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Abstract. Let Mn be the set of n × n complex matrices, and for every
A ∈ Mn, let Sp(A) denote the spectrum of A. For various types of products

A1 ∗ · · · ∗ Ak on Mn, it is shown that a mapping φ : Mn → Mn satisfying
Sp(A1 ∗ · · · ∗ Ak) = Sp(φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ Mn has the
form

X �→ ξS−1XS or A �→ ξS−1XtS

for some invertible S ∈ Mn and scalar ξ. The result covers the special cases
of the usual product A1 ∗ · · · ∗ Ak = A1 · · ·Ak, the Jordan triple product
A1 ∗A2 = A1 ∗A2 ∗A1, and the Jordan product A1 ∗A2 = (A1A2 +A2A1)/2.
Similar results are obtained for Hermitian matrices.

1. Introduction

Let Mn be the set of all n × n complex matrices. In [5], Marcus and Moyls
proved that if a linear mapping φ : Mn → Mn preserves the eigenvalues (counting
multiplicities) of each matrix in Mn, then there exists an invertible matrix S such
that φ has the form

A �→ S−1AS or A �→ S−1AtS,

where At denotes the transpose of A. The assumption on multiplicity is not really
necessary. Let Sp(A) denote the spectrum of A, i.e., the set of all eigenvalues of A
without counting multiplicities. Then by a result of Jafarian and Sourour [3], the
above conclusion holds if Sp(φ(A)) = Sp (A).

The result has been generalized in different directions. For example, in [8], Om-
ladič and P. Šemrl considered spectrum-preserving mappings that are just additive.
In [6] Molnár studied surjective maps φ on bounded linear operators such that

(1.1) Sp (φ(A)φ(B)) = Sp (AB) for all linear operators A, B.
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In particular, such a map on Mn has the form

(1.2) A �→ ξS−1AS or A �→ ξS−1AtS

for some invertible matrix S and ξ ∈ {1,−1}. Continuous differentiable maps on
Mn preserving the spectrum were characterized in [1].

In this paper, we consider different types of products A ∗ B on Mn including
the usual product A ∗ B = AB, the Jordan triple product A ∗ B = ABA, and the
Jordan product A ∗ B = (AB + BA)/2. We obtain a general result, which implies
that a mapping φ : Mn → Mn satisfying

(1.3) Sp (A ∗ B) = Sp (φ(A) ∗ φ(B)) for all A, B ∈ Mn

has the form (1.2) for some invertible S ∈ Mn and scalar ξ. As we do not require
the surjective assumption on φ, our result refines that of Molnár in the finite-
dimensional case.

Note that a characterization of those φ : Mn → Mn such that AB and φ(A)φ(B)
have the same eigenvalues counting multiplicities is given in [7]. A crucial observa-
tion is the following proposition. We include the proof for the sake of completeness.

Proposition 1.1. Suppose φ : Mn → Mn satisfies

tr (AB) = tr (φ(A)φ(B)) for all A, B ∈ M.

Then φ is an invertible linear map.

Proof. For every X = (xij) ∈ Mn, let RX be the n2 row vector

RX = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),

and CX the n2 column vector

CX = (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)t.

Then for any X, Y ∈ Mn,

(1.4) Rφ(X)Cφ(Y ) = tr (φ(X)φ(Y )) = tr (XY ) = RXCY .

Let {Y1, . . . , Yn2} be a basis for Mn. Let Y have columns CY1 , . . . CYn2 , and Z ∈
Mn2 have columns Cφ(Y1), . . . , Cφ(Yn2). Then by (1.4), for any X ∈ Mn we have

Rφ(X)Z = RXY .

Next, we show that Z is invertible. To this end, let {X1, . . . , Xn2} be a basis for Mn,
X ∈ Mn2 with rows RX1 , . . . RXn2 , and W ∈ Mn2 with rows Rφ(X1), . . . , Rφ(Xn2).
Then WZ = XY for the invertible matrices X and Y . So, Z is invertible, and for
any X ∈ Mn,

Rφ(X) = RXYZ−1.

Hence, φ is an invertible linear map. �

The problem of characterizing mappings that preserve the spectra of the product
of matrices is more challenging. Our results will give a characterization of mappings
preserving the spectrum of various products of k matrices X1 ∗ · · · ∗ Xk defined as
follows.

