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EFFICIENT MINIMIZATION METHODS OF MIXED �2-�1
AND �1-�1 NORMS FOR IMAGE RESTORATION∗

HAOYING FU† , MICHAEL K. NG‡ , MILA NIKOLOVA§ , AND JESSE L. BARLOW†

Abstract. Image restoration problems are often solved by finding the minimizer of a suitable
objective function. Usually this function consists of a data-fitting term and a regularization term. For
the least squares solution, both the data-fitting and the regularization terms are in the �2 norm. In
this paper, we consider the least absolute deviation (LAD) solution and the least mixed norm (LMN)
solution. For the LAD solution, both the data-fitting and the regularization terms are in the �1 norm.
For the LMN solution, the regularization term is in the �1 norm but the data-fitting term is in the
�2 norm. Since images often have nonnegative intensity values, the proposed algorithms provide
the option of taking into account the nonnegativity constraint. The LMN and LAD solutions are
formulated as the solution to a linear or quadratic programming problem which is solved by interior
point methods. At each iteration of the interior point method, a structured linear system must be
solved. The preconditioned conjugate gradient method with factorized sparse inverse preconditioners
is employed to solve such structured inner systems. Experimental results are used to demonstrate the
effectiveness of our approach. We also show the quality of the restored images, using the minimization
of mixed �2-�1 and �1-�1 norms, is better than that using only the �2 norm.
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1. Introduction. The problem of image restoration is considered. The observed
image is the convolution of a shift invariant blurring function with the true image plus
some additive noise. Let f(x, y) be the original scene, g(x, y) the observed scene, and
h(x, y) the blurring function. The image formation process can be modeled as follows:

g(x, y) = h(x, y) � f(x, y) + w(x, y).(1.1)

Here w(x, y) is the additive noise and � denotes two-dimensional convolution. Let
f , g, and w be the discretized original scene, observed scene, and additive noise,
respectively. Let H be the corresponding blurring matrix of appropriate size built
according to the discretized point spread function h. Then the discretized image
formation process can be put into matrix-vector form:

g = Hf + w.(1.2)

Assuming that the discretized scenes have m× n pixels, then f , g, and w are vectors
of length mn, and H is a matrix of mn×mn. We remark that H is a matrix of block
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Toeplitz with Toeplitz blocks (BTTB) when zero boundary conditions are applied,
and block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks (BTHTHB) when
Neumann boundary conditions are used [36].

Image restoration problems tend to be very ill-conditioned. Directly solving (1.2)
will yield a solution that is extremely sensitive to noise; therefore, regularization
methods are needed to stabilize the solution. For example, the linear least squares
problem with Tikhonov’s regularization [48] takes the following form:

min
f

‖g −Hf‖2
2 + α‖Rf‖2

2.(1.3)

In this optimization problem, the second term is a regularization term that measures
the “irregularity” of the solution. We call R the regularization operator and α the
regularization parameter. Very often R is chosen to be the difference operator, for
example, the first order or second order finite difference operator.

Assuming the additive noise is white Gaussian and the prior distribution of f
is also Gaussian, and that exact information of the blurring matrix is available, the
solution of (1.3) can be interpreted as the “maximum a posteriori (MAP) estimator”
of the original scene; see [6], for instance. However, due to the presence of edges, the
prior distribution of an image rarely satisfies the Gaussian assumption well. In many
cases, the additive noise does not satisfy the Gaussian assumption either; for instance,
the noise may follow a Laplace distribution [6]. In the literature, there has been a
growing interest in using the �1 norm for parameter estimation [4, 6, 5, 26, 9, 10, 44]
and for image restoration [3, 12, 21, 28, 35, 38, 39, 25]. The advantage of using the �1
norm is that the solution is more robust than when using the �2 norm in statistical
estimation problems. In particular, a small number of outliers have less influence on
the solution; see, for instance, [9, 38].

Since edges in an image lead to outliers in the regularization term, it is natural
to consider using the �1 norm for this term:

min
f

‖g −Hf‖2
2 + α‖Rf‖1.(1.4)

We call the solution to (1.4) the least mixed norm (LMN) solution. It is worth pointing
out that model (1.4) is closely related to the total variation regularization in image
restoration. In the one-dimensional case, if R is chosen to be the first order difference
operator, then ‖Rf‖1 is the discrete version of the total variation norm. Li and Santosa
used a piecewise linear �1 function as a measure of total variation in [29]. For details
about total variation regularization, we refer the reader to [43, 29, 13, 24, 11, 23].

