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FACTORIZED BANDED INVERSE PRECONDITIONERS FOR
MATRICES WITH TOEPLITZ STRUCTURE∗
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Abstract. In this paper, we study factorized banded inverse preconditioners for matrices with
Toeplitz structure. We show that if a Toeplitz matrix T has certain off-diagonal decay property, then
the factorized banded inverse preconditioner approximates T−1 accurately, and the spectra of these
preconditioned matrices are clustered around 1. In nonlinear image restoration applications, Toeplitz-
related systems of the form I+T ∗DT are required to solve, where D is a positive nonconstant diagonal
matrix. We construct inverse preconditioners for such matrices. Numerical results show that the
performance of our proposed preconditioners are superior to that of circulant preconditioners. A two-
dimensional nonlinear image restoration example is also presented to demonstrate the effectiveness
of the proposed preconditioner.
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1. Introduction. An m×m matrix Tm is called a Toeplitz matrix if it is constant
along its diagonals, i.e.,

Tm =

⎡
⎢⎢⎢⎢⎢⎢⎣

t0 t−1 · · · t2−m t1−m

t1 t0 t−1 t2−m

... t1 t0
. . .

...

tm−2
. . .

. . . t−1

tm−1 tm−2 · · · t1 t0

⎤
⎥⎥⎥⎥⎥⎥⎦
.(1.1)

If each ti in (1.1) is an n×n matrix, then the corresponding matrix is called a block-
Toeplitz matrix. An mn × mn matrix Tm,n is called a block-Toeplitz matrix with
Toeplitz-blocks (BTTB) if it is an m×m block Toeplitz matrix with each block being
an n×n Toeplitz matrix. In this paper, we consider solving linear systems of equations
with Toeplitz structure

Ax = b(1.2)

by the preconditioned conjugate gradient (PCG) method. Here the matrix A is as-
sumed to be symmetric positive definite and takes one of the following forms: (i) a
Toeplitz matrix Tm; (ii) a Toeplitz-related matrix (Im + T ∗

mDmTm), (iii) a BTTB
matrix Tm,n, or (iv) a BTTB-related matrix (Imn + T ∗

m,nDmnTm,n). Here Ik is the
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identity matrix of size k and Dk is a positive diagonal matrix of size k. Toeplitz
systems arise in a variety of applications in mathematics and engineering; see, for
instance, [8]. Toeplitz-related systems in (ii) and (iv) occur in the nonlinear signal
and image restoration [1, 30].

Strang [22] and Olkin [23] independently proposed the use of circulant matrices
to precondition Toeplitz matrices in conjugate gradient iterations. An n × n matrix
Cn is called a circulant matrix if it is a Toeplitz matrix ([Cn]ij = ci−j) and it satisfies
c−j = cn−j for j = 1, 2, . . . , n− 1. The following are some important properties of a
circulant matrix: (i) all circulant matrices can be diagonalized by the Fourier matrix
[12]; (ii) the multiplication of a circulant matrix to a vector and the solution of a
circulant system can be done in O(n log n) operations respectively by using the Fast
Fourier Transform (FFT); and (iii) the multiplication of a Toeplitz matrix Tn to any
vector y can also be computed by FFT by first embedding Tn into a 2n×2n circulant
matrix. Therefore, the number of operations per iteration of the PCG method is
of order O(n log n). Because of these important properties, circulant preconditioners
have been proved to be successful choices under the assumption that the diagonals of
Tn are the Fourier coefficients of a positive 2π-periodic continuous function; see, for
instance, [8].

Circulant preconditioners have been extended to block systems by a number of re-
searchers. Chan and Olkin [10] and Holmgren and Otto [13] independently proposed
using block-circulant matrices in solving noise reduction problems and hyperbolic
differential equations, respectively. Block-circulant-circulant-block (BCCB) precon-
ditioners for BTTB matrices have been studied and analyzed by Holmgren and Otto
[13], Ku and Kuo [16], Tyrtyshnikov [29], and Chan and Jin [7]. Other precondition-
ers for Toeplitz systems include fast trigonometric transform–based preconditioners
(see [5, 15, 21], for instance), Hartley transform–based preconditioners (see [4], for
instance), and banded preconditioners (see [6, 9, 19, 20], for instance).

Circulant preconditioners are not well suited for linear systems with coefficient
matrices (Im + T ∗

mDmTm) or (Imn + T ∗
m,nDmnTm,n) because the inverse of (Im +

c(T ∗
m)Dmc(Tm)) or the inverse of (Imn + c(T ∗

m,n)Dmnc(Tm,n)) cannot be obtained ef-
ficiently, where c(X) is the circulant or BCCB approximation of X. To reduce the cost
of the preconditioning step, one may use circulant matrices (Im + c(T ∗

m)c(Dm)c(Tm))
and BCCB matrices (Imn + c(T ∗

m,n)c(Dmn)c(Tm,n)) as preconditioners instead. How-
ever, the performance of these preconditioners is not good enough in general; see the
numerical results in section 4.

Recently, approximate sparse inverse preconditioners have been studied by a num-
ber of researchers; see Kolotilina and Yeremin [17], Benzi, Meyer, and Tuma [3],
Tang [25], Chow [11], and Nikishin and Yeremin [18]. The most important property
in factorization sparse inverse preconditioners (FSIP) is that both the construction of
FSIP and the preconditioning steps possess natural parallelism. Such preconditioning
technique is well suited for modern massively parallel computers. In this paper, we
study factorized banded inverse preconditioners (FBIP) for the linear systems with
Toeplitz structure, as mentioned above. We show that if a Toeplitz matrix T has a
certain off-diagonal decay property, then the factorized banded inverse precondition-
ers can approximate T−1 accurately. In particular, the spectra of these preconditioned
matrices are clustered around 1, and therefore the PCG method when applied to solve
these preconditioned systems converges very quickly.