Let k ≥ 2, and let a sequence (j1, . . . , jm) be given so that {j1, . . . , jm} =
{1, . . . , k}. We consider products of the form

X1 ∗ · · · ∗ Xk = Xj1 · · ·Xjm
,
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which cover the usual product A ∗B = AB and the Jordan triple product A ∗B =
ABA. We also consider products of the form

X1 ∗ · · · ∗ Xk = (Xj1 · · ·Xjm
+ Xjm

· · ·Xj1)/2,

which cover the Jordan product A ∗ B = (AB + BA)/2.
In Section 2, we obtain the results on the set Mn of n × n complex matrices.

Using a transfer principle in model-theoretic algebra (see [2]), one sees that the
results also hold for square matrices over an algebraically closed field. In Section
3, similar results are proved for the set Hn of n × n complex Hermitian matrices.
The same results and proofs are valid for n × n real symmetric matrices as well.

2. Results on complex matrices

Theorem 2.1. Suppose k ≥ 2, and let a sequence (j1, . . . , jm) be given so that
{j1, . . . , jm} = {1, . . . , k} and there is jr not equal to js for all s �= r. Consider

X1 ∗ · · · ∗ Xk = Xj1 · · ·Xjm
.

Then a mapping φ : Mn → Mn satisfies

(2.1) Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗ Xk) for all X1, . . . , Xk ∈ Mn

if and only if there exist an invertible matrix S ∈ Mn and a scalar ξ satisfying
ξm = 1 such that

(a) φ has the form A �→ ξS−1AS, or
(b) (jr+1, . . . , jm, j1, . . . , jr−1) = (jr−1, . . . , j1, jm, . . . , jr+1) and φ has the form

A �→ ξS−1AtS.

Note that the assumption that there is jr /∈ {j1, . . . , jr−1, jr+1, . . . , jm} is neces-
sary. For example, if A∗B = ABBA, then mappings φ satisfying Sp (φ(A)∗φ(B)) =
Sp (A ∗B) may not have a nice structure. For instance, φ can send all involutions,
i.e., those matrices X ∈ Mn such that X2 = In, to a fixed involution, and φ(X) = X
for other X.

Proof of Theorem 2.1. It is clear that if (a) or (b) holds, then φ satisfies (2.1).
We need only prove the necessity part. We divide the proof of it into several
assertions. Since Sp (Xj1 · · ·Xjm

) = Sp (Xjr
· · ·Xjm

Xj1 · · ·Xjr−1), we may assume
that j1 /∈ {j2, . . . , jm}. Define

S = {X ∈ Mn : X has n distinct eigenvalues}.
�

Assertion 1. For every A ∈ S, there is a neighborhood of NA such that the re-
striction of φ on NA equals an invertible linear map LA.

Proof. For every A ∈ S, Sp (AIm−1
n ) has n distinct elements. By the continuity of

the eigenvalues, there are neighborhoods NIn
of In and NA of A such that XY m−1

has n distinct eigenvalues for every X ∈ NA and Y ∈ NIn
. By (2.1), φ(X)φ(Y )m−1

has n distinct eigenvalues equal to those of XY m−1. Hence

(2.2) tr (φ(X)φ(Y )m−1) = tr (XY m−1) for every X ∈ NA and Y ∈ NIn
.

As in the proof of Proposition 1.1, for every X = (xij) ∈ Mn, let RX be the n2 row
vector

RX = (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn),
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and CX the n2 column vector

CX = (x11, x21 . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)t.

Then

(2.3) Rφ(X)Cφ(Y )m−1 = tr (φ(X)φ(Y )m−1) = tr (XY m−1) = RXCY m−1

for every X ∈ NA and Y ∈ NIn
.

Now, suppose tr (XZ) = 0 for each Z ∈ {Y m−1 : Y ∈ NIn
}. Then for any

R ∈ Mn,

tr (X(I + tR)m−1) =
m∑

j=0

tj
(

m − 1
j

)
tr (XRj) = 0

for sufficiently small t > 0. We have tr (XR) = 0. It follows that X = 0. So,
{Y m−1 : Y ∈ NIn

} is a spanning set of Mn, and contains a basis {Y m−1
j : 1 ≤

j ≤ n2} for Mn with Yj ∈ NIn
for each j = 1, . . . , n2. Let Y and Z be the

n2 × n2 matrices with columns CY m−1
1

, . . . , CY m−1
n2

and Cφ(Y1)m−1 , . . . , Cφ(Yn2 )m−1

respectively. By (2.2) and (2.3),

Rφ(X)Z = RXY for every X ∈ NA.

