lz Cg(gilA)l2+1

L= , (E'B), K= , (E7'B).
Cp(g—.lAyp Cp(g—l.A>lp+1

Then the RRDP for system (5) is solvable if and only if the matriz L is nonsingular.
In this case, a solution pair (F,H) is given by

F=-L7'K, H=L"".

Although Theorem 1 provides an explicit solution for the RRDP of the linear
time-invariant system (5) with £ nonsingular, some natural questions remain.
(a) If the RRDP is solvable,
(i) can we solve the RRDP with the additional requirement of stability?
(ii) does numerically reliable solution exist for the RRDP with stability?
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(b) If the RRDP is not solvable, can one resort to a relaxed problem of triangular

decoupling?

Regarding (a)(i), the RRDP with stability for the system (5) has been investigated
in [5, 6] using geometric and structural approaches, giving coordinate-free solvability
conditions. But, the results in [5, 6] cannot lead to numerically reliable methods for
computing a solution to the problem. To address (a)(ii), a numerically reliable method
has been developed in [14] based on orthogonal transformations. If the condition of
Theorem 1 is not satisfied so that the RRDP is not solvable, it is shown in [15] that
a triangular decoupling problem may be solvable under less restrictive conditions.
In [15], explicit solvability conditions are provided with a parameterization of all
solutions to the triangular decoupling problem.

Unfortunately, the above results for the RRDP for the system (5) with & nonsin-
gular cannot be readily extended to the general descriptor system (1). For example,
it is not possible to apply existing results to system (1) by decomposing it into differ-
ential and algebraic parts and then deal with them separately. Instead, it is necessary
to develop a separate theory to handle the RRDP for descriptor systems. The RRDP
for descriptor system (1) has been studied in [7, 11, 19]. In [7], it is shown that the
RRDP for system (1) is solvable using combined proportional and derivative state
feedback if and only if the input-output transfer function is invertible. However, the
use of derivative feedback is undesirable due to noise accentuation and an increase in
the system order. To our knowledge, the solution is still not known for the RRDP of
the descriptor system (1) using only proportional state feedback.

A problem related to the RRDP is the disturbance decoupling problem. Although
the objectives of the RRDP are different from the disturbance decoupling problem,
we will make use of the matrix pencil approach developed in [12, 13] to characterize
necessary and sufficient conditions for the solvability of the RRDP for the system (1).
In this paper, we provide numerically reliable methods for verifying the solvability of
the RRDP for the system (1) and for computing the solution matrices F' and H. These
results are new to our knowledge and are valuable, as real descriptor systems with
singular F do exist in practice. However, the RRDP with stability for the descriptor
system (1) remains an open problem.

The paper is organized as follows. Some necessary preliminary results for matrix
pencils are collected in section 2. In section 3, necessary and sufficient solvability
conditions as well as a numerically reliable algorithm for the RRDP of descriptor
system (1) are established. Concluding remarks are included in section 4.

2. Preliminaries. The following two lemmas are basic results for matrix pencils
and will be needed in the development to be given in the next section.

LEMMA 2 (see [12, 14]). Given £, A € R"*" B € R"*™ C € RP*", and D €
RP*™ with £ nonsingular,

(i)
C(s€ -~ A)'B+D=0
if and only if
sE-~A B
c 0 } -
(i) assume

rank[sS—A B}:n Vs € C.
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Then

max rank

seC C -D

[ s€E—A B }
if and only if
C=0, D=0.
LEMMA 3. Given £, A€ R B e R"™™ C e RP*", and D € RP*™,
(i)

s€E—A B

max rank [ c D

seC

} > rank(€) + rank(D);

(ii) if € and D are of full row rank, then

(6) maxrank[ SSC_A _li) ] =n+p.

seC
Proof. Part (i). We can assume without loss of generality that

T m-—T

N A

with D11 nonsingular and rank(D) = rank(D11) = 7. Denote
T m-—T a1y
B=[B By |, ¢c= |17 |
B B ] [Cz] tp—7
and let the generalized upper triangular form [8, 20] of

|: 85—A+81D;11C1 82 :|

Cs 0
be
p| s€—A+ BiD'C By 0
Cs 0
H1 K2 H3 Ha
$011 — P11 8012 — P12 $O13 — P13 O — Pua | Yy
B 0 $020 — Poy 023 — Pog $O24 — Poa | Yy
- 0 0 3633 - ‘1)33 8934 - (13‘34 }’u,3 ’
0 0 0 8944 — Dy }V4

685

where P and Q are orthogonal, ©1; is of full row rank, G4y is of full column rank,

©s5 is nonsingular, and

rank(sO11—®11) = v1, rank(sOs3—Ps3) = p3, rank(sOu—Pyy) =ps Vs e C.

(7)
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Now we have that

O11 O12 O13 Oy

rank(€) = rank 0 ©x Oy Oy = v1+ps+rank(Osz3)+ g < vi+po+ps+pg
0 0 ©Osz3 Oz
0 0 0 Ouq

and the equality rank(D) = 7 yield that

{ s€E-—A B }
maxgecc rank c D
[ sE-A B Bs
= maxgcc rank Cy -D;; O
L G 0 0
[ _ -1
= maxsec rank s€—A JEBlD“ C1 %2 + 7
L 2
_ $011 — D11 $O10 — Py O3 — B3 Oy — Py
= max rank 0 5099 — Poy 5093 — Po3 5Oy — Doy Ly
- e 0 0 5033 — P33 5034 — Py
0 0 0 5044 — Pyy

=1+ o+ s+ a7 > rank(&) + rank(D).