In nonlinear image restoration applications, Toeplitz-related systems of the form
(I +T ∗DT ) are required to solve, where D is a positive nonconstant diagonal matrix.
We discuss the construction of preconditioners for such matrices. Numerical results
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show that the performance of our proposed preconditioners are superior to that of
circulant preconditioners. A two-dimensional nonlinear image restoration example is
also presented to demonstrate the effectiveness of the proposed preconditioners.

The outline of the paper is as follows. In section 2, we briefly introduce the
idea of the construction of factorized sparse inverse preconditioners. In section 3, we
discuss the sparse pattern of Toeplitz and Toeplitz-related matrix. Then we construct
factorized banded inverse preconditioners for these matrices. In section 4, we give
numerical examples to demonstrate the effectiveness of our proposed preconditioners.
In section 5, the application of the FBIP to nonlinear image restorations is presented
in section 5. Finally, concluding remarks are given in section 6.

2. Factorized sparse inverse preconditioners. In this section, we introduce
the general idea of the construction of factorized preconditioners for the linear systems
(1.2) where the coefficient matrix A is symmetric positive definite (SPD). The idea
is to obtain a sparse lower triangular matrix L such that A−1 ≈ LTL. Let S be the
given sparse pattern such that

{(i, i) | i = 1, . . . , n} ⊂ S

and L be such that

L(i, j) = 0 if (i, j) �∈ S.

We briefly introduce the method proposed by Kolotilina and Yeremin [17]. Let A =
GGT be the Cholesky factorization of A. We look for L with sparse pattern S such
that the Frobenius norm

‖I −GL‖F

is minimized. It has been shown that L can be obtained by the following algorithm
[17].

Algorithm: Construction of FSIP.

Step 1. Compute L̂ with sparse pattern S such that

[L̂A]ij = δi,j , (i, j) ∈ S.(2.1)

Step 2. Let D̂ = (diag(L̂))−1 and L = D̂
1
2 L̂.

For factorized sparse inverse preconditioners, we emphasize the following properties:

(i) The computation of L can be done in parallel between rows:

L̂(i,Si)A(Si,Si) = [0, . . . , 0, 1],

where Si = {j | (i, j) ∈ S} and A(I, J) denotes the submatrix of A containing the
rows with index set I and columns with index set J . The preconditioning step has
a natural parallelism since the multiplication of LTL to a residual vector r can be
computed in parallel.

(ii) Given a sparse pattern S, the lower triangular matrix L is well defined for
SPD matrix A since all principal submatrices of A are also SPD matrices.

(iii) All diagonal entries of LALT are one, i.e., diag(LALT ) = I.
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(iv) The matrix L minimizes the functional 1
n trace(L̃AL̃T )/det(L̃AL̃T )

1
n for all

L̃ with sparse pattern S. We note that the quantity 1
n trace(B)/det(B)

1
n is a (non-

standard) condition number of B; see, for instance, [2, p. 341]. Thus when the
PCG method is applied to solve the preconditioned system LTLAx = LTLb, the con-
vergence can be much faster than the CG method for the original system without
preconditioning.

(v) If S = {(i, j) | 1 ≤ j ≤ i ≤ n}, then A−1 = LTL, i.e., L = G−1.

3. Factorized banded inverse preconditioners. We are interested in solving
Toeplitz-related systems Ax = b. In general, the coefficient matrix is dense and
we have to choose the pattern that is sparser than the original matrix. In many
applications, the matrices A have off-diagonal decay property, i.e., |ai,j | decays as
|i − j| increases. We find that the inverse of A has also off-diagonal decay property.
Therefore it is natural to approximate G−1 by some banded lower triangular matrices.
As an example, we depict the magnitude of the entries of a 64×64 Toeplitz matrix with
diagonals given by 1/(1 + j)1.1(j = 0, 1, . . . , 63), its inverse, and the lower triangular
factor of its inverse in Figure 1.

3.1. One-dimensional case. We set the sparse pattern to be banded, i.e.,

S = {(i, j) | max(1, i− k + 1) ≤ j ≤ i ≤ n},

where k is the bandwidth of the factor L. Using (2.1), the ith row of L̂ can be obtained
by solving the linear system

L̂(i, i′ : i)A(i′ : i, i′ : i) = [0, . . . , 0, 1], i = 1, . . . , n,(3.1)

where i′ = max(1, i− k + 1). We note that for each i, the above linear system can be
solved in O(k3) operations, and the cost to obtain the factor L is O(nk3) operations.

In the following, we focus our discussion on the approximate factorization of
Toeplitz matrices. From (3.1) we see that for i ≥ k we have

L̂(i, i− k + 1 : i)A(i− k + 1 : i, i− k + 1 : i) = [0, . . . , 0, 1], i = k, . . . , n.

When A = Tn is an n× n Toeplitz matrix, we have

L̂(i, i− k + 1 : i)Tn(1 : k, 1 : k) = [0, . . . , 0, 1], i = k, . . . , n.

Using displacement structure of Tn, we have

L̂(k + j, j + 1 : k + j) = L̂(k, 1 : k), j = 1, . . . , n− k,

and therefore

L̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̂(k, k) 0

L̂(k, k − 1) L̂(k, k)
...

. . .

L̂(k, 1) . . . L̂(k, k)
. . .

. . .

