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RIGIDITY OF PROPER HOLOMORPHIC
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BOUNDED SYMMETRIC DOMAINS
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(Communicated by Steven R. Bell)

Abstract. We prove that any proper holomorphic mapping between two
equidimensional irreducible bounded symmetric domains with rank ≥ 2 is a
biholomorphism. The proof of the main result in this paper will be achieved
by a differential-geometric study of a special class of complex geodesic curves
on the bounded symmetric domains with respect to their Bergman metrics.

1. Introduction

In 1977, Alexander [1] proved the following fundamental result.

Theorem 1.A (Alexander [1]). Any proper holomorphic mapping of the unit ball
in Cn (n ≥ 2) into itself is an automorphism.

Alexander’s theorem has been generalized to several classes of domains. Espe-
cially, there are many important results concerning proper holomorphic mappings
between bounded pseudoconvex domains in Cn with smooth boundary, and these
researches are often heavily based on analytic techniques (e.g., see survey articles
of Bell and Narasimhan [5] and Forstnerič [7]). In this topic, respectively, Bedford
and Bell [2] and Diederich and Fornæss [6] proved the following results.

Theorem 1.B (Bedford and Bell [2]). Let D be a bounded weakly pseudoconvex
domain in Cn (n ≥ 2) with smooth real-analytic boundary. Then any proper holo-
morphic self-mapping of D is an automorphism.

Theorem 1.C (Diederich and Fornæss [6]). If Ω, D ⊂ Cn (n ≥ 2) are smoothly
bounded pseudoconvex domains and Ω is strongly pseudoconvex, then any proper
holomorphic mapping of Ω onto D is a local biholomorphism. Thus, if D is simply
connected, then the mapping is biholomorphic.

Even though the bounded homogeneous domains in Cn are always pseudoconvex,
there are, of course, many such domains (e.g., all bounded symmetric domains of
rank ≥ 2) without smooth boundary. The lack of boundary regularity usually
presents a serious analytical difficulty. In 1984, by using results of Bell [3] and
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Tumanov-Henkin [20], Henkin and Novikov [9] proved the following result (see
Theorem 3.3 in Forstnerič [7] for references).

Theorem 1.D (Henkin and Novikov [9]). Any proper holomorphic self-mapping
on an irreducible bounded symmetric domain of rank ≥ 2 is an automorphism.

The subject of Hermitian symmetric manifolds plays a central role in the domain
of complex differential geometry. Of particular importance is the phenomenon of
rigidity of complex structures of such manifolds (e.g., see Siu [15, 16]). In 1987,
Mok [10, 11] obtained metric rigidity theorems on Hermitian locally symmetric
manifolds, and their proofs are applied to the study of holomorphic mappings be-
tween Hermitian locally symmetric manifolds of the same type, yielding various
rigidity theorems on holomorphic mappings (see Mok [12]). Inspired by the idea in
Mok’s work [10, 11], Tsai [17, 18] obtained some interesting results on this topic.
Following this line, we shall prove the following.

Theorem 1.1. Let Ω1 and Ω2 be two equidimensional bounded symmetric domains.
Assume that Ω1 is irreducible and rank(Ω1) ≥ 2. Then, any proper holomorphic
mapping f from Ω1 to Ω2 is a biholomorphism.

In Theorem 1.1, the assumption “Ω1 is irreducible” cannot be removed. For
example, f(z1, ..., zn) = (z2

1 , ..., z
2
n) is a proper holomorphic mapping from the

polydisc Dn ⊂ Cn into itself but f is not a biholomorphism. If the assumption
“rank(Ω1) ≥ 2” in Theorem 1.1 is removed, then, by Bell [4] and Theorem 1.A,
Theorem 1.1 holds when dim(Ω1) ≥ 2.

We shall now present an outline of the argument in our proof of Theorem 1.1. Let
D be a bounded symmetric domain with Bergman metric. The minimal discs on D
are a special class of complex geodesic curves on D such that their unit holomorphic
tangent vectors realize the minimum of the holomorphic sectional curvature of D.
The proof of Theorem 1.1 will be achieved by a differential-geometric study of the
minimal discs on Ω1 and Ω2. In order to prove that f : Ω1 → Ω2 is a biholomor-
phism, the key step in our proof is to verify that f maps all minimal discs on Ω1

to minimal discs on Ω2. We finish this step by using Bell [4] (to conclude that f is
algebraic) and exploiting the characteristic symmetric submanifolds and holomor-
phic boundary components of two equidimensional bounded symmetric domains.
Then, an elementary proof of Theorem 1.1 can be given.