We claim that the matrix Z is invertible. To this end take a basis {X1, . . . , Xn2}
of Mn in NA and let X and W be the n2 × n2 matrices with rows RX1 , . . . , RXn2

and Rφ(X1), . . . , Rφ(Xn2 ) respectively. Then WZ = XY for invertible matrices X
and Y . It follows that Z is invertible, and

Rφ(X) = RXXZ−1 for every X ∈ NA.

Hence the restriction of φ to NA is some invertible linear mapping LA. The proof
of Assertion 1 is complete. �

Assertion 2. All the linear maps LA in Assertion 1 are the same, i.e., φ is equal
to an invertible linear mapping L on the dense subset S.

Proof. Note that for any A, B ∈ S, there is a continuous curve f : [0, 1] → S such
that f(0) = A and f(1) = B. Consider the set

C = {t ∈ [0, 1] : φ = LA on an open neighborhood of f(t)}.
Then clearly C is an open subset of [0, 1]. But C is also closed in [0, 1]. Let t0 ∈ C−.
There is an open neighborhood Nf(t0) of f(t0) on which φ is equal to the linear
mapping Lf(t0). Take t ∈ f−1(Nf(t0))∩C. Then on some open neighborhood Nf(t)

of f(t), φ = LA. On the nonempty open set Nf(t0)∩Nf(t), Lf(t0) = φ = LA. Hence
Lf(t0) = LA, and t0 ∈ C. We conclude that C = [0, 1], and LA = LB. The proof of
Assertion 2 is complete. �

Assertion 3. The mapping L in Assertion 2 has the form A �→ ξS−1AS or A �→
ξS−1AtS for some invertible S ∈ Mn and ξ ∈ C with ξm = 1. Moreover, if the
latter case holds, then (j2, . . . , jm) = (jm, . . . , j2).

Proof. By the continuity of L and the spectrum, we have that

Sp (L(X1) ∗ · · · ∗ L(Xk)) = Sp (X1 ∗ · · · ∗ Xk)

for all X1, . . . , Xk ∈ Mn. If A is invertible, then

0 /∈ Sp (A ∗ · · · ∗ A) = Sp (L(A) ∗ · · · ∗ L(A)),
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and hence L(A) is also invertible. It follows that L is nonsingular and preserves
invertible matrices. By [5], there are invertible matrices M, N such that L has the
form

(2.4) A �→ MAN or A �→ MAtN.

We claim that NM is a scalar matrix. Otherwise, there exists an invertible R ∈ Mn

such that RNMR−1 is a direct sum of companion matrices so that its second row
has the form (1, 0, . . . , ∗). Let A = R−1E12R or At = R−1E12R depending on L
have the first or the second form in (2.4), where E12 is the n × n matrix with 1 at
the (1, 2) position and 0 everywhere else. Then Sp (Am) = Sp (A) = {0}. Now

Sp (L(A)) = Sp (M(R−1E12R)N) = Sp (E12RNMR−1).

It follows that 1 ∈ Sp (L(A)) and hence 1 ∈ Sp (L(A)m) whereas Sp (Am) = {0},
which contradicts (2.1).

We have proved that L has the form A �→ ξS−1AS or A �→ ξS−1AtS for some
ξ. Since {ξm} = Sp (L(In)m) = Sp (Im

n ) = {1}, ξm = 1.
Now, suppose L has the form A �→ ξS−1AtS. Replacing L by the mapping

A �→ ξ̄SL(A)S−1, we may assume that L(A) = At for all A ∈ Mn. Then

Sp (Xj1 · · ·Xjm
) = Sp (X1 ∗ · · · ∗ Xk) = Sp (L(X1) ∗ · · · ∗ L(Xk))

= Sp (Xt
j1 · · ·X

t
jm

) = Sp (Xjm
· · ·Xj1) = Sp (Xj1Xjm

· · ·Xj2)

for any X1, . . . , Xk ∈ Mn. We have to show that (j2, . . . , jm) = (jm, . . . , j2).
Suppose it is not true. Let l ≥ 2 be the smallest integer such that jl �= jm+2−l.
Then l ≤ (m + 1)/2. Let Ajl

= A = diag(λ, 1, . . . , 1), and for every k /∈ {1, jl},
let Ak = B = B1 ⊕ In−2, where B1 ∈ M2 is a symmetric invertible matrix with
positive entries. Then

Aj2 · · ·Ajm
= RAr1Bs1Ar2Bs2 · · ·ArtBstRt

for positive integers ri, si, where R = Aj2 · · ·Ajl−1 . Note that

AriBsi =

(
λrib

(si)
11 λrib

(si)
12

b
(si)
21 b

(si)
22

)
⊕ In−2,

for positive numbers b
(si)
11 , b

(si)
12 , b

(si)
21 and b

(s1)
22 . An induction argument shows that

the (1, 2) entry of Ajl
· · ·Ajm−l+2 is a polynomial of degree r1 + · · · + rt in λ.