0 L̂(k, 1) . . . L̂(k, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

[
B(k−1)×(k−1) O(k−1)×(n−k+1)

O(n−k+1)×(k−1) O(n−k+1)×(n−k+1)

]
,
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Fig. 1. The magnitude of the entries of a Toeplitz matrix with diagonal given by 1/(1 + j)1.1

(a), its inverse (b), and the lower triangular factor of its inverse (c).

where Om×n is the m× n zero matrix and B(k−1)×(k−1) is a lower triangular matrix
with (i, j) entry given by

B(k−1)×(k−1)(i, j) = L̂(i, j) − L̂(k, k − i + j), 1 ≤ j ≤ i ≤ k − 1.

Using the recursive inversion algorithm proposed by Trench [26], the inverse of a
Toeplitz matrix of size k × k can be obtained in O(k2) operations. We note that
the algorithm also computes the inverses of all principal submatrices. Thus, the
construction cost of the FBIP for Toeplitz matrices can be reduced from O(nk3) to
O(k2).

In the rest of this subsection, we discuss the spectra of the preconditioned matrices
LTLTn and LTL(In+T ∗

nDnTn), where Tn and Dn are Toeplitz and diagonal matrices,
respectively. We first consider the following off-diagonal decay property.
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Definition 3.1 (see Strohmer [24]). Let A = [ai,j ]i,j∈I be a matrix, where the
index set is I = Z, N, or {1, 2, . . . , N}.

1. A belongs to the space Eγ if

|ai,j | ≤ ce−γ|i−j| for γ > 0

and some constant c > 0.
2. A belongs to the space Qs if

|ai,j | ≤ c(1 + |i− j|)−s for s > 1,

and some constant c > 0.
With these definitions, we have the following results about the off-diagonal decay

of the entries of A−1.
Theorem 3.2 (see Jaffard [14]). Let A : l2(I) → l2(I) be an invertible matrix,

where I = Z,N or {1, 2, . . . , N}.
1. If A ∈ Eγ , then A−1 ∈ Eγ1 for some γ1 ∈ (0, γ).
2. If A ∈ Qs, then A−1 ∈ Qs.

Here we remark that if A is Hermitian and positive definite, then there exists a
constant c > 0 such that for all n > 0, the entries of the inverse of the submatrix
An = A(1 : n, 1 : n) satisfy

A−1
n (i, j) ≤ ce−γ1|i−j| for 1 ≤ i, j ≤ n,(3.2)

or

A−1
n (i, j) ≤ c(1 + |i− j|)−s for 1 ≤ i, j ≤ n.(3.3)

By using the above results, we have the following main theorem of this paper.
Theorem 3.3. Let Tn be a Hermitian Toeplitz matrix with its diagonal entries

satisfying

|tj | ≤ ce−γ|j|(3.4)

for some c > 0 and γ > 0 or

|tj | ≤ c(|j| + 1)−s(3.5)

for some c > 0 and s > 3/2. Then for any given ε > 0, there exists K > 0 such that
for all k > K,

‖L̂− Ĝ‖2 ≤ ε,

where L̂ and Ĝ be the solution of (2.1) with sparse patterns

S = {(i, j) | max(1, i− k + 1) ≤ j ≤ i ≤ n}

for the banded case and

{(i, j) | 1 ≤ j ≤ i ≤ n}

for the complete factorization, respectively.
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Proof. We prove the result by using the inequality

‖L̂− Ĝ‖2 ≤
√
‖L̂− Ĝ‖1‖L̂− Ĝ‖∞.

We first consider the case when (3.4) is satisfied. Now we estimate ‖L̂ − Ĝ‖∞. For
j = 1, . . . , k

‖L̂(j, :) − Ĝ(j, :)‖∞ = 0(3.6)

and for j = k + 1, . . . , n

‖L̂(j, :) − Ĝ(j, :)‖∞ =

j−k∑
i=1

|Ĝ(j, i)| +
j∑

i=j−k+1

|L̂(j, i) − Ĝ(j, i)|.(3.7)

Note that for j = k + 1, . . . , n, we have

j−k∑
i=1

|Ĝ(j, i)| =

j−k∑
i=1

∣∣T−1
j (j, i)

∣∣ ≤ c

j−k∑
i=1

e−γ1(j−i) ≤ c1e
−γ1k,(3.8)

where c1 = ceγ1/(eγ1 − 1). Let Tj be partitioned as

Tj =

[
Tj−k U(j−k)×k

UT
(j−k)×k Tk

]
;

we have

L̂(j, j − k + 1 : j)Tk = [0, . . . , 0, 1]

and

Ĝ(j, 1 : j − k)U(j−k)×k + Ĝ(j, j − k + 1 : j)Tk = [0, . . . , 0, 1].

Therefore

(L̂(j, j − k + 1 : j) − Ĝ(j, j − k + 1 : j))Tk = −Ĝ(j, 1 : j − k)U(j−k)×k.

It follows that

j∑
i=j−k+1

|L̂(j, i) − Ĝ(j, i)| ≤ ‖Ĝ(j, 1 : j − k)‖∞‖U(j−k)×kT
−1
k ‖∞ ≤ c2e

−γ1k(3.9)

for some constant c2 > 0. Substituting (3.8) and (3.9) into (3.7) we get

‖L̂(j, :) − Ĝ(j, :)‖∞ ≤ (c1 + c2)e
−γ1k = c3e

−γ1k, j = k + 1, . . . , n.(3.10)

Combining (3.6) with (3.10) we get

‖L̂− Ĝ‖∞ ≤ c3e
−γ1k.