If the additive noise does not satisfy the Gaussian assumption either, we consider
using the �1 norm for both the data-fitting and the regularization terms:

min
f

‖g −Hf‖1 + α‖Rf‖1.(1.5)

We call the solution to (1.5) the least absolute deviation (LAD) solution. Recently,
minimizers of cost-functions involving �1 data-fidelity have been studied by Nikolova
[38, 39], Chan and Esedoglu [12], and Kärkkäinen, Kunisch, and Majava [25]. Appli-
cations to the processing of outliers and the removal of impulse noise are considered
in denoising problems [38, 39, 25].

Another assumption that must be satisfied in order for (1.3) to yield the MAP
estimator and which is often violated is that the exact information of the blurring
matrix H is available. Many papers (for instance, [34, 37, 42, 20, 33]) address the issue
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of inexact H but still assume white Gaussian noise and Gaussian prior distribution
of f . In this work, we assume that the exact information for H is available and focus
on the issues of non-Gaussian noise and non-Gaussian prior distribution.

Since the objective functions are nonsmooth, problems (1.4) and (1.5) are difficult
to solve [6, 9]. For instance, Mammone and Eichmann [32] solved an �1 approxima-
tion problem with a nonnegative solution using linear programming techniques, and
Abdelmalek and Kasvand [2, 1] solved the problem as a quadratic programming prob-
lem whose solution is nonnegative and bounded. However, they studied the algebraic
image restoration problem in one dimension only, for example, separable blurring
functions. Pruessner and O’Leary [42] considered minimization of total least �1 norm
by using linear programming for image restoration. However, since they simply use
the MATLAB [19] function linprog.m to solve the linear programming problem, their
algorithm is restricted to very small images. In [15, 16, 17, 18], Dax investigated reg-
ularized least norm problems where the identity matrix is used as the regularization
operator (i.e., R = I) and developed row-relaxation methods for solving such least
norm problems. The row-relaxation method is suitable for solving problems in which
H is sparse. On the total variation regularization, Li and Santosa [29] employed
both the steepest descent and an affine scaling Newton method, Ito and Kunisch [24]
presented an active set strategy based on the augmented Lagrangian formulation,
and Hintermüller and Kunisch [23] solved it as a bilaterally constrained optimization
problem. Also Combettes [14] used an adaptive level set method for nondifferentiable
constrained image recovery.

Usually, images satisfy

f ≥ 0,

that is, pixels have nonnegative values. However, this constraint is often omitted in
restoration methods, mainly because of the numerical intricacies it entails. Hanke,
Nagy, and Vogel [22] considered and studied three nonnegatively constrained restora-
tions schemes: constrained least squares, maximum likelihood, and maximum entropy.
Saunders [46] used primal-dual interior point methods for nonnegative least squares
image restoration problems.

The main contribution of this work is to develop efficient algorithms for the mini-
mization of mixed �2-�1 and �1-�1 norms for image restoration problems. The novelty
comes by taking into account the nonnegativity constraint. We first formulate (1.4)
as a linear programming problem and (1.5) as a quadratic programming problem.
Then we solve these problems by combining an interior point method and a precon-
ditioned conjugate gradient method. In each interior point iteration, a structured
linear system is obtained and solved. The form of the coefficient matrix of this struc-
tured linear system is given by D + HTD′H + RTD′′R, where H is a BTTB matrix,
and D, D′, and D′′ are diagonal matrices. To solve such inner systems quickly, we
employ the preconditioned conjugate gradient method with factorized sparse inverse
preconditioners. In [30], it is shown that factorized sparse inverse preconditioners
are better than circulant preconditioners for certain image restoration problems. In
this paper, we further demonstrate that factorized sparse inverse preconditioners are
quite effective for minimization of mixed �2-�1 and �1-�1 norms in image restoration
problems.

The rest of this paper is outlined as follows. In section 2, we formulate (1.5) as
a linear programming problem and solve it by an interior point method. The major
work of each iteration of the interior point method is to solve a large structured



1884 H. FU, M. K. NG, M. NIKOLOVA, AND J. L. BARLOW

linear system. We propose to solve this system by iterative methods. In this section,
we also discuss finding an initial feasible point and keeping the iterates feasible. In
section 3, we formulate (1.4) as a quadratic programming problem and also solve it by
an interior point method. In section 4, we discuss how to precondition the structured
linear systems encountered in sections 2 and 3. Experimental results are presented in
section 5. Conclusions are made in section 6.