Similarly, the (1, 2) entry of Ajm−l+2 · · ·Ajl
, is a polynomial of degree r2 + · · ·+ rt.

So, there is λ > 0 such that

Ajl
· · ·Ajm−l+2 �= Ajm−l+2 · · ·Ajl

.

It follows that

Aj2 · · ·Ajm
= RAjl

· · ·Ajm−l+2R
t �= RAjm−l+2 · · ·Ajl

Rt = Ajm
· · ·Aj2 .

Note that if X ∈ Mn is a rank one idempotent matrix, and Sp (A) = Sp (BX), then
tr (AX) = tr (BX). Moreover, if tr (AX) = tr (BX) for all rank one idempotent
X ∈ Mn, then A = B. By these facts, we see that there exists a rank one idempotent
A1 such that

Sp (Ajm
· · ·Aj2Aj1) �= Sp (Aj2 . . . , Ajm

Aj1) = Sp (Aj1Aj2 · · ·Ajm
),

which is a contradiction. Hence, (j2, . . . , jm) = (jm, . . . , j2) as asserted. �
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Assertion 4. The mapping φ equals the invertible linear mapping L in Assertion
3.

Proof. From (2.1), and the continuity of L and the spectrum, we have

Sp (L(A)L(B)m−1) = Sp (ABm−1) = Sp (φ(A)L(B)m−1) for every A, B ∈ Mn.

Since L is surjective,

(2.5) Sp (φ(A)Cm−1) = Sp (L(A)Cm−1) for every A, C ∈ Mn.

Let A ∈ Mn. If C ∈ Mn is a rank one idempotent, φ(A)Cm−1 has at most one
nonzero eigenvalue, which is given by tr (φ(A)C). The same is true for L(A)C. By
(2.5),

tr (φ(A)C) = tr (L(A)C) for every rank one idempotent matrix C ∈ Mn.

It follows that φ(A) = L(A) for all A ∈ Mn. The proof of Assertion 4 is complete.
By Assertions 1–4, the theorem follows. �

Theorem 2.2. Suppose k ≥ 2, and X1 ∗ · · · ∗ Xk = Xj1 · · ·Xjm
+ Xjm

· · ·Xj1 for
a given sequence (j1, . . . , jm) so that {j1, . . . , jm} = {1, . . . , k} and there exists jr

not equal to js for all s �= r. Then a mapping φ : Mn → Mn satisfies

(2.6) Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗ Xk) for all X1, . . . , Xk ∈ Mn

if and only if there exist an invertible matrix S ∈ Mn and a scalar ξ satisfying
ξm = 1 such that φ has the form

A �→ ξS−1AS or A �→ ξS−1AtS.

Proof. The necessity of the result is clear. We consider the sufficiency part. Using
similar arguments as in the proof of Theorem 2.1 (cf. Assertions 1 and 2), we can
prove that φ is equal to a bijective linear mapping L on the dense subset

S = {X ∈ Mn : X has n distinct eigenvalues}.
By continuity of L and the spectrum, we see that

Sp (L(X1) ∗ · · · ∗ L(Xk)) = Sp (X1 ∗ · · · ∗ Xk)

for all X1, . . . , Xk ∈ Mn. Thus, Sp (L(A)m) = Sp (Am) for all A ∈ Mn. Using the
argument in Assertion 3 in the proof of Theorem 2.1, we see that L has the form
A �→ ξS−1AS or A �→ ξS−1AtS. Now, replace φ and L by the mappings A �→
ξ̄Sφ(A)S−1 and A �→ ξ̄SL(A)S−1, respectively; we may assume that L(A) = A for
all A ∈ Mn.