Similar to (3.8), we have

n∑
i=j+k

|Ĝ(i, j)| ≤ c1e
−γ1k, j = 1, . . . , n− k.(3.11)
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Using (3.11) and (3.9), we have that for j = 1, . . . , n,

‖L̂(:, j) − Ĝ(:, j)‖1 =

min(j+k−1,n)∑
i=j

|L̂(i, j) − Ĝ(i, j)| +
n∑

i=min(j+k−1,n)+1

|Ĝ(i, j)|

≤ kc2e
−γ1k + c1e

−γ1k = (c2k + c1)e
−γ1k.

Thus, ‖L̂− Ĝ‖1 ≤ (c2k + c1)e
−γ1k. It follows that

‖L̂− Ĝ‖2 ≤
√
‖L̂− Ĝ‖1‖L̂− Ĝ‖∞ ≤

√
c3(c2k + c1)e

−γ1k.

We now prove the result for the case when (3.5) is satisfied.
Similarly, there exists a constant c1 > 0 such that

j−k∑
i=1

|Ĝ(j, i)| ≤ c1(1 + k)−s+1 and

n∑
i=j+k

|Ĝ(i, j)| ≤ c1(1 + k)−s+1.

Furthermore, there exists a constant c2 > 0 such that

‖L̂− Ĝ‖∞ ≤ (c1 + c2)(1 + k)−s+1

and

‖L̂− Ĝ‖1 ≤ (c1 + kc2)(1 + k)−s+1 ≤ (c1 + c2)(1 + k)−s+2.

It follows that

‖L̂− Ĝ‖2 ≤ (c1 + c2)(1 + k)−s+3/2.

Hence the theorem is proved.
Corollary 3.4. Let Tn be a Toeplitz matrix with its diagonal entries satisfying

(3.4) or (3.5). Let D = diag(d1, . . . , dn) with 0 < di ≤ d for i = 1, 2, . . . , n, where d
is a constant. Let

An = In + T ∗
nDnTn.

Then for any given ε > 0, there exists K > 0 such that for all k > K,

‖L̂− Ĝ‖2 ≤ ε,

where L̂ and Ĝ be the solution of (2.1) with A = An and sparse patterns

S = {(i, j) | max(1, i− k + 1) ≤ j ≤ i ≤ n}

for the banded case and

{(i, j) | 1 ≤ j ≤ i ≤ n}

for the complete factorization respectively.
Proof. We first prove that if (3.5) holds, then the entries An = (In + T ∗

nDnTn)
have off-diagonal decay property. For the sake of simplicity, all constants are denoted
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by c in the proof. Suppose that l = j − i ≥ 3; then the (i, j)-entry of T ∗
nDnTn which

is given by
∑n

k=1 tk−idktk−j satisfies

∣∣∣∣∣
n∑

k=1

tk−idktk−j

∣∣∣∣∣
≤

n∑
k=1

c

(|k − i| + 1)s(|k − j| + 1)s

=

i+1∑
k=1

c

(|k − i| + 1)s(|k − j| + 1)s
+

n∑
k=j−1

c

(|k − i| + 1)s(|k − j| + 1)s

+

j−2∑
k=i+2

c

(|k − i| + 1)s(|k − j| + 1)s

≤
i+1∑
k=1

c

(ls|k − i| + 1)s
+

n∑
k=j−1

c

ls(|k − j| + 1)s

+

j−2∑
k=i+2

c

(|k − i| + 1)s(|k − j| + 1)s

≤ c

ls
+

l−2∑
k′=2

c

(k′ + 1)s(l − k′ + 1)s

≤ c

ls
+

l−2∑
k′=2

∫ 1

0

c

(k′ + x)s(l − k′ − x + 1)s
dx

=
c

ls
+

l−2∑
k′=2

∫ k′+1

k′

c

xs(l − x + 1)s
dx

=
c

ls
+

∫ l−1

2

c

xs(l − x + 1)s
dx

=
c

ls
+

c

(l + 1)s

∫ l−1

2

(
1

x
+

1

l − x + 1

)s

dx.

Obviously, for x ∈ [2, l − 1], 1
x + 1

l−x+1 ≤ 1. Note that s > 3/2, we have

∫ l−1

2

(
1

x
+

1

l − x + 1

)s

dx≤
∫ l−1

2

(
1

x
+

1

l − x + 1

)3/2

dx=2
√

2

(
l + 1

l − 1

)1/2
l − 3

l + 1
<4.

It follows that the entries of T ∗
nDnTn also satisfy (3.5):

|[T ∗
nDnTn]i,j | = O(|i− j|−s) = O((|i− j| + 1)−s).

Similarly, if the entries of Tn satisfy (3.4), then

|[T ∗
nDnTn]i,j | ≤ ce−λ|i−j| + c|i− j|e−λ|i−j| ≤ ce−λ1|i−j|,

where 0 < λ1 < λ. The rest of the proof is similar to the proof of Theorem 3.3 and
therefore we omit it.
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From Theorem 3.3 and Corollary 3.4 we see that if the coefficients of a Hermitian
positive definite Toeplitz matrix satisfy (3.4) or (3.5), then for any given ε > 0, there
exists a K such that for all k > K, all eigenvalues of the preconditioned matrix
LTLTn (LTL(In + T ∗

nDnTn) lie in the interval [1 − ε, 1 + ε]. It follows that the PCG
method, when applied to solving the preconditioned systems LTLTnx = LTLb and
LTL(In + T ∗

nDnTn)x = LTLb, converges very quickly; see the numerical results in
section 4.