2. The LAD solution.

2.1. Formulating the problem as a linear programming problem. Prob-
lem (1.5), with the nonnegativity constraint imposed, can be formulated as a linear
programming problem as follows. If the nonnegativity constraint is not desired, only
slight modifications of this procedure are needed.

Let u = Hf − g; let v = αRf . We split u and v into their nonnegative and
nonpositive parts. That is, u = u+ − u− and v = v+ − v−, where u+ = max(u, 0),
u− = max(−u, 0), v+ = max(v, 0), and v− = max(−v, 0). The problem can now be
written as

min
f ,u+,u−,v+,v−

1Tu+ + 1Tu− + 1Tv+ + 1Tv−(2.1)

subject to Hf − g = u+ − u−,

αRf = v+ − v−,

u+, u−, v+, v−, f ≥ 0.

We use 1 to denote the vector of all ones of appropriate size. This notation is used
throughout this paper.

Clearly (2.1) can be written as a linear programming problem in the standard
form:

min
x

cTx subject to Ax = b, x ≥ 0,(2.2)

where A, b, c, and x are defined by

A =

[
H −I I 0 0
αR 0 0 −I I

]
, b =

[
g
0

]
,

x =

⎡
⎢⎢⎢⎢⎣

f
u+

u−

v+

v−

⎤
⎥⎥⎥⎥⎦ , and c =

⎡
⎢⎢⎢⎢⎣

0
1
1
1
1

⎤
⎥⎥⎥⎥⎦ .

The Lagrangian function for (2.2) is

L(x,λ, s) = cTx − λT (Ax − b) − sTx.(2.3)

Here λ and s are the Lagrange multiplier vectors for the constraints Ax = b and
x ≥ 0, respectively. For clarity, we partition λ as

λ =

[
λu

λv

]
,(2.4)

where λu is the Lagrange multiplier vector for the constraint Hf −u+ +u− = g, and
λv is for αR− v+ + v− = 0.
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2.2. Interior point methods. Primal-dual interior point methods have become
a popular choice for solving large linear programming problems. We briefly outline
our adapted interior point method below. A detailed description of interior point
methods for linear programming can be found in [49, Chapter 14] or [40, Chapter 1].

The optimality condition for (2.2) is as follows:

F (x,λ, s) =

⎡
⎣A

Tλ + s − c
Ax − b
XS1

⎤
⎦ = 0, x ≥ 0, s ≥ 0,(2.5)

where

X = diag(x) and S = diag(s).(2.6)

Primal-dual interior point methods have their origin in Newton’s method for
the system of nonlinear equations (2.5). Newton’s method starts with some initial
guess for the solution and calculates a search direction at each iteration by solving a
linearized model of the original system. A detailed description of Newton’s method
for nonlinear systems can be found in [40, Chapter 11]. In the primal-dual interior
point algorithm, the basic Newton step is modified such that the search directions are
aimed at points on the central path (xτ ,λτ , sτ ), which is defined as

F (xτ ,λτ , sτ ) =

⎡
⎣ 0

0
τ1

⎤
⎦ , xτ > 0, sτ > 0.(2.7)

Very often τ is written as σμ, where σ ∈ [0, 1] is a centering parameter, and μ is the
duality measure defined by

μ =
1

n

n∑
i=1

xisi =
xT s

n
.(2.8)

The step length at each iteration is chosen such that the new iterate is strictly positive,
that is, x > 0 and s > 0.

The Newton search direction, (�x,�λ,�s), is computed by solving the following
linear system: ⎡

⎣0 AT I
A 0 0
S 0 X

⎤
⎦
⎡
⎣�x
�λ
�s

⎤
⎦ =

⎡
⎣−rc
−rb
−ra

⎤
⎦ ,(2.9)

where

rc = ATλ + s − c, rb = Ax − b, ra = XS1 − σμ1.

By eliminating �s in (2.9), we obtain
[
−X−1S AT

A 0

] [
�x
�λ

]
=

[
−r̂c
−rb

]
,(2.10)

where r̂c = rc −X−1ra. Let D = S−1/2X1/2; then (2.10) can be written as
[
−D−2 AT

A 0

] [
�x
�λ

]
=

[
−r̂c
−rb

]
.(2.11)
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Note that since the components of x and s are strictly positive, all the diagonal
elements of D are well defined.