Part (ii). Since £ and D are of full row rank, by part (i) we obtain that

s€E—A B
Isr.leeg(rank { c D } > rank (&) + rank(D) = n + p.
But, it is obvious that
s€E—A B

rsrg():(rank[ c ) ] <n-+p.

Hence,
s€E—A B
rsneac):(rank[ c D ] =n+p. 0

The next lemma provides necessary and sufficient conditions for a matrix pencil
to be regular and of index at most one.

LEMMA 4 (see [7, 17]). Let E, A € R™*"™. The following statements are equiva-
lent.

(i) (E, A) is reqular and of index at most one.

(i) rank | B ASw(E) | = n, where Soo(E) denotes a matriz with orthogonal
columns spanning the right nullspace of matriz E.

(iii) deg(det(sE — A)) = rank(FE).

3. Main results. The purpose of this section is to present necessary and suffi-
cient solvability conditions as well as a numerically reliable algorithm for the RRDP
of descriptor system (1). For this purpose, first we transform the RRDP for descrip-
tor system (1) into the RRDP for a linear time-invariant system using orthogonal
transformations.
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THEOREM 5. Given system (1), there exist nonnegative integers ny, na, ng, N,
and fig and orthogonal matrices U, V,Q € R™ ™, and W € R™*™ with

ny N9 +nsg

Qun Q2 }na
8 P—
) @ [Qm Q22 tng + ng
such that ny + no +ng = ny + no + N3 = n, Q11 s nonsingular, and
Qi Q12 0 U oo sE—A | B vV o
P N A I e N VN
0 0 I c | 0
ni no ns ng m — ng
sEin — A1 —An sEyz— Az | 0 Bis tna
— A —Ags  sEa3 — Az | By 0 1o
(9) = 0 0 sE33 — Asz | 0 0 iz
Cl Cg Cg | 0 0 }m

where E11 and Bo1 are nonsingular, and sEs3 — Ass is of full column rank for any
seC.

Proof. The form (9) is constructed in [23]. O

In the following, we give a system interpretation of the form (9).

With respect to the coordinate transformations in the form (9), the system (1)
can be expressed as

([ QO“ QI” } UEV) VT = ({ QO“ QI” ] UAV) Vg

(10) (1% % o),
0 I ’
y=(CV)VTx,

where VT2 represents the transformed state vector and W7 u the transformed input.
Let

T }n1 ~
(11) Vie= |za| g, Wliu= {“1} K
I I ug | }m —fa

Then system (10) is equivalent to

Ena + Eizis = Aj1@ + Araas + A1zzs + Braug,
Eo3iz = A9 @ + Agaxe + Aszws + Bajuy,

E33i3 = Aszzrs,

Yy = Oli‘ + CQQ?Q + 031'3.

(12)

Because sFs33 — Ass is of full column rank for any s € C, according to [22], we know
that

Consequently, Fssi3 = Assxzs is a redundant subsystem (associated with z3 con-
strained to be zero). As the redundant subsystem has a zero trajectory xzs = 0, we
can delete this part. Therefore, (1) is reduced to



688 DELIN CHU AND Y. S. HUNG

e a regular subsystem (with nonsingular Eyq)

Eni=Anz+[ Biz Ap | [ Zz } )
(13)
y=Cii+[0 @][Zz};
e an algebraic subsystem (associated with )

(14) 0= A7 + Azxs + Baug.

The algebraic part of the system results in the algebraic condition (14), which must
be satisfied. This can be taken as an algebraic constraint on the feasibility of the
system (1). Since Bsg; is nonsingular, we can always find an input u; to ensure that
the descriptor system (1) is consistent. If we consider

as a new input and choose u; = —B;ll (A21Z + Agaxs), then the regular subsystem

(13) becomes

(15) {Euj? =Anz+ | B2 A |4,
y:Cla?—i—[ 0 Oy }ﬂ,

and the algebraic constraint (14) is satisfied. The regular subsystem (15) preserves
the finite zeros of the descriptor system (1), as shown in the next corollary.
COROLLARY 6. Given a descriptor system (1), let the form (9) be determined.
Then the finite zeros of system (1) are the same as those of system (15).
Proof. The finite zeros of systems (1) and (15) are the finite eigenvalues of matrix
pencils

A-sE B and A1 —sEn Bia A
C 0 C1 0 Cy |’

respectively. By construction, By is nonsingular and sFs33 — A3z has full column rank
for any s € C. Hence, we obtain by means of the form (9) that matrix pencils

A—-sE B and Ann—sE11 Bia Ap
C 0 C1 0 CQ

have the same finite eigenvalues. Therefore, systems (1) and (15) have the same set
of finite zeros. O

After removing the redundant subsystem E33i3 = Aszxs and assuming that the
algebraic consistency (14) is satisfied, it is therefore natural to focus on the regular
subsystem (15) of the descriptor system (1).

The following lemma shows that the form (9) can be used to characterize the
existence of a feedback matrix F' such that the pencil (E, A + BF) is regular and of
index at most one.