3.2. Two-dimensional case. In this subsection, we consider the sparse pattern
for block matrices Am,n. Let

Am,n =

⎡
⎢⎢⎢⎣

A(1,1) A(1,2) · · · A(1,m)

A(2,1) A(2,2) · · · A(2,m)

...
... · · ·

...
A(m,1) A(m,2) · · · A(m,m)

⎤
⎥⎥⎥⎦ ,

where the n× n blocks A(i,j) are defined by

[A(i,j)]k,l = a
(i,j)
k,l , k, l = 1, 2, . . . , n.

We assume that the matrix Am,n has off-diagonal decay property, i.e., ‖A(i,j)‖F decays
as |i− j| increases, where ‖ · ‖F denotes the Frobenius norm and each block A(i,j) has
also the off-diagonal decay property. In this case, we set the factor of the factorized
inverse preconditioner to be triangular banded block matrix with each block being a
banded matrix. For example,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+ +

+ +
+ +

+ + +
+ + + + +

+ + + + +
+ + + +

+ + +
+ + + + +

+ + + + +
+ + + +

+ + +
+ + + + +

+ + + + +
+ + + +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(3.12)

Let p and q be the half bandwidth of each block and the bandwidth of the banded
block matrix respectively (for the matrix given by (3.12), m = n = 4 and p = q = 2).
The sparse pattern is set to

S = ∪mn
i=1Si,
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where Si is the index set corresponding to the ith row. Let

i = i0n + i1 with 0 ≤ i0 ≤ m− 1 and 1 ≤ i1 ≤ n.

Let

i′0 = min(i0, q − 1), i′1 = max(i1 − p + 1, 1), and i′′1 = min(i1 + p− 1, n),

we define

Si = {(i, j) | j = i0n + i′1 : i} ∪
(
∪i′0
i′=1{(i, j) | j = (i0 − i′)n + i′1 : (i0 − i′)n + i′′1)}

)
.

It is easy to see that the number of nonzero entries in each row of L is not greater
than

p + (q − 1)(2p− 1) = 2pq − p− q + 1.

Thus, the total cost of computing the factor L is bounded by O(mn(2pq−p−q+1)3) =
O(mnp3q3) and the storage requirement is O(mnpq).

Similar to the one-dimensional case, if A is a BTTB matrix Tm,n, then the factor
L is a near BTTB lower triangular matrix and the cost of constructing L only depends
on p, q (independent of m and n). More precisely, we have

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(1,1) 0
L(2,1) L(2,2)

· · · · · · . . .

L(q,1) L(q,2) · · · L(q,q)

. . .
. . .

. . .
. . .

0 L(q,1) L(q,2) · · · L(q,q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the blocks L(i,j) are near-Toeplitz matrices (n′ = n−p+2 and n′′ = n′−p+1):

L(i,i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
(i,i)
1,1 0

l
(i,i)
2,1 l

(i,i)
2,2

· · · · · · . . .

l
(i,i)
p,1 l

(i,i)
p,2 · · · l

(i,i)
p,p

. . .
. . .

. . .
. . .

l
(i,i)
p,1 l

(i,i)
p,2 · · · l

(i,i)
p,p

l
(i,i)
n′,n′′ l

(i,i)
n′,n′′+1 · · · l

(i,i)
n′,n′

. . .
. . .

. . .
. . .

0 l
(i,i)
n,n′−1 l

(i,i)
n,n′ · · · l

(i,i)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



FBIP FOR TOEPLITZ-RELATED MATRICES 1863

Table 1

Construction cost and storage requirement of factorized banded inverse preconditioners.

1D Case (bandwidth k) 2D Case (bandwidth p, q)

Toeplitz General BTTB General

Cost O(k2) O(nk3) O(p4q4) O(mnp3q3)

Storage O(k2) O(nk) O(p2q2) O(mnpq)

and for i > j

L(i,j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l
(i,j)
1,1 l

(i,j)
1,2 · · · l

(i,j)
1,p 0

l
(i,j)
2,1 l

(i,j)
2,2 · · · l

(i,j)
2,p l

(i,j)
2,p+1

...
... · · · · · · . . .

l
(i,j)
p,1 l

(i,j)
p,2 · · · l

(i,j)
p,p l

(i,j)
p,p+1 · · · l

(i,j)
p,2p−1

. . .
. . .

. . .
. . .

. . .
. . .

l
(i,j)
p,1 l

(i,j)
p,2 · · · l

(i,j)
p,p l

(i,j)
p,p+1 · · · l

(i,j)
p,2p−1

l
(i,j)
n′,n′′ l

(i,j)
n′,n′′+1 · · · l

(i,j)
n′,n′ · · · l

(i,j)
n′,n

. . .
. . .

. . .
. . .

...

0 l
(i,j)
n,n′−1 l

(i,j)
n,n′ · · · l

(i,j)
n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we need to solve (2pq − p − q + 1) linear systems of size less than or equal to
(2pq−p−q+1). Therefore the total cost is O((2pq−p−q+1)4) = O(p4q4). Moreover,
the storage requirement is O(p2q2).

We end this section by giving a summary of the construction cost and the storage
requirement in Table 1.