2. Background and preliminaries

In this section we collect some basic facts about Hermitian symmetric manifolds,
including some results of Mok and Tsai [13], and refer to Mok [12] and Wolf [21]
for further details.

Let Xo be an irreducible Hermitian symmetric space of non-compact type. Fix
a point o ∈ Xo. Write Xo = Go/K as usual, where Go is the identity component of
the isometry group of Xo and K is the isotropy subgroup at o. The Lie algebra go
of Go has a Cartan decomposition go = l + mo with respect to the symmetry at o.
Complexifying mo gives m = mCo ∼= m+ ⊕m− so that m+ is identified with To(Xo),
the holomorphic tangent space at o. Denote by G and g the complexified Lie group
and Lie algebra of Go and go respectively. Write Xc = G/P for the compact
dual of Xo as usual, where P is the parabolic subgroup of G corresponding to the
parabolic subalgebra l

C⊕m−. The map gK → gP from Go/K to G/P embeds Xo

holomorphically as an open subset of Xc. It is called the Borel embedding. Let
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exp denote the exponential map from m+ to G. The Harish-Chandra embedding
theorem tells us that the map τ : m+ → Xc given by τ(m) = exp(m)P is a complex
analytic diffeomorphism of m+ onto a dense open subset of Xc that contains Xo

and τ−1(Xo) is a bounded symmetric domain in m+. Here and henceforth we
identify m+ with CN and the Euclidean coordinates on CN are called Harish-
Chandra coordinates.

Let h be a Cartan subalgebra of l. Then h
C is also a Cartan subalgebra of g.

Denote by ∆ the h
C-root system of g. Two roots are called strongly orthogonal if

and only if φ±ϕ /∈ ∆. We construct a maximal strongly orthogonal set {φ1, ..., φr}
(r = rank of Xo), denoted by Π, of noncompact positive roots according to Harish-
Chandra. Let Λ be a proper subset of Π. Denote by gΛ the derived algebra of
h
C+
∑
φ⊥Π\Λ gφ. Let GΛ be the Lie subgroup of G for gΛ and define GΛ,o = GΛ∩Go.

Let XΛ = GΛ(o) ⊂ Xc and XΛ,o = GΛ,o(o) ⊂ Xo. With these notations we have:

Proposition 2.A (Wolf [21]). XΛ and XΛ,o are totally geodesic Hermitian sym-
metric subspaces of Xc and Xo respectively with rank |Λ|. If |Λ1| = |Λ2|, where
|Λ| denotes the number of elements in it, then XΛ1,o is isomorphic to XΛ2,o via a
holomorphic isometry of Xo.

XΛ,o (resp. XΛ) are called the characteristic symmetric subspaces of Xo (resp.
Xc). In particular, XΛ,o (resp. XΛ) with |Λ| = |Π| − 1 are called the maximal
characteristic symmetric subspaces of Xo (resp. Xc) and all intermediate charac-
teristic symmetric subspaces of Xo (resp. Xc) can be obtained from the maximal
characteristic symmetric subspaces of Xo (resp. Xc) inductively.

We now define the boundary components of Xo ⊂ Xc. Two points of ∂Xo

are said to be in the same equivalence class if one can be connected to the other
by a chain of holomorphic arcs. The equivalence classes are called the boundary
components of Xo. Let’s define the Cayley transformation cΠ \ Λ ∈ G to be

cΠ \ Λ := exp(
π

4

∑
φ∈Π \ Λ

e−φ − eφ).

Then we have

Proposition 2.B (Wolf [21]). The boundary components of Xo ⊂ Xc are just the
sets k ·cΠ \ Λ ·XΛ,o with k ∈ K and Λ ⊂ Π. They are Hermitian symmetric manifolds
of the noncompact type with rank |Λ|. The action of Go ⊂ G is transitive on the
union of those boundary components of the same rank. The topological boundary of
Xo is therefore the disjoint union of boundary orbits under the action of Go.

Thus the maximal boundary components and the maximal characteristic sym-
metric subspaces of a bounded symmetric domain must have the same dimension.
Now we describe the boundary components explicitly.

Proposition 2.C (Wolf [21]). Let Xo ⊂ Xc be the Borel embedding of an irre-
ducible Hermitian symmetric manifold of the noncompact type with rank r. For
each integer m, 0 ≤ m < r, there is just one Go-equivalence class {Xm,o} of bound-
ary component with rank m for Xo ⊂ Xc. X0,o is a single point and Xm,o are given
as follows with Xr,o = Xo:

I. For Xo = DI
p,q (r = p ≤ q), Xm,o = DI

m,q−p+m.
II. For Xo = DII

2r , Xm,o = DII
2m and for Xo = DII

2r+1, Xm,o = DII
2m+1.