LEMMA 7. Given a descriptor system of the form (1), there exists a matriz F
such that the pencil (E, A+ BF) is reqular and of index at most one if and only if

(16) ng = ’I7L37 E23 = O, E33 =0.
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Proof. For any F' € R™*"_ denote
nq N9 ns

Fu Fo Fs]
17 WTFV — 11 12 13:| 2 ~ )
(7 {le Fpy Fh3| tm—ny
We have
@u Qi U(sE— A— BF)V
0 I

sE11 — A1 — BiaFor —Ajp — BiaFa sB3 — A1z — Bialbs

(18) = —(A21 + Ba1Fi1) —(Ag2 + Ba1F12)  sEa3 — (Azs + B Fia)

0 0 sE33 — As3

Necessity. Let F' € R™*™ be such that the pencil (E, A + BF) is regular and of
index at most one. Then by the regularity of (F, A + BF') we have

maxrank(sE — A — BF) = n,

seC
which together with (18) yields that

max rank(sE33 - A33) = ﬁg.
seC

Note that sF33 — Ags is of full column rank for any s € C. Thus,
(19) ’ﬁ,g = ns3.
Since the pencil (E, A + BF) is regular and of index at most one, sE33 — A3z is of
full column rank for any s € C, and we have using Lemma 4(iii) and (19) that

rank(E) = deg(det(sE — A — BF))

sEy — Ay — BiaFyr —Aig — BiaFo )
= deg(det
eg(de ([ —(A21 + Ba1F11)  —(Aa2 + B2 F12)
+ deg(det(sE33 — A33))

— deg(det sEy — Ay — BioFyy  —Aip — BiaFoy
—(A21 + Ba1 F11) —(A22 + Ba1 Fi2)
< rank(F17)
Because Fq; € R™*™ is nonsingular, we also have
_ Ea3 | L3
(21) rank(F) = rank(FE1;) 4 rank = ny1 + rank )
E33 Ess

Hence, we obtain
(22) Ey3 =0, E33=0,

which together with (19) give the condition (16).
Sufficiency. Assume condition (16) holds. It follows that fig = ny and rank(E) =
niy. Let

(23) F12 = —Bz_ll(Agg + I), }7117 F13,F21, FQQ, and F23 are arbitrary.

By Lemma 4(ii), we know that (E, A+ BF) is regular and of index at most one. 0
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In Corollary 6, it is shown that systems (1) and (15) have the same set of finite
zeros. In the next result it will be shown that the RRDP for descriptor system (1)
can be reduced to the RRDP for the linear time-invariant system (15).

THEOREM 8. Given a descriptor system (1), the RRDP for system (1) is solvable
if and only if the condition (16) holds and, furthermore,

(24) the RRDP for system (15) is solvable;
i.e., there exist matrices F and 'H with H nonsingular such that
Trn(s) = (C1+[0 Co] F)(sEn1—An— [Biz A F)™' [Biz Aw]+[0 Co])H
(25)
18 nonsingular and diagonal.

Proof. For any F € R™*" and H € R™*™, denote WI FV as in (17), and let
(26) H=wT"H.

Clearly, if H is nonsingular, then H is nonsingular. We will first prove “necessity”
and then “sufficiency.”

Necessity. Let FF € R™*™ and H € R™*™ with H nonsingular be such that the
pencil (E, A+ BF) is regular, of index at most one, and (4) is true. Then condition
(16) of the theorem follows directly from Lemma 7. Note that the condition (16)
implies that

(27) fig = ng, rank(E)=n.
We have shown in the proof of Lemma 7 that (20) holds, from which it follows that
the pencil

Ei 0 A1+ BioFo1 Az + Bialhe
0 0 |’| Aox + Ba1Fi1 Asa+ Bo1Fio

is regular and of index at most one. Hence, by Lemma 4(ii), we have that Ass+ Ba1 Fio
is nonsingular. Now a simple calculation yields that
C(sE—A—BF)'BH
sE1y — Ay — Bialyy  —Ajg — BiaFhy  sEy3 — Az — Bialhs

-1

=[C1 Cy GCs]| —(Az+ BaFi)  —(Aze+ BaiFia)  —(Ags + BaiFua)
0 0 —Ass
0 B2 | _
X le 0 H
0 0
[0 G ] [ sE11 — Ai1 — BiaFar —Aiz — Biaky }1 [ 0 B2 ]H
—(Ag1 + Ba21F11) —(As2 + Ba1 Fi2) By 0
= T]:,’H(S)v
(28)
where
(29) 7o Fy1 — Fos(Aoz + Ba1 Fi2) 71 (Ag1 + Ba1 Fiy)
—(Asa + Ba1Fi2) Y (A21 + Ba1 Fi1) ’
[ —Fae(Asa + Bor Fi2)™t I By 0| 4
(30) n= { —(Aga + By Fi2)™ 0 o 1|%
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Since H , Bo1, and Ags + Boy Fio are nonsingular, so is H. Hence, the nonsingularity
and diagonality of C(sE — A — BF)"'BH imply that 7z /(s) is nonsingular and
diagonal. This is equivalent to the solvability of the RRDP for system (15).
Sufficiency. We will prove the sufficiency constructively. Assume that conditions
(16) and (24) hold. Condition (16) implies that ny = fg, and so the system (15) is
square. From the condition (24) there are matrices F and H with H nonsingular and

o _.7:1] tm —ngy

_.7:2 }ng

such that 7r 3(s) is nonsingular and diagonal. Let (F, H) be determined by

B21 0 T _--FQ_AZI _I_AZZ 0 T
[ 0 I]WF_ A o o]V
(81) B 0 - 0 I
21 T _ n2
R L PR

partition F' as in (17), and define H by (26). We have that Agy + Boi1Fio = —1
and (29) and (30) hold. By condition (16) and the proof of the sufficiency of Lemma
7, (E,A + BF) is regular and of index at most one. Moreover, (28) yields that
C(sE — A— BF)"'BH is nonsingular and diagonal. O

In general, [ 0 Cy ] # 0, and, consequently, Theorem 1 cannot be extended to
system (15). Hence, we reduce the RRDP for system (15) to the one for a system of
the form (5) via the following factorization.