4. Numerical results. In this section, numerical examples are given to illus-
trate the efficiency of PCG methods with FBIP. We compare the performance of the
FBIP with that of Chan’s circulant preconditioners. We test linear systems Ax = b
for A to be (i) a Toeplitz matrix Tm, (ii) a Toeplitz-related matrix (Im + T ∗

mDmTm),
(iii) a BTTB matrix Tm,n, and (iv) a BTTB-related matrix (Imn + T ∗

m,nDmnTm,n).
In our examples, the right-hand sides are random vectors. In all PCG methods, we
use the zero vector as an initial guess, and the stopping criterion is

‖r(j)‖2/‖r(0)‖2 ≤ 10−7,

where r(j) is the residual vector of the jth iteration. In Tables 2–5, the symbol I de-
notes the PCG method without a preconditioner, the symbol C denotes the method
with circulant preconditioner or BCCB preconditioner proposed by Chan, and the
symbols FIk and FIp,q denote the FBIP introduced in section 3. The symbols **
denote that the number of iterations exceeds 1000. We note that Chan’s circulant
preconditioner can be defined for all square matrices. In the (I + T ∗DT ) case, the
circulant preconditioner is given by (I + c(T ∗)c(D)c(T )). For Toeplitz systems and
BTTB systems, the numbers of iterations for the PCG methods with different pre-
conditioners are shown in Tables 2–5.

For Toeplitz-related systems (In+T ∗
nDnTn)x = b, we generate the diagonal entries

of the diagonal matrix D randomly using the formula 100 ∗ (1 + 3 ∗ rand(n, 1))2.
(Here we use the Matlab representation.) We remark that it is too expensive to
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Table 2

Number of iterations of the PCG methods for solving Toeplitz systems. The entries of the
Toeplitz matrices are defined by tj = 1/(|j| + 1)1.1 (left), tj = 1/(|j| + 1)1.6 (middle), and tj =
exp(−0.5j2) (right), respectively.

n I C FI25 I C FI25 I C FI25

64 20 6 5 17 6 4 55 8 2

128 24 7 5 18 6 4 65 7 2

256 28 7 6 19 6 5 66 7 2

512 30 7 6 19 6 5 66 6 2

1024 33 7 7 19 6 5 67 6 2

2048 35 7 7 19 6 5 67 6 2

4096 36 7 8 19 6 5 67 6 2

Table 3

Number of iterations of the PCG methods for BTTB systems. The entries of the BTTB matri-

ces are given by t
(u−v)
j = 1/((|u−v|+1)1.1+(|j|+1)1.1) (left) and t

(u−v)
j = exp(−0.5((u−v)2+j2))

(right), respectively.

n I C FI4,4 FI5,5 FI6,6 I C FI4,4 FI5,5 FI6,6

16 52 16 8 8 7 236 31 16 11 8

32 89 19 9 9 8 471 28 20 13 9

64 131 21 12 11 10 532 25 21 14 10

128 215 25 17 14 13 556 23 21 14 10

compute the matrix T ∗
nDnTn explicitly. In our implementation, we set the bandwidth

of the FBIP to be k, and we first approximate the matrix Tn by a banded Toeplitz
matrix T̂n with bandwidth 2(2k − 1) − 1 = 4k − 3 and then construct the FBIP for
(In + T̂ ∗

nDnT̂n). It is easy to check that by exploiting the banded structure of T̂n,
the computation of T̂ ∗

nDnT̂n can be done in O(nk2) operations (recall that the cost
for constructing the FBIP is O(nk3)). For the two-dimensional case, we first obtain
an approximation of T ∗

m,nDmnTm,n. Let p and q be the bandwidth parameters of the
FBIP. Then we approximate Tm,n by a banded-block-Toeplitz-banded-Toeplitz-block

matrix T̂m,n with half bandwidths 2p− 1 and 2q− 1, respectively, and then construct

the FBIP for (Imn + T̂ ∗
m,nDmnT̂m,n) by using the algorithm introduced in subsection

3.2. By exploiting the banded structure of T̂m,n, we can obtain T̂ ∗
m,nDmnT̂m,n in

O(mnp2q2) operations. (Note that the cost for constructing the FBIP is O(mnp3q3).)
The numbers of iterations for different preconditioners are shown in Tables 4 and 5.

From Tables 2 through 5 we see that the FBIP are more efficient than circulant
preconditioners, especially for Toeplitz-related and BTTB-related systems. Moreover,
the multiplication of the FBIP to any vector requires O(nk) and O(nmpq) operations
for one-dimensional and two-dimensional problems, respectively. (Recall that for cir-
culant preconditioners, the costs are O(n log n) and O(mn log(mn)), respectively.)

5. Application to nonlinear image restorations. In the literature of image
restoration, a blurred image is often modeled as the linear convolution of an origi-
nal image with the point spread function of the blur. However, in practice, image
formation systems or image sensors usually incorporate a built-in nonlinearity. For
instance, the nonlinearity is introduced in the transformation of light intensity to the
output units of the imaging system such as current intensity in photoelectric systems
and photographic films. The modeling of sensor nonlinearities was first studied by
Andrews and Hunt [1]. In matrix-vector notation, the general space-invariant imaging



FBIP FOR TOEPLITZ-RELATED MATRICES 1865

Table 4

Number of iterations of the PCG methods for solving Toeplitz-related systems. The entries
of the Toeplitz matrices are defined by tj = 1/(|j| + 1)1.1 (left) and tj = exp(−0.5j2) (right),
respectively.

n I C FI25 I C FI25

64 62 30 7 148 33 2

128 93 32 8 283 34 2

256 138 35 9 423 38 2

512 189 34 10 522 38 2

1024 238 35 11 568 39 2

2048 288 34 13 586 39 2

4096 336 35 15 608 42 2

Table 5

Number of iterations of the PCG methods for solving BTTB-related systems. The entries of

the BTTB matrices are given by t
(u−v)
j = 1/((|u − v| + 1)1.1 + (|j| + 1)1.1) (left) and t

(u−v)
j =

exp(−0.5((u− v)2 + j2)) (right), respectively.