We will show that φ = L on Mn. From (2.2), we have

Sp (Xr−1L(Y )Xm−r + Xm−rL(Y )Xr−1)
= Sp (L(X)r−1L(Y )L(X)m−r + L(X)m−rL(Y )L(X)r−1)
= Sp (Xr−1Y Xm−r + Xm−rY Xr−1)
= Sp (φ(X)r−1φ(Y )φ(X)m−r + φ(X)m−rφ(Y )φ(X)r−1)
= Sp (L(X)r−1φ(Y )L(X)m−r + L(X)m−rφ(Y )L(X)r−1)
= Sp (Xr−1φ(Y )Xm−r + Xm−rφ(Y )Xr−1)

for every X ∈ S and Y ∈ Mn. Since the set of such matrices X is dense in Mn, by
continuity of the spectrum, we see that
(2.7)
Sp (Xr−1φ(Y )Xm−r+Xm−rφ(Y )Xr−1)=Sp (Xr−1L(Y )Xm−r+Xm−rL(Y )Xr−1)
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for any X, Y ∈ Mn. It remains to prove the following.

Assertion. Let A, B ∈ Mn. Then A = B if, for every X ∈ Mn,

Sp (Xr−1AXm−r + Xm−rAXr−1) = Sp (Xr−1BXm−r + Xm−rBXr−1)

Proof. If both r − 1 and m − r are positive, then for any rank one idempotent
X ∈ Mn we have

Sp (2AX) = Sp (XAX + XAX) = Sp (Xr−1AXm−r + Xm−rAXr−1)

= Sp (Xr−1BXm−r + Xm−rBXr−1)=Sp (XBX + XBX) = Sp (2BX).

Since AX and BX have the same spectrum and have rank at most one, we see that

tr (AX) = tr (BX).

It follows that A = B.
Suppose r − 1 or m − r is zero. Then

Sp (AX + XA) = Sp (BX + XB)

for all X ∈ {Zm−1 : Z ∈ Mn}, which is a dense set in Mn. By continuity of the
spectrum, we may assume that the above equality is true for all X ∈ Mn. We
shall assume without loss of generality that A is upper triangular. We claim that
B is also upper triangular. Suppose A = (aij), B = (bij), and for every t ∈ C, let
Xt = E11 + tE12 + · · ·+ tn−1E1n. Then only the first row of AXt + XtA is nonzero
and equals (2a11 ∗ · · · ∗).

Hence Sp (AXt + XtA) = {2a11, 0}. As Sp (BXt + XtB) = Sp (AXt + XtA) =
{2a11, 0}, BXt + XtB has eigenvalues 2a11 and 0 with certain multiplicities. So,

tr (BXt + XtB) ∈ {2a11, . . . , 2(n − 1)a11}.

Now

BXt + XtB

=

⎛
⎜⎜⎜⎝

b11 b11t · · · b11t
n−1

b21 b21t · · · b21t
n−1

...
...

...
bn1 bn1t · · · bn1t

n−1

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

bn + b21t + · · · + bn1t
n−1 ∗ · · · ∗

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠

has diagonal entries

2b11 + b21t + · · · + bn1t
n−1, b21t, . . . , bn1t

n−1,

and hence

tr (BXt + XtB) = 2b11 + 2b21t + · · · + 2bn1t
n−1

is a polynomial in t. It cannot take on a finite number of values only unless it
is a constant. The coefficients, except the constant term, are all zero. Hence
b21 = · · · = bn1 = 0. Similarly, by considering Xt = Eii + tEi,i+1 + · · · + tn−iEin,
we get bi+1,i = · · · = bni = 0 for i = 2, . . . , n−1. The matrix B is upper triangular.
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To show that A = B, we first obtain, by putting X = Eii, aii = bii for every i.
For i < j, we have

AEji + EjiA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1j

...
aij

...
0 · · · aii + ajj · · · aij · · · ain

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Expanding along the jth column, say, we get

det (AEji + EjiA − λIn) = (−λ)n−2(aij − λ)2.

Hence Sp (AEji + EjiA) = {aij , 0}. Note that Sp (BEji + EjiB) = {bij , 0}. So,
aij = bij . �

3. Results on Hermitian matrices

In this section, we study mappings on Hn that have similar preserving properties
as in Section 2. First, we consider products of the form X1 ∗ · · · ∗Xk = Xj1 · · ·Xjm

such that one of the jr appears only once in (j1, . . . , jm). Even though Hn may
not be closed under this product, mappings that preserve the spectrum of the
product are in nice form. If we insist that X1 ∗ · · · ∗ Xm ∈ Hn, then m is odd,
and r = (m + 1)/2 is the only possible value for jr to appear once; in particular,
A ∗ B = AkBAk is the only product we can define on two matrices.