THEOREM 9. Given a descriptor system (1) and assuming that the form (9) has
been determined, then there exist orthogonal matricesU,V, and W and a permutation
matriz P such that

48] S ]
0o P o, | 0 Oy 0o w
H1 M2 v m+ng —ng —V
s€n — A sE12— Az | Bi1 B b
— A 5E€09 — Aga | Bo1 Bao 172
Gp= | 0 etAe L0 0
Cn Ci2 \ D1y 0 v
0 CQQ ‘ Dgl 0 }m —V

where 1 + po = 1 + 72 + 73 = ny, E11 and D11 are nonsingular, [ Ba1  Boo ] is of
full row rank, and

i —An B B
(33) rank{ iy EAm 1 B; B;z ] =m+7m VseC,
5532 - .A32 _
(34) max rank [ Cas ] = lo.

Proof. The forms (32) are constructed in [23]. 0
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Let

IR T R B

Tor | Fp2’ Uz | JmAng —ne —v y2 | jm—v "’
(35)

Then system (15) is equivalent to

Entir + E12t21 = Az + A2z + Biiun + Biauor,
Ea2 . Ao + Ao1 By T11 + Baa
(36) 532 T2l = A32 T2l 0 0 Uil 0 Uz1,
y1 = Ci1711 + Cra21 + Drruas,
Y2 = Co2x21 + Daruns.

Now, the nonsingularity of Fy; implies that

&

&30
is nonsingular. So, if Bss is nonsingular, we take u;; = 0, and we denote vg; =
w9y + 82721./421.%11, then the system (36) becomes

Ea2 . Ao + Baa
(37) 532 To1 = A32 21 0 V21,
Y2 = Co2x01

and

. _ S0 171
Enti = (A — 3128221A21):E11 + (./412 — €19 [ 5:2)); } [ ﬁzz }) To1

1
& B
+<B12—512{ 522 ] [ 52 ])Uzh
y1 = Cr1z11 + Ciaza1.

The main feature of system (37) is that it is a linear time-invariant system of the form
(5) because
2]
Es2
is nonsingular.

Remark 1. In the descriptions above, we set u1; = 0 to motivate how the system
(37) may be deduced from the system (15) by a particular choice of the input. Hence,
if the RRDP for the system (15) is solvable, so must the RRDP for the system
(37) (i-e., the latter is a necessary condition for the former). However, whether the
RRDP for the system (15) is solvable or not should not depend on the choice of the
input. Indeed, in Theorem 10, we show that a necessary and sufficient condition for
the solvability of the RRDP for the system (15) can be expressed in terms of the
solvability of the RRDP for the system (37) independent of the choice of the input,
and an examination of the proof of Theorem 10 will reveal that we never make use of

u11 = 0 in the proof. To summarize, the descriptions above are just a simple argument
intended to introduce the form of the system (37) for easy reference in Theorem 10;
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otherwise, the choice uy; = 0 is not used in the rigorous proof of the equivalence
between the RRDPs for the systems (15) and (37).

The following theorem shows that we can reduce the RRDP for system (15)
further to the RRDP for system (37).

THEOREM 10. Given a descriptor system (1), suppose the forms (9) and (32)
have been determined. Assume that the condition (16) is true. Then the RRDP for
system (15) is solvable if and only if

(38) Doy =0, Bog is nonsingular,
and, furthermore,
(39) the RRDP for system (37) is solvable.
Proof. Since n3 = 73 in the form (9), ny = g and
(40) m4+ng—fs—v=m—v, BpecR*XM Y  B,ecRRXMY)

Necessity. Assume that F and H with H nonsingular solve the RRDP of system
(15), Tz 1(s) defined by (25) being diagonal and nonsingular. Let

M1 H2 14 m—v

Fu Fi] v Hu H v
41 Tf' — 11 12 T T — 11 12 )
( ) W V |:.721 .7‘—22 }m — VUV ’ W HP H21 H22 }m — VvV

Since P is a permutation matrix, P7r 3(s)P7 is also diagonal and nonsingular, or,
equivalently,

e o)

_ D O n Cii +DuiFii Cia+DiiFie
Dy 0O Do Fua Caz + Da1 Fi2

UsE1 — A — [ Biz A |F)V)H| B B
XU(sEyn — A1y — | Biz Az | F)V) 51 52 Hor  Hao

Bi1 Biz { Hiy His }
= PTrn(s)PT
is diagonal and nonsingular; here
Tin(s) € RV, Tials) € RV Ty (s) € RIIXV Top(s) € RO X (m=v),
so we get
T11(s) and Taa(s) are diagonal and nonsingular, 712(s) =0, Z21(s) = 0.

Hence, we have

DiHiz+ | Cli+DuFu Cio+DuFia | (U(sEyy — Ann — [ Bz A | F)V)™H

BiiHi2 + BiaHao
X | Ba1rHiz + BaoHoo
0
- 712(5) = Oa
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DorHiy + | DarFi1 Coz+ DorFio | (U(sEry — Ay — | Bz Ay | F)V)7!
Bi1Hi1 + BioHoan

X | Ba1Hi1 + BagHor
0

(43) = T3 (s) = 0.
Thus, Lemma 2(i) gives that
(44) Di11Hi2 =0, Dar'Hyr =0.