From here the standard approach is to reduce (2.11) to the following form and
solve it for step �λ:

AD2AT�λ = −AD2r̂c − rb.(2.12)

The application of the preconditioned MINRES [41] or the preconditioned GMRES
[45] to (2.10) may be considered. For example, the preconditioner of Benzi and Golub
[7], which is briefly described in section 4, could be used to solve (2.10).

However, after comparing the performance of the different implementations, we
found that it is advantageous to proceed as follows. System (2.11) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D−2
1 0 0 0 0 HT αRT

0 −D−2
2 0 0 0 −I 0

0 0 −D−2
3 0 0 I 0

0 0 0 −D−2
4 0 0 −I

0 0 0 0 −D−2
5 0 I

H −I I 0 0 0 0
αR 0 0 −I I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�f
�u+

�u−

�v+

�v−

�λu

�λv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r̂c1
−r̂c2
−r̂c3
−r̂c4
−r̂c5
−rb1
−rb2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here Di (for i = 1, 2, 3, 4, 5) are submatrices of D of the appropriate size, and r̂ci (for
i = 1, 2, 3, 4, 5) and rbi (for i = 1, 2) are subvectors of the appropriate size of r̂c and
rb, respectively.

By eliminating �u+, �u−, �v+, and �v−, we obtain

⎡
⎣−D−2

1 HT αRT

H D2
2 + D2

3 0
αR 0 D2

4 + D2
5

⎤
⎦
⎡
⎣ �f
�λu

�λv

⎤
⎦ =

⎡
⎣−r̂c1
−r̂b1
−r̂b2

⎤
⎦ ,(2.13)

where

r̂b1 = rb1 −D2
2 r̂c2 + D2

3 r̂c3 and r̂b2 = rb2 −D2
4 r̂c4 + D2

5 r̂c5.

By eliminating �λu and �λv from (2.13), we obtain

[
D−2

1 + HT (D2
2 + D2

3)
−1H + α2RT (D2

4 + D2
5)

−1R
]
�f = r̃c1,(2.14)

where

r̃c1 = r̂c1 −HT (D2
2 + D2

3)
−1r̂b1 − αRT (D2

4 + D2
5)

−1r̂b2.

System (2.14) can be viewed as the normal equations for a linear least squares
problem with the following coefficient matrix:

⎡
⎣ D−1

1

(D2
2 + D2

3)
−1/2H

α(D2
4 + D2

5)
−1/2R

⎤
⎦ =

⎡
⎣D

−1
1

(D2
2 + D2

3)
−1/2

(D2
4 + D2

5)
−1/2

⎤
⎦
⎡
⎣ I
H
αR

⎤
⎦ .(2.15)

Clearly the second factor in the right-hand side of (2.15) has full column rank and
is well-conditioned. Since the matrices Di are all diagonal matrices with positive
diagonal elements, the first factor in the right-hand side of (2.15) has full column



�2-�1 AND �1-�1 NORMS FOR IMAGE RESTORATION 1887

rank. It follows that the coefficient matrix in (2.14) is symmetric positive definite and
can be solved by the conjugate gradient method.

In general, when the iterates are close to the solution, if the primal variable is
close to zero, then the corresponding dual variable will be far away from zero. This
means the corresponding element in D will be very small. On the other hand, if the
primal variable is far away from zero, then the corresponding dual variable will be
very close to zero, leading to a large entry in D. Therefore, when the iterates are
close to the solution, the matrix D will have both huge and tiny elements, causing
ill-conditioning. In section 4, we discuss how to precondition system (2.14) efficiently.

Once we have solved (2.14) for �f , the other unknowns in (2.9) can be recovered
by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�λu = (D2
2 + D2

3)
−1(−r̂b1 −H�f),

�λv = (D2
4 + D2

5)
−1(−r̂b2 − αR�f),

�u+ = D2
2(r̂c2 −�λu),

�u− = D2
3(r̂c3 + �λu),

�v+ = D2
4(r̂c4 −�λv),

�v− = D2
5(r̂c5 + �λv),

�s = −rc −AT�λ.