Theorem 3.1. Suppose k ≥ 2, and X1∗· · ·∗Xk = Xj1 · · ·Xjm
for a given sequence

(j1, . . . , jm) so that {j1, . . . , jm} = {1, . . . , k} and there exists jr not equal to js for
all s �= r. Then a mapping φ : Hn → Hn satisfies

(3.1) Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗ Xk) for all X1, . . . , Xk ∈ Hn

if and only if there exist a unitary matrix S ∈ Mn and a scalar ξ satisfying ξm = 1
such that

(a) φ has the form A �→ ξS∗AS, or
(b) (j1, . . . , jr−1, jr+1, . . . , jm) = (jr+1, . . . , jm, j1, . . . , jr−1) and φ has the form

A �→ ξS∗AtS.

Proof. Again, we only need to consider the sufficiency part. Using similar argu-
ments as in the proof of Theorem 2.1 (cf. Assertions 1 and 2), we can prove that φ
is equal to a bijective (real) linear mapping L on the dense subset

S = {X ∈ Hn : X has n distinct eigenvalues},
and that L preserves the invertible matrices in Hn. By [4, Theorem 6], there is an
invertible matrix S ∈ Mn such that L is of the form

A �→ ±S∗AS or A �→ ±S∗AtS.

From the observations

{1} = Sp (Im
n ) = Sp (L(In)m) = Sp ((±S∗S)m)
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and that S∗S is positive definite, we conclude that S∗S = In, i.e., S is unitary.
Hence L has the asserted forms.

Also, we can show that (jr+1, . . . , jm, j1, . . . , jr−1) = (jm, . . . , jr+1, jr−1, . . . , j1)
if L has the form A �→ ξS∗AtS with the help of the following fact.

Two matrices A, B ∈ Mn are equal if Sp (XA) = Sp (XB) for every rank one
X ∈ Hn.

[Note that we use real symmetric matrices in the proof of Assertion 3 in the proof
of Theorem 2.1.] Using the above fact again, we can adapt the proof of Assertion
4 in the proof of Theorem 2.1. �

Theorem 3.2. Suppose k ≥ 2, and X1 ∗ · · · ∗ Xk = Xj1 · · ·Xjm
+ Xjm

· · ·Xj1 for
a given sequence (j1, . . . , jm) so that {j1, . . . , jm} = {1, . . . , k} and there exists jr

not equal to js for all s �= r. Then a mapping φ : Hn → Hn satisfies

(3.2) Sp (φ(X1) ∗ · · · ∗ φ(Xk)) = Sp (X1 ∗ · · · ∗ Xk) for all X1, . . . , Xk ∈ Hn

if and only if there exist a unitary matrix S ∈ Mn and a scalar ξ satisfying ξm = 1
such that φ has the form

A �→ ξS∗AS or A �→ ξS∗AtS.

Proof. We use arguments similar to those in the proof of Theorem 2.2. We need
only replace the Assertion in the proof by the following. �

Assertion. Let A, B ∈ Hn. Then A = B if

Sp (Xr−1AXm−r + Xm−rAXr−1) = Sp (Xr−1BXm−r + Xm−rBXr−1)

for every rank one idempotent X ∈ Hn.

Proof. If both r− 1 and m− r are positive, we can prove the result using a similar
argument as in the proof of Theorem 2.2.

If r − 1 or m − r is zero, then we have

Sp (XA + AX) = Sp (XB + BX) for every rank one idempotent X ∈ Hn.

We shall assume without loss of generality that A is the diagonal matrix
diag (a1, . . . , an). Putting X = E11, we have AE11 + E11A = diag (2a1, 0, . . . , 0),
and hence Sp (AE11 + E11A) = {2a1, 0}. Let B = (bij). Then

BE11 + E11B =

⎛
⎜⎜⎜⎝

2b11 b12 . . . a1n

b12 0 . . . 0
...

...
...

b1n 0 . . . 0

⎞
⎟⎟⎟⎠ .

The characteristic polynomial of BE11 + E11B is

(−λ)n−2(λ2 − 2b11λ − (|b12|2 + · · · + |b1n|2)).

The zeros of the polynomial are 2a1 and 0. Now it is easy to see that the polynomial
cannot have a nonzero double zero. Hence if a1 �= 0, 2a1 is a simple zero. We
have b11 = a1 and b12 = · · · = b1n = 0. It is obvious that if a1 = 0, then
b11 = b12 = · · · = b1n = 0. Similarly, by putting X = Ejj , we conclude that
A = B. �
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