Since D71 and

Hit Hie
Ho1r Hao
are nonsingular, we have
(45) Hi2 =0, Doy =0, Hq1 and Hoo are nonsingular.

Using (45), (43) becomes

Bi1 + 312H21Hf11
(46) [ 0 Co2 ] (U(sE11 — A11— [ Bia Ajpp ]f)v)il Ba1 + 322H21H1_11 =0.
0

By Lemma 2(i) and properties (34) and (46), we get

Bii + BioHar Hpy!

Ny = Q1 + plo = maxgec rank U(sBrr = An = [Biz Aw] F)V | Boy + BosHon My

0
0 Co 0
s€11 — A1 — BiiFi1 — BiaFa1 s€12 — A1z — BiiFiz — BiaFao Bin + BiaHor My
_ —A21 — B21F11 — B2aF21 $E22 — Azz — Ba1F12 — BaaFaz  Bay + BaoHar HY!
= maxcc rank 0 Eas — Ay )
0 Caa 0

s&11 — A — BiiFi1 — BiaFar  Big + BioHo Hitt n

—Ag1 — Ba1F11 — BaaFon Boi + BoosHor Hiy' H2
> rank(&11) + rank(Ba; + ngHngﬁl) + p2 (by Lemma 3(i))
= py + po + rank(Boy + BooHor Hi7).

= maxgcc rank

(47)
Thus,

(48) Ba1 + 622H21H1_11 =0,
which implies that

(49) rank(ng) = rank [ 621 622 ] .
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By construction, [ Bai  Baz | is of full row rank (= 72). Hence,
(50) rank(ng) = T2.

Note that &1 is nonsingular and Bag is of full row rank (see (50)); Lemma 3(ii) yields
that

s&€11 — A1 — BiiFi — BiaFa1 Bia

51 k = .
(51) hegran — Ao — Ba1Fi1 — BaxFau Baa p1t T
Since
Bi2
Tpa(s) = [0 Coo] U(sE11—A11— [Biz A F)V)7! | Bay | Hap € RUM)X(m=)
0

is diagonal and nonsingular, and Ey; € R™*™ we have using (34), (50), (51), and
the nonsingularity of Hos and &7 that

ni+(m—v) =+ p2 + (m—v)

312
— k U(SEII - All - [ BlQ A12 } .7:)V 822 Hgg
= maxran
se€C 0
[ 0 CQQ ] 0

[s&11 — A1 — BinFin — BiaFor  sE12 — A1a — BiiFiz — BioFoz  BioHao
— Ao — Ba1Fi1 — BaaFau 5E99 — Aogg — Ba1Fia — BaoFao  BasHao

- Ieneaé( rank 0 8532 - ./432 0
L 0 Ca2 0
— max rank [s&11 — Ant — BuuFi1 — BioFor Bio +p
s€C | — A2 — Ba1Fi1 — BoaFor Bao ?
= (1 + 72) + 2 (by Lemma 3(ii)).
Hence,
(52) To =m — L.

Since Bay € R™X(m¥) (see (40)), it follows from (50) and (52) that Bag is nonsingular,
which together with (45) proves that condition (38) of the theorem holds.
Using the nonsingularity of Bag, we have from (48) that

(53) HarHy' = =By Boy,

which gives that

(54) Bi1 + BioHorHyy' = Bi1 — Bi2Byy Boi.
From (47), (48), and (54), we obtain

[s€11 — A1 — BinFii — BiaFor  Biyn — BiaByy' Bay

©1 = maxrank
s€C — Ao — Bo1Fi1 — BaaFan 0
[se11 — — Bi1F11 — BiaFor — BiaB (— — Ba1F11 — Boo F Bi1 — B12B3,'B
— maxrank | %€ A1l 11 F11 12F21 1285, (—A21 21 F11 22 F21) 11 128545 Ba1
seC —Az1 — Ba1F11 — Bz For 0
r —1 -1 1
_ s€11 — A1 + Bi2Bys A2 — (Bi1 — Bi2Bas Ba1)Fi1 Bii — Bi2Bys Bai
= maxrank .
s€C i —Ag1 — Bo1Fi1 — BaaFan 0
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Consequently, we have

(55) 11 = maxrank [ s€11 — Au1 + BiaByy Ayt Bii — BiaBg, Bay ] .
seC

— Ao — BarF11 — BaaFan 0
Because (33) holds and Bss is nonsingular,

- 8(911 - .A11 Bll 812
p + 7 = rank { —Aa Ba1  Bao

sE11 — A1 + BiaBy Aoy By — BiaByy Bay 0

= rank { — A Bay B

} Vs € C,

which gives that

(56)  rank [ €11 — Au + BiaBa Asr B — Bi1aByy' Bor | =1 Vs € C.
Thus, by applying Lemma 2(ii) to (55) we get

(57) Az1 + Ba1F11 + BaaFa1 = 0.

Since By is nonsingular, By Fia + BagFag = BooFoo with Foy = By By Fia + Faz,
and

- —1
5E929 — Ao — BaaFao Bao
Cao €4 — Aso ] { 0 } Hao
B
= [ 0 Co ](U(SEM — A - [ Bia Aia ]}_)V)_l Bas | Has
0

is diagonal and nonsingular. Hence, the condition (39) of the theorem follows.