n I C FI4,4 FI5,5 FI6,6 I C FI4,4 FI5,5 FI6,6

16 340 72 21 17 16 745 124 46 26 17

32 983 100 28 25 22 ** 167 55 30 20

64 ** 150 36 34 28 ** 215 58 32 21

128 ** 206 61 50 41 ** 272 59 32 21

system with additive noise can be represented by the nonlinear equation

g = s(Af) + η,(5.1)

where g, f , and η represent the observed image, the original image, and the noise vec-
tors, respectively. Here s(·) denotes a point nonlinearity and the matrix A is a BTTB
matrix. In the literature, different nonlinear image restoration algorithms have been
proposed and analyzed. For instance, Andrews and Hunt [1] proposed using Taylor
series expansion about the mean value of the observed image to approximate (5.1)
to a linear equation. An approximate filter for linear image restoration can then be
derived. Trussell and Hunt [28] applied the maximum a posteriori probability esti-
mation scheme in nonlinear image restoration algorithms. This approach results in
an iterative solution algorithm whose computational complexity is very large. Tekalp
and Pavlović [27] also proposed to transform the noisy and blurred image into “the
exposure domain” using the inverse of the nonlinear sensor characteristics. A linear
minimum mean square error deconvolution filter was derived by using the linear con-
volutional model in the presence of multiplicative noise in the exposure domain. In
this paper, we consider solving nonlinear least squares problems with regularization,

min
f

‖g − s(Af)‖2
2 + μ‖f‖2

2,(5.2)

to restore the original image. Here ‖ · ‖2 denotes the usual Euclidean norm and μ is
a small positive number controlling the degree of regularity of the solution.

In [30], Zervakis and Venetsanopoulos considered using the Gauss–Newton method
for the nonlinear least squares problem (5.2). Given an initial guess f (0), for j =
0, 1, . . . , we solve the linear least squares problem

f (j+1) = arg min
f

{‖g − s(Af̃) −D(j)
s A(f − f (j))‖2

2 + μ‖f‖2
2}(5.3)
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until ‖f (j+1) − f(μ)‖2 is small enough, where f(μ) is the solution of (5.2) with regu-

larization parameter μ. Here D
(j)
s is a diagonal matrix with diagonal entries

[D(j)
s ]kk =

∂s

∂x

∣∣∣x=
∑

i Akif
(j)
i

.

We remark that under the practical assumption on the nonlinear function s(·), the

diagonal entries of D
(j)
s are always positive values; see Andrews and Hunt [1]. The

least squares problem (5.3) is equivalent to

[μI + A∗(D(j)
s )2A](f − f (j)) = A∗D(j)

s [g − s(Af (j))] − μf,

i.e.,

[μI + A∗(D(j)
s )2A]f = A∗D(j)

s [g − s(Af (j)) + D(j)
s Af (j)].(5.4)

In the Gauss–Newton method, it is important to choose a good initial guess. We
propose the following algorithm to compute f (0):

(1) Solve g = s(ĝ) (in many practical applications, s−1 can be easily obtained).
(2) Choose suitable parameter μ0 and solve

(μ0I + A∗A)f (0) = A∗ĝ.(5.5)

Our numerical tests show that our initial guess f (0) is quite close to the real
solution of the nonlinear least squares problems (5.2) and therefore the Gauss–Newton
method converges very fast. (In fact, only one iteration is required in solving the
examples tested in the next subsection.) We see that in computing the initial guess
and in each Gauss–Newton iteration, we require to solve a BTTB-related systems

with diagonal matrix D = I (cf. (5.5)) and D = (D
(j)
s )2 (cf. (5.4)), respectively. In

the PCG methods for solving the system (5.5), we use the zero vector as the initial
guess, and the stopping criteria is ‖r(i)‖2/‖A∗ĝ‖2 < 10−7, where r(i) is the residual
after i iterations. In the PCG methods for solving the system (5.4), we use f (j) as
initial guess and the stopping criteria is

‖r(i)‖2

‖A∗D
(j)
s [g − s(Af (j)) + D

(j)
s Af (j)]‖2

< 10−7,

where r(i) is the residual after the ith iterations.

5.1. An example. We test two 128 × 128 images: Bridge (Figure 2(a)) and
Cameraman (Figure 2(b)). The pointwise nonlinearity employed is of the logarithmic
form

s(x) = 30 log(x)

(tested in [30]), and the blurring function is given by

a(x, y) = exp[−0.5 ∗ (x2 + y2)].

We construct the observed image by forming the vector g = s(Af) + η, where f
is a vector formed by row ordering the original image. In our tests, the noise η is
set to Gaussian white noise with noise-to-signal ratio of 50 dB, 40 dB, 30 dB, and
20 dB, respectively. Observed images for noise-to-signal ratio of 40 dB are shown in



FBIP FOR TOEPLITZ-RELATED MATRICES 1867

Original Images

(a) (b)
Observed Images

(c) (d)
Initial Guess Images

(e) (f)
Restored Images

(g) (h)

Fig. 2. Original, observed, initial guess, and restored images of Bridge (left) and Cameraman
(right).
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Table 6

Number of iterations for solving (5.5).

Bridge Cameraman

I C FI4,4 FI5,5 I C FI4,4 FI5,5

50 dB 242 79 25 14 120 49 13 8

40 dB 106 46 12 7 75 33 8 5

30 dB 56 27 6 5 43 21 6 5

20 dB 36 19 6 5 28 15 6 4

Table 7

Number of iterations for solving (5.4).