III. For Xo = DIII
r , Xm,o = DIII

m .
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IV. For Xo = DIV
n (here r = 2), X1,o is the unit disc in C1.

V. For Xo = DV (here r = 2), X1,o is the unit ball in C5.
VI. For Xo = DV I , (here r = 3), X2,o = DIV

10 and X1,o is the unit disc in C1.

For a proof of Proposition 2.C, see pg. 292 of Wolf [21]. A very elementary
proof by function theory technique for (I) of Proposition 2.C is given in pp. 93-95
of Pyatetskii-Shapiro [14]. Since characteristic symmetric submanifolds are isomor-
phic to boundary components via k · cΠ \ Λ with k ∈ K and Λ ⊂ Π, this explicitly
describes characteristic symmetric submanifolds as well.

The minimal rational curves are precisely those totally geodesic cuves on Xc with
respect to any possible choice of canonical (Kähler-Einstein) metrics on Xc. Via
the Harish-Chandra embedding Xo

∼= Ω ⊂⊂ CN ⊂ Xc we call the intersections of
C with CN (resp. Ω) minimal affine lines (resp. minimal discs). The characteristic
vectors of Xo (resp. Xc) are defined as those nonzero vectors tangent to minimal
discs D = C ∩ Ω (resp. minimal rational curves C). Then the unit characteristic
vectors in Tp(Xo) (resp. Tp(Xc)) are exactly those unit vectors which realize the
minimum (resp. maximum) of the holomorphic sectional curvature of Xo (resp.
Xc) with the canonical metric at p. Let X denote Xo or Xc. Denote by S̃p(X) ⊂
Tp(X) the cone of all characteristic vectors of X at p, and the characteristic variety
Sp(X) ⊂ PTp(X) is defined as the projectivization of S̃p(X) − {0}, which is a
connected complex submanifold of PTp(X). For an irreducible bounded symmetric
domain D (in their standard realizations) in Cn, define S(D) :=

⋃
p∈D Sp(D) ⊂

PT (D). If we identify PT (D) with D × Pn−1 by using the Euclidean coordinates,
then S(D) ∼= D × So(D), i.e., S(D) is parallel on D in the Euclidean sense (see
Proposition 2 on pg. 103 of Mok [12]). The characteristic varieties Sp(X) ⊂ PTp(X)
are given explicitly corresponding to 6 types of irreducible bounded symmetric
domainsX on pg. 249 of Mok [12]. Fix a characteristic vector α ∈ To(X)(X = Xc or
Xo); by Mok [12] we have an orthogonal decomposition To(X) = Cα⊕Hα⊕Nα into
eigenspaces of the Hermitian form Qα(ξ, η) = Rαᾱξη̄ corresponding to eigenvalues
Rαᾱαᾱ, 1

2Rαᾱαᾱ and 0. Then we have Nα = To(XΛ,o) for Λ = Π\α by Mok and
Tsai [13]. Let n(X) = dimCXΛ,o = dimCNα. Then dimCNα is maximum among
non-zero vectors µ ∈ To(X) and we call n(X) the null dimension of X .

Like Tsai [18], our idea in this paper is based on the following two propositions.

Proposition 2.1 (Tsai [18]). Let Ω1 and Ω2 be two bounded symmetric domains
and let f : Ω1 → Ω2 be a proper holomorphic mapping. Suppose that Ω1 is irre-
ducible and rank(Ω1) ≥ 2 . Then we have the following result:

(i) For any characteristic symmetric subspace ΩΛ of Ω1, f(ΩΛ) is contained in
some characteristic symmetric subspace of Ω2.

(ii) rank(Ω1) ≤ rank(Ω2).
(iii) If rank(Ω1) = rank(Ω2), then df(S̃p(Ω1)) ⊂ S̃f(p)(Ω2) for any p ∈ Ω1.
(iv) If rank(Ω1) = rank(Ω2), then Ω2 is irreducible.

Proposition 2.2. Let Ω1 and Ω2 be two irreducible bounded symmetric domains
with rank(Ωi) ≥ 2 (i = 1, 2) and let f : Ω1 → Ω2 be a proper holomorphic mapping.
If f maps any minimal disc of Ω1 into a minimal disc of Ω2, then f is necessarily
a totally geodesic isometric embedding with respect to their Bergman metrics (up to
normalizing constants).
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Remark. The idea in the proof of Proposition 2.2 comes from Mok [10] (see Chapter
6 of Mok [12] for references). The proof of Proposition 2.2 in a special case is given
in Tsai [18] and the proof in Tsai [18] can be easily checked to be valid in our case.