(2.16)

2.3. Finding an initial feasible point and staying feasible. Define the
strictly feasible set F0 as

F0 = {(x,λ, s)|Ax = b, ATλ + s = c,x > 0, s > 0}.(2.17)

Finding an initial strictly feasible point is not straightforward in many linear
programming problems. For our problem, an initial strictly feasible point can be
found as follows. Let ε be some positive value. Let fls be any estimate of the sought-
after solution, for example, the least squares solution. We choose f (0) to be

f (0)[i] = max{fls[i], ε}.

We let u+(0) be the sum of ε and the nonnegative part of Hf (0) and we let u−(0) be
the sum of ε and the nonpositive part of Hf (0). Then the vector

x(0) =

⎡
⎢⎢⎢⎢⎣

f (0)

u+(0)

u−(0)

v+(0)

v−(0)

⎤
⎥⎥⎥⎥⎦

satisfies Ax(0) = b. Furthermore, x(0) ≥ ε. There are many ways that we can find
λ(0) and s(0) such that s(0) > 0 and ATλ(0) + s(0) − c = 0. Since our focus is on the
problem where H corresponds to a shift invariant blurring operator, we can let λ(0)

u

be a constant vector of −0.5 and let λ(0)
v be the zero vector. If Neumann boundary

conditions are used, and the blurring function is normalized such that it integrates to
1, then HTλ(0)

u = 0.5 · 1. Therefore, if we let s(0) = c − ATλ(0), then s(0) ≥ 0.5 · 1,

and (x(0),λ(0), s(0)) is strictly feasible. If zero boundary conditions are used, this
procedure would still give an initial strictly feasible point under weak assumptions on
the blurring function.
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If the current iterate is in the strictly feasible set, and (2.9) is solved exactly, and
if a step length is chosen such that the new iterate satisfies x > 0 and s > 0, then the
new iterate is strictly feasible.

However, when we use the conjugate gradient method to solve (2.14), only an
approximate solution is given. Therefore, even if the current iterate is strictly feasible,
the new iterate may not satisfy the conditions

Ax = b and ATλ + s − c = 0

to very high accuracy. Thus, if no precaution is taken, the subsequent iterates could
move further from the feasible set due to error propagation.

Fortunately, it is easy to show that if (2.16) is used to recover the other unknowns
after (2.14) is solved, the conditions Ax = b and ATλ + s− c = 0 will be satisfied to
machine precision even if (2.14) is solved inexactly. Therefore, if a proper step length
is chosen, the next iterate will be strictly feasible.

2.4. Summary of the adapted interior point algorithm. There are many
variants of the interior point method. Our algorithm, summarized below, is based on
the simplest framework, that is, framework PD in [49, p. 8].

Algorithm. Interior point for the LAD solution.

1. Initialize (x(0),λ(0), s(0)) ∈ Fo.
2. for k = 0, 1, 2 . . .

choose σ ∈ [0, 1].
solve (2.14) for �f .
Use (2.16) to recover �u+, �u−, �v+, �v−, �λ, �s.
choose βpri and βdual.
x(k+1) = x(k) + βpri�x

λ(k+1) = λ(k) + βdual�λ
s(k+1) = s(k) + βdual�s

end

Since we use iterative methods to solve the linear systems, no predictor-corrector
strategy is involved.

A word needs to be said about the choices of centering parameter σ and step
lengths βpri and βdual. It is a common practice to choose the primal and dual step
lengths βpri and βdual as follows:

βpri = min
(
1, ηβpri

max

)
, βdual = min

(
1, ηβdual

max

)
.

Here βpri
max and βdual

max are the maximum steps that can be taken before violating
the nonnegativity condition, and η ∈ [0.9, 1.0). We simply choose η = 0.95. Our
experiments led us to choose the centering parameter σ to be 0.1 at the first iteration,
and

σ = max(0.01, (1 − min(βpri, βdual))3)

in other iterations. This prevents the iterates from moving too far from the central
path and allows significant reduction in duality at each iteration.

3. The LMN solution. Problem (1.4), with the nonnegativity constraint im-
posed, can be restated as a quadratic programming problem as follows. We let
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v = αRf , and split v into its nonnegative and nonpositive parts v+ and v−. Then
(1.4) can be written as

min
f ,v+,v−

1Tv+ + 1Tv− + ‖Hf − g‖2
2(3.1)

subject to αRf = v+ − v−,

v+,v−, f ≥ 0.