Sufficiency. We will prove the sufficiency constructively. Assume that conditions
(38) and (39) hold. Since ng = fig implies ny = fig, the system (37) is square. From
the condition (39) there are matrices .7:'22 and Hao such that

5E29 — Ago — 3227:—22} - {322

(58) Toals) = Cao [ s€32 — Aso 0

} Hao is diagonal and nonsingular.
Define (F,H) by

{D” O]WTHPT[é ) ]

821 822 822H22
(59) ; ;
Dy; 0 T —C1n —Ci2
WTFY = 2o
[ Bar Baz ] [ —Az1 BaaFa }

and partition WTFV and WTHPT as in (41). A direct calculation yields that
(60) DiHin =1, B Fia + BosFos = BosFoo,
and, furthermore,

Tenls) =P" | 0 gy | P
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is diagonal and nonsingular. Therefore, 7 and H above solve the RRDP for system
(15). d

By combining Theorems 1, 8, and 10 we obtain the following result, which presents
explicit and numerically verifiable necessary and sufficient solvability conditions for
the RRDP of system (1).

THEOREM 11. Given a descriptor system (1) and assuming that the forms (9)
and (32) have been determined, then the following statements are equivalent:

(i) The RRDP for descriptor system (1) is solvable.

(i)
(a) n3=mns3, FE3=0, E33=0,

(b) D31 =0, By is nonsingular,

and the RRDP for linear time-invariant system (37) is solvable.
(iii) The conditions in (a) and (b) above hold and

(c) L is nonsingular,

where L is defined as follows.
Let ¢; be the ith row of Cos. If

_ J _
.. {522} ! [A22] [522] ! {Bzz} £0
“\ (€32 A3z E3o 0
for some nonnegative integer j; then set

l; = min{j > O J is integer satisfying

_ 522 .«422 522 822
i ({ E32 ] Asza > < E32 ]) 7 0k
otherwise, set l; = uo — 1. Define
o [ 522 -A22
532 A32
522 -/422 -1
(61) L= “ ([ Ez2 A32 ) ([ ?2 } [ 632 }) )
32

_ lm—v
¢ Ea2 Az
UL e A3z |
It is well known that it is ill-conditioned to compute the matrix £ in Theorem

11(iii). Hence, Theorem 11(iii) cannot be used for the purpose of numerical compu-
tation [18]. Fortunately, the RRDP for system (37), in which

Ea2

Es2
is nonsingular, has been reinvestigated, and a numerically reliable algorithm has been
developed using orthogonal transformations in [14, 16]. As a result, Theorem 11(ii),
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the proofs of Theorems 8 and 10, and the work in [14, 16] can be used as a basis
for devising a numerically reliable algorithm for solving the RRDP for the descriptor
system (1) as follows.

ALGORITHM 1.

Input: Matrices E, A, B, and C of the system (1) with E singular.

Output: Solution (F,H) of the RRDP for system (1) if the solution exists.

Step 1. Compute the form (9); check conditions in (a) of Theorem 11(ii). If these
conditions are satisfied, go to Step 2; otherwise, conclude that “The RRDP is not
solvable” and stop.

Step 2. Compute the form (32); check condition in (b) of Theorem 11(ii). If these
conditions are satisfied, go to Step 3; otherwise, conclude that “The RRDP is not
solvable” and stop.

Step 3. Verify the solvability conditions of the RRDP for the linear time-invariant sys-
tem (37) and compute a solution (]:'22, Haz) (if possible) using the algorithm developed
in [16].

Step 4. Solve the 4 linear equations in (59) and (31) to get (F,H). Output (F,H)
and stop.

In Algorithm 1, Steps 1, 2, and 3 are implemented using only orthogonal trans-
formations, and the equations in Step 4 can be solved by existing reliable methods in
MATLAB software. Therefore, Algorithm 1 is numerically reliable.

In the following we present a numerical example to illustrate Algorithm 1. In
this example, all calculations were carried out using MATLAB 5.3 on a HP 712/80
workstation with IEEE standard; i.e., the machine accuracy is about ¢ 2 10716, For
the sake of space limitation, we display only the matrices in systems (1), (15), and
(37) and the computed (F, H). But, all other data produced by Algorithm 1 can be
obtained from us on request.

Ezample 1. Given a system of the form (1) with

[—2.114533471754 —1.370853194916 1.736011048459 —0.777424723706 0.15552253682 —2.56440325995
1.981948836367 1.026489453419 —1.105079726788 1.060541636692 0.15747945272 1.83814732774
E _ —1.127692341885 —0.738768389781 0.831143443676 —0.430676489733 0.07468092963 —1.60807586863
- —0.854341367338 —0.769620562458 0.940592064356 —0.149518153491 0.18927466491 —1.19013292159
0.959445385414 0.382758195679 —0.738961628069 0.400705245192 —0.09207348992 1.47285621736
L 1.096197281699 0.333111128291 —0.419336283785 0.700588861755 0.14595331319 1.23474652554
[ —2.496603142235 —3.027855453825 3.468783236849 0.841588723375 —0.389109896897 —3.758198911069
2.915229861871 2.562626759424 —2.641568611375 0.232761516265 —0.025600000866  4.225601295896
A _ —2.9425385772285 —3.2106922758844 3.4465197574242 —0.1313124529388 —0.175539883543 —3.956516650065
- —2.489894380756 —2.570286952960 1.313484388828 0.586156437213 0.670989681583 —3.581315152567
—0.021382994553 —0.390533814618 0.523695683833 0.011304370558 0.011554521246 —0.807953060870
L 1.419644861011 0.660544600602 —0.674155524801 0.845044224805 —0.061255771247 1.272523221691