3. Proof of Theorem 1.1

In this section we shall give the proof of Theorem 1.1.
A domain Ω in Cn is said to be circular if and only if it is invariant under the

action of the circle group S1 given by (z1, ..., zn) → (eiθz1, ..., e
iθzn). A circular

domain is said to be complete if it contains the origin.

Proposition 3.1 (Bell [4]). Suppose that Ω1 and Ω2 are bounded complete circular
domains in Cn. If f : Ω1 → Ω2 is a proper holomorphic mapping with f(0) = 0,
then f must be algebraic.

Proposition 3.2. Let Ω1 and Ω2 be two equidimensional bounded symmetric do-
mains in Cn and let f : Ω1 → Ω2 be a proper holomorphic mapping. Suppose Ω1 is
irreducible and rank(Ω1) ≥ 2. Then every minimal disc of Ω1 is mapped by f onto
a minimal disc of Ω2.

Proof. Let Ω1
′ be a maximal characteristic symmetric subspace of Ω1 (note that

rank(Ω1
′) = rank(Ω1) − 1 here). Then, by (i) of Proposition 2.1, there exists

a maximal characteristic symmetric subspace Ω2
′ of Ω2 such that f(Ω1

′) ⊂ Ω2
′.

Since f : Ω1 → Ω2 is algebraic by Proposition 3.1, f : Ω1 → Ω2 extends a holo-
morphic mapping f̃ : Cn − R → Cn for a nowhere dense complex analytic set
R ⊂ Cn. Since f : Ω1 → Ω2 is proper, we have f̃(∂Ω1 ∩ (Cn − R)) ⊂ ∂Ω2. Since
the ramification locus of f̃ is a nowhere dense complex analytic set, there exist
p ∈ ∂Ω1, q = f̃(p) ∈ ∂Ω2 such that f̃ : U(p) → U(q) is a biholomorphism with
f̃(U(p) ∩ ∂Ω1) = U(q) ∩ ∂Ω2, where U(p), U(q) are two small domains in Cn with
p ∈ U(p) and q ∈ U(q). Since the disjoint union of maximal boundary compo-
nents of a bounded symmetric domain Ω ⊂ Cn is dense in the topological boundary
of Ω ⊂ Cn by Propositions 2.B and 2.C, the maximal boundary components of
Ω1 ⊂ Cn and Ω2 ⊂ Cn have the same dimension. Since the maximal bound-
ary components and the maximal characteristic symmetric subspaces of a bounded
symmetric domain have the same dimension by Proposition 2.B, the maximal char-
acteristic symmetric subspaces of Ω1 and Ω2 have the same dimension also. Thus
f |Ω1

′ : Ω1
′ → Ω2

′ is a proper holomorphic mapping with dim Ω1
′ = dim Ω2

′ and
rank(Ω1

′) = rank(Ω1)− 1. By induction on rank, for any characteristic symmetric
subspace B1 of Ω1 with rank(B1) = 1, there exists a characteristic symmetric sub-
space B2 of Ω2 such that f(B1) ⊂ B2 with dimB1 = dimB2. Since f |B1 : B1 → B2

is an algebraic proper holomorphic mapping by Proposition 3.1, there is no com-
plex analytic subvariety in ∂B2, and then B2 must be of rank 1. This means that
B1 and B2 are characteristic symmetric subspaces of Ω1 and Ω2, respectively, such
that dimB1 = dimB2, f(B1) = B2 and rank(B1) = rank(B2) = 1.

(i) If dimB1 = 1, then minimal discs on Ω1 and Ω2 are characteristic symmetric
subspaces of rank 1, and then every minimal disc of Ω1 is mapped by f onto a
minimal disc of Ω2.

(ii) If dimB1 ≥ 2, then f |B1 : B1 → B2 is a biholomorphism by Theorem 1.A.
Since all minimal discs of the unit ball Bn in Cn (n ≥ 2) are Aut(Bn)-orbits of
the unit disc D ↪→ Bn and the isometric group of Ω1 acts transitively on the set of
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minimal discs of Ω1, every minimal disc of Ω1 is mapped by f onto a minimal disc
of Ω2.

The proof of Proposition 3.2 is completed.

Proposition 3.3. Let Ω1 and Ω2 be two equidimensional bounded symmetric do-
mains and let f : Ω1 → Ω2 be a proper holomorphic mapping. Suppose Ω1 is
irreducible and rank(Ω1) ≥ 2. Then we have n(Ω1) ≤ n(Ω2) and Ω2 is irreducible.