Bridge Cameraman

I C FI4,4 FI5,5 I C FI4,4 FI5,5

50 dB 389 93 17 11 1081 133 30 17

40 dB 199 72 13 8 666 128 27 15

30 dB 111 53 8 5 401 126 23 13

20 dB 82 46 6 4 293 130 20 12

Figure 2(c) and Figure 2(d), respectively. In Figure 2(e) and Figure 2(f), we present
our initial guesses for the restored images, i.e., the solutions of (5.5). The optimal
regularization parameter μ0 is chosen such that it minimizes the relative error of
f (0)(μ0), i.e., it minimizes

R0 =
‖f − f (0)(μ0)‖2

‖f‖2
.

The restored images are shown in Figure 2(g) and Figure 2(h). Again, the optimal
regularization parameter μ is chosen such that

R1 =
‖f − f(μ)‖2

‖f‖2

is minimized, where f(μ) is the solution of (5.4). According to the figures, it is clear
that the quality of restored images is visually better than that of initial guess images.
The R0 for Bridge and Cameraman images are 0.0532 and 0.0548, respectively, while
the R1 are 0.0512 and 0.0504, respectively. Here the optimal regularization parameters
for the restoration of the bridge image are 2 × 10−3 and 7.5 × 10−5 for R0 and R1,
respectively. Also the optimal regularization parameters for the restoration of the
cameraman image are 5 × 10−3 and 3 × 10−4 for R0 and R1, respectively.

The number of iterations for the PCG methods with different preconditioners to
solving systems (5.5) and (5.4) are listed in Tables 6 and 7, respectively. We see that
the PCG method with FBIP converges much faster than the method with circulant
preconditioner, especially when the methods are applied to solving (5.4).

6. Concluding remarks. We have considered the solution of Toeplitz-related
systems, including one-dimensional and two-dimensional cases. The FBIP are con-
structed based on the off-diagonal decay property of the concerned matrices. Numeri-
cal results show that our new preconditioners are superior to circulant preconditioners.

In the example of nonlinear image restorations, the Gauss–Newton method con-
verges in two iterations to restore the image. We use the block-circulant preconditioner
in the first iteration and FBIP in the second iteration. Therefore, the construction of
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the proposed preconditioner is relatively inexpensive. One issue that arises in some
nonlinear optimization problems is that the coefficient matrix changes at each outer
iteration (e.g., the matrix D, which is related to certain constraints, changes at each
outer iteration). Thus a new preconditioner should be computed. A possible fu-
ture research work is to develop a scheme such that the factorized banded inverse
preconditioner can be easily updated if the coefficient matrix changes at each outer
iteration.

REFERENCES

[1] H. Andrews and B. Hunt, Digital Image Restoration, Prentice–Hall, Englewood Cliffs, NJ,
1977.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.

[3] M. Benzi, C. D. Meyer, and M. T

◦
uma, A sparse approximate inverse preconditioner for the

conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.
[4] D. Bini and P. Favati, On a matrix algebra related to the discrete Hartley transform, SIAM

J. Matrix Anal. Appl., 14 (1993), pp. 500–507.
[5] E. Boman and I. Koltracht, Fast transform based preconditioners for Toeplitz equations,

SIAM J. Matrix Anal. Appl., 16 (1995), pp. 628–645.
[6] R. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions,

IMA J. Numer. Anal., 11 (1991), pp. 333–345.
[7] R. H. Chan and X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci.

Comput., 13 (1992), pp. 1218–1235.
[8] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38

(1996), pp. 427–482.
[9] R. Chan and P. Tang, Constrained minimax approximation and optimal preconditioners for

Toeplitz systems, Numer. Algorithms, 5 (1993), pp. 353–364.
[10] T. Chan and J. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algorithms, 6

(1993), pp. 89–101.
[11] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners,

SIAM J. Sci. Comput., 21 (2000), pp. 1804–1822.
[12] P. Davis, Circulant Matrices, John Wiley & Sons, New York, 1979.
[13] S. Holmgren and K. Otto, Iterative solution methods and preconditioners for block-

tridiagonal systems of equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 863–886.
[14] S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques appli-

cations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), pp. 461–476.
[15] T. Kailath and V. Olshevsky, Displacement structure approach to discrete-trigonometric-

transform based preconditioners of G. Strang type and of T. Chan type, Calcolo, 33 (1996),
pp. 191–208.

[16] T. Ku and C. C. Jay Kuo, On the spectrum of a family of preconditioned block Toeplitz
matrices, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 948–966.

[17] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate inverse precondition-
ings I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[18] A. Nikishin and A. Yu. Yeremin, Prefiltration technique via aggregation for constructing low-
density high-quality factorized sparse approximate inverse preconditionings, Numer. Linear
Algebra Appl., 10 (2003), pp. 235–246.

[19] D. Noutsos and P. Vassalos, New band Toeplitz preconditioners for ill-conditioned symmetric
positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 728–743.

[20] S. Serra, Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptot-
ically ill-conditioned positive definite Toeplitz systems, Math. Comp., 66 (1997), pp. 651–
665.

[21] S. Serra, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer.
Math., 82 (1999), pp. 117–142.

[22] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171–
176.

[23] J. Olkin, Linear and Nonlinear Deconvolution Problems, Ph.D. thesis, Rice University, Hous-
ton, TX, 1986.

[24] T. Strohmer, Four short stories about Toeplitz matrix calculations, Linear Algebra Appl.,
343/344 (2002), pp. 321–344.



1870 FU-RONG LIN, MICHAEL K. NG, AND WAI-KI CHING

[25] W.-P. Tang, Toward an effective sparse approximate inverse preconditioner, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 970–986.

[26] W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl.
Math., 12 (1964), pp. 515–522.
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