—0.2981194205345  0.2863134942399  0.2343502478597
—0.1599567951551 —0.0253643526707  0.2901408282503
0.2845183665656  0.1741030084725  —0.2934607414939

B= —0.4542405355796 —0.2318865773690  0.0001128595941 |’
0.1872510988007  —0.0171206916918 —0.0015501494030
—0.3507039683173  0.0264223889745  0.4739000261467

—0.166889510228 0.038161721675 0.362202814343 0.989416167409 —0.191104341881  0.172703849180
C = 0.010071486000 0.008210117004 0.005330380954 0.012683631440 0.010082426509 —0.026547375104
—1.212588186646 —0.619627725178 0.990749246465 —0.455865810296 0.152486891422 —1.845755890228

E is singular with rank(E) = 5.
By performing Step 1 of Algorithm 1 we get the form (9) with

ny =295, ng=n9 =1, ng =n3 =0, EFy3 and F33 are nonexistent,

—2.28707883576749 0.58790381967586 —0.87731476780594 3.11620021773695 —2.16544496029582
—0.48446826993548 0.42267233234963 —0.15485265545682 0.41083294329550 —0.28637255352499
—0.44261627208646 —0.22062625954174 —0.18343402237887 1.30497574966312 —1.04899876010130

—1.81412863731296 0.42421095468505 —1.05025682473091 3.17662461567576 —1.81554610479108]
By =
0.73772319004855 —0.40897839106130 0.02906644815678 —0.44508380911416 0.59700805882825

)
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—2.82399053295603 —1.54190993452611 —1.18141927967749 6.87716695193563 —2.85898044575291
—3.48328679385907 —0.57668298994711 —1.79073168993224 7.63482380219169 —3.24859841311216
All = 0.68284133476315 0.51353758146361 0.55962161514123 —1.87270290373406 0.62638380994589
0.27344305777165 —0.35875365745341 —0.07124731006193 0.14804286298798 0.46447362716188
—0.23342751856190 —1.00663606035709 —0.06650585078729 1.15561346009253 —0.39823667919127

—0.29338446075126 —0.22855442644477 | —0.66970485705469
0.02262609006324  0.57657906855771 | —0.24241575506484
[Bm ‘ Alg] = [—0.03965740026352 —0.07378004229509 | 0.01290081567965 | ,
—0.32758200246128 —0.43860929198782 | —0.44527719790514
—0.14453716656447 —0.41240236312705 | —0.25082197786380

—0.49764149376588 0.26436703986119 —0.37975128183368 —0.52558936731624 —0.33982643711893
Cl — | —0.00466385565791 0.01770707047205 —0.01384911053026 —0.00520420774033 0.02470573280247
1.07461245340293 —0.12658398822948 0.34423979427567 —1.76367786178704 1.44010323440087

0.59356291253968
Cy = 0
0

So, the condition (16) is true.
Next, we perform Step 2 of Algorithm 1 to get the form (32) with

=1, uo=4,17% =2, 73 =2, v =1, Dy; =0, Byy is nonsingular,

[ 0.18497650851300 0.21650255217584  —1.42163757723914  0.06052836892962 ]
{522] 0.14215088563157  0.08522385113982  —6.06459778219956  1.67086227506901

~ | 0.00000000000000 0.00753734517815  —0.05947922313868  0.05399731930089
| —0.13125083366301 —0.20761568732362 —1.17186177742605 —0.20101487098613 ]

[ 1.98285434904403 1.32236482538160 —6.66396698837071  2.82024406998733
[.A22] | 2.52659314741932 1.78106640040819  —8.93198215464291  3.05066915354195

Esa]

Asa —0.00000000000000  0.01488524911679 0.06423512937203  —0.04810327759609
| —0.25920285056388 —0.41001322791008  0.12457919258231 0.11493631853526 |

[—0.17545104068710 —0.03097433768157

Bao] | —0.13911242684627  0.26719805271403
0]~ 0 0 ’
i 0 0
(00 0 0.03412545630891
622:

0 0 —2.35658869878193 0.95930344402099|

Hence, the condition (38) holds. ~
Then, by performing Step 3 of Algorithm 1, we get a solution (Faz,Haz) to the
RRDP for system (37):

]j- | 9.802293309432168 5.646580746820156  —35.08609913450191  14.41371812628298
22 7= | -3.301832971710871 —3.096022324474101  10.20273393604259  —1.043725946131937

and

How < 0.9996702178578495  —0.7886455744849721
227 | —0.02.567986619979914  0.6148480770444584

Finally, by solving the four linear equations in Step 4 of Algorithm 1, we get

—0.17686381243266 —0.46126177248064 —0.11010692440574
H = | —5.21439030830574 —0.29532442684054  0.55048173448973 |,
1.10055215419784  0.83667261229188  —0.82755442430760
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2.2179774813366 3.178794801661 —4.860781467075 0.199813884087  0.281334640565 8.543338100611
F = 6.031618125212 7.960378436260 —7.806500773764  4.155869542985  0.747155047430 9.384264975229 .
—16.361782614150 —16.151965525174 14.586848000379 —0.397781332210 0.589084350377 —24.14475367080

Now we verify that the above pair (F, H) is a solution of the RRDP for system
(1). By computing the SVD of E using MATLAB code svd.m we obtain orthogonal
matrices W, W € R5*® such that (WEW, W (A + BF)W,W(BH),CW) is of the
following form:

5 1 ) 1
o @11 0 }5 _ q)ll (1)12 }5
WEW = [0 O] B W BRw= [% %2] 0

5 1
o 5
WBH:{‘II;] %1, CW= [T, Tal,

where ©1; is nonsingular and ®55 = —1.00000000000004 # 0. Thus, the pencil
(E, A+ BF) is regular and of index at most one. Furthermore, a simple calculation
by using MATLAB code

C(sE— A— BF)"'BH

= tf (SS (@1_11(‘1)11 - @12‘1)2_21(1)21)7 @1_11(\111 - (1)12@2_21\112), (Tl - TQ(I>2_21(I)21), —Tg‘b2_21\1/2))

yields that

Tll(s) Tlg(S) Tlg(s)
O(SE —A- BF)ilBH e Tgl(s) TQQ(S) T23(8)
T31<S> T32(S) ng(s)

with
r s°—5.4665%49.8885° —5.91252—4.865x 10" 145—2.039x 10~ 28
$5—5.4665119.88853 —5.91252—3.147x 10~ 145—7.126x 10~ 28
Tll(s) 3 2 14
_ s%—3.95052+3.905+1.732x 10" -15
;21553 = | 54665770 88857 5912573 147x 10- Ts—7126xT0-2 X 1.292 x 10 ’
31(S
. s%—3.9495%243.900s42.252x 10~ 14 % 3.444 x 10~14
L $5-5.46657+9.88855—5.91252—3.147x 10~ 145—7.126 X 10~ 2% :
r s°+1.811s*—16.655°425.8252—15.20s—7.119x 10" % 4.613 x 107167
Tia(s) $5—5.46652+9.88855—5.91252—3.147x 10~ 145—7.126 X 10— 28 :
12
Too(s) | = 0.005079s*—0.027765%40.050225% —0.030035—2.034x 10~ 5
22 $5—5.4665%19.88853—5.91252 —3.147x 10~ 145—7.126x 10~ 28 )
TSQ(S) 3 2
s°—3.8965°4+5.2765—2.929 x 1 958 X 10714
L's5—5.46657+9.88855—5.91252—3.147x 10~ 145—7.126 X 1028 : .
rs®—8.8025%—6.047s%+13.745%4+3.245x 10" 155—2.693x 10~ 3° % 1.895 x 10~167
$5—5.4665119.88855—5.91252—3.147x 10~ 145—7.126x 10— 28 :
Tlg(S) )
_ s2—1.8415—0.2652 —-15
;235‘? - 55—5.46654+9.888s3—5.91252—34147><10—145—7.126><10—283'659 x 10
33(S
0.07654s* —0.41845%40.756852—0.4526542.889 x 10~ 14
L $5—5.4665119.88853 —5.91252—3.147x 10~ 145—7.126x 10~ 28 .

Although the off-diagonal elements of C(sE— A— BF)~!BH are not exactly zero, the
numerator coefficients of all off-diagonal terms are of an order of magnitude O(10~14)
that are attributed to numerical rounding error. Thus, C(sE — A — BF)"'BH is
for practical purposes diagonal and nonsingular. This can also be demonstrated by
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a step response analysis: it has been found that the response to steps or sinusoidal
inputs applied on each separate control channel of the closed-loop system effectively
gives terms on the off-diagonal parts which are about O(1071*). Hence, the above
pair (F, H) is a solution of the RRDP for system (1).

Remark 2. We can also verify that C(sE — A — BF)"'BH in Example 1 is
diagonal as follows.

Let (BH); denote the ith column of BH (i = 1,2,3). We obtain orthogonal ma-
trices W; and W; (i = 1,2, 3) by computing the controllable staircase forms [20] of the
pairs (sE—A—BF, (BH);) (i = 1,2, 3) such that (W;(sE—A—BF)W,,W;(BH);, CWj)
(i =1,2,3) are of the following forms:

4 2
D) _ 51 o) _ g
O — P sO;) — 14
Wi(sE — A — BFYW,: — 11 11 12 12 :
s e { 0 s05) — ) | 12
4 2
M) )
vV ] 4 TH) T%ﬁ H
w5 s o=
TSI TBQ }1
1 2
2 _ 5@ 9@ _ g
50,7 — @ 5075 — @ 4
WolsE — A — BEYW, — 11 11 12 12 ’
2(s W [ 0 s —old] }2
4 2

2 2
Tgl) Tg; 1

v ] M
W2<BH>2=[ 2 } . oM Ty Tl L
2 2
T31 T32 }1
and
4 2
(3) (3) (3) (3)
s0;7 — @ sy — @ 14
Wa(sE — A — BFYWa — 11 11 12 12 ,
3(s e { 0 s0%) — %) | 12
4 2
T 1]
wasms=| %] M ow= (@ x®) {1
B = [T | e O T T
Tf’)l TBQ }1
where
Tgll) 15 ngl) 15
() /ICllz2 = O(107°), o) /ICllz2 = O(107°),
31 1 ||o 31 ] ||q
3
Ty C[l, = O(10-15
(3) /IC1l2 ( )s
TQl
2
and

IrS/el = o), e N/1c) =0o@), XSP/IC] = o).
Therefore, C(sE — A — BF)"!BH is diagonal.
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4. Conclusions. We have presented necessary and sufficient conditions for the

solvability of the RRDP for descriptor systems. A numerical procedure, which is
implementable and reliable, has been provided to verify these solvability conditions
and compute the solution matrices.
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