Proof. n(Ω1) ≤ n(Ω2) immediately comes from (i) of Proposition 2.1.
Now we shall prove that Ω2 is irreducible. Without loss of generality we assume

that Ω2 = Ω2
′ × Ω2

′′, where Ω2
′ and Ω2

′′ are irreducible. Let R ⊂ Ω1 be the
ramification locus of f . Fix x ∈ Ω1 −R. Then by Proposition 3.2 we have

df(Sx(Ω1)) ⊂ Sf(x)(Ω2) = Sf1(x)(Ω2
′) ∪ Sf2(x)(Ω2

′′) (a disjoint union)

where f(x) = (f1(x), f2(x)) ∈ Ω2
′ × Ω2

′′.
Since Sx(Ω1) is connected, by the continuity argument we have

df(T (Ω1)) ⊂ T (Ω2
′) or df(T (Ω1)) ⊂ T (Ω2

′′).

This is impossible as a proper holomorphic mapping cannot decrease dimension.
We get Proposition 3.3.

We can get Theorem 1.1 by Proposition 2.2 and 3.2 now. But we shall not use
Proposition 2.2 to prove Theorem 1.1 and shall give a more elementary proof here.

Proof of Theorem 1.1. The proof consists of two steps:
Step (1). dimC(So(Ω1)) = dimC(So(Ω2)).
Proof of Step (1). Let R ⊂ Ω1 be the ramification locus of f . For x ∈ Ω1 − R

and y = f(x), f induces an isomorphism σ = [df(x)] : PTx(Ω1) → PTy(Ω2). By
Proposition 3.2 we have σ(Sx(Ω1)) ⊂ Sy(Ω2). On the other hand, Since n(Ω1) ≤
n(Ω2) by Proposition 3.3 and dimC(Sp(X)) + n(X) = dimC(X)− 1 (where p ∈ X
and X = Xc or Xo) by Prop. 4 on pg. 105 of Mok [12], we have dimC(Sx(Ω1)) ≥
dimC(Sy(Ω2)). Since Sy(Ω2) is connected by Proposition 3.3, we have σ(Sx(Ω1)) =
Sy(Ω2). As dimC(Sp(X)) is independent of p ∈ X , we get Step (1).

Step (2). f : Ω1 → Ω2 is a biholomorphism.
Proof of Step (2). Let Jf (z) be the Jacobian determinant of f at z ∈ Ω1 and

let Rf = {z ∈ Ω1 : Jf (z) = 0} be the ramification locus. Evidently, f is a local
biholomorphism at any point of Ω1 −Rf . If Rf 6= ∅, then Rf must be an analytic
set of complex codimension 1.

Now fix a point x ∈ Rf and assume that df(x) : Tx(Ω1) → Tf(x)(Ω2) satisfies
df(x)(Tx(Ω1)) 6= 0. The projective linear map [df(x)] : PTx(Ω1) → PTf(x)(Ω2)
induces a rational map [df(x)]|Sx(Ω1) : Sx(Ω1) → Sf(x)(Ω2) (by Proposition 3.2)
with image lying in a hyperplane section H of Sf(x)(Ω2), H ⊂ but 6= Sf(x)(Ω2),
as Sf(x)(Ω2) is not contained in any hyperplane section of PTf(x)(Ω2). It follows
that [df(x)]|Sx(Ω1) : Sx(Ω1) → Sf(x)(Ω2) must have positive dimensional generic
fibers by Step (1). In particular, there exists a holomorphic one-parameter family
of minimal discs {Cz : z ∈ D} (where D is a disc of the complex plane) passing
through x such that each Cz is mapped by f onto the same minimal disc in Ω2.
This is impossible, as f−1(w) is a finite set for any point w ∈ Ω2.

So df(x) : Tx(Ω1)→ Tf(x)(Ω2) satisfies df(x)(Tx(Ω1)) = 0 for all x ∈ Rf . In this
case, all smooth points of Rf are ramification points of f |Rf : Rf → f(Rf ). This
is impossible, as f |Rf : Rf → f(Rf ) is a proper holomorphic mapping.
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Hence Rf = ∅, so that df(z) : Tz(Ω1) → Tf(z)(Ω2) for any z ∈ Ω1 is an iso-
morphism. Consequently, f is a holomorphic covering map. As any Hermitian
symmetric manifold of non-compact type is simply connected, f : Ω1 → Ω2 is in
fact a biholomorphism. So we have Step (2).

The proof of Theorem 1.1 is completed.
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