Problem (3.1) can be written as

min
x

1

2
xTGx + cTx subject to Ax = b, x ≥ 0,(3.2)

where G, A, b, c, and x are defined by

G =

⎡
⎣2HTH 0 0

0 0 0
0 0 0

⎤
⎦ , A =

[
αR −I I

]
,

b = 0, x =

⎡
⎣ f

v+

v−

⎤
⎦ , and c =

⎡
⎣−2HTg

1
1

⎤
⎦ .

We remark that the objective function is convex since G is symmetric positive semi-
definite. Problem (3.2) can also be solved by an interior point method. The Lagran-
gian function for (3.2) is

L(x,λ, s) =
1

2
xTGx + cTx − λT (Ax − b) − sTx,(3.3)

where λ and s are the generalized Lagrange multiplier vectors for the constraints
Ax = b and x ≥ 0, respectively.

The optimality condition for (3.2) is

F (x,λ, s) =

⎡
⎣Gx + c −ATλ − s

Ax − b
XS1

⎤
⎦ = 0, x ≥ 0, s ≥ 0.(3.4)

The central path, (xσμ,λσμ, sσμ), is defined similarly as in the previous section:

F (xσμ,λσμ, sσμ) =

⎡
⎣ 0

0
σμ1

⎤
⎦ .(3.5)

Recall that σ ∈ (0, 1) and μ is defined as in (2.8). The Newton step, (�x,�λ,�s),
is computed by solving the following linear system:

⎡
⎣G −AT −I
A 0 0
S 0 X

⎤
⎦
⎡
⎣�x
�λ
�s

⎤
⎦ =

⎡
⎣−rc
−rb
−ra

⎤
⎦ ,(3.6)

where

rc = Gx + c −ATλ − s, rb = Ax − b, ra = XS1 − σμ1.
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By eliminating �s, we obtain

[
G + X−1S −AT

A 0

] [
�x
�λ

]
=

[
−r̂c
−rb

]
,(3.7)

where r̂c = rc +X−1ra. This system can be made symmetric by a change of variable:

[
G + X−1S AT

A 0

] [
�x
−�λ

]
=

[
−r̂c
−rb

]
.(3.8)

Let D = S−1/2X1/2. Note that the elements of D are well defined. Partition D
as

D = diag(D1, D2, D3),

where D1, D2, and D3 are matrices of appropriate size such that system (3.8) can be
put into the following form:

⎡
⎢⎢⎣

2HTH + D−2
1 0 0 αRT

0 D−2
2 0 −I

0 0 D−2
3 I

αR −I I 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�f
�v+

�v−

−�λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−r̂c1
−r̂c2
−r̂c3
−rb

⎤
⎥⎥⎦ .(3.9)

Here r̂ci (for i = 1, 2, 3) are subvectors of the appropriate size of r̂c. By eliminating
�v+ and �v−, we get

[
2HTH + D−2

1 αRT

αR −D2
2 −D2

3

] [
�f
−�λ

]
=

[
−r̂c1
−r̂b

]
,(3.10)

where

r̂b = rb + D2
2 r̂c2 −D2

3 r̂c3.

Eliminating �λ, we get

[
2HTH + D−2

1 + α2RT (D2
2 + D2

3)
−1R

]
�f = −r̃c1,(3.11)

where

r̃c1 = r̂c1 + αRT (D2
2 + D2

3)
−1r̂b.

Similar to system (2.14), system (3.11) can be viewed as the normal equations of a
linear least squares problem, whose coefficient matrix has full column rank. Therefore,
the coefficient matrix in (3.11) is symmetric positive definite, and system (3.11) can
be solved by the preconditioned conjugate gradient method.

Once (3.11) has been solved, the other unknowns can be calculated by the follow-
ing equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�λ = (D2
2 + D2

3)
−1(−r̂b − αR�f),

�v+ = D2
2(−r̂c2 −�λ),

�v− = D2
3(−r̂c3 + �λ),

�s = G�x −AT�λ + rc.

(3.12)
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An initial feasible point can be found in a similar manner as was done for the LAD
solution. Moreover, if (3.12) is used to recover the rest of the unknowns after (3.11)
is solved approximately, and a proper step length is chosen, then the iterates will stay
feasible.

The interior point algorithm for the LMN solution is quite similar to that for the
LAD solution. One difference that is worth pointing out is that βpri and βdual are
allowed to take different values in the algorithm for the LAD solution but have to be
the same in that for the LMN solution.

4. Preconditioning the structured linear systems. As mentioned earlier,
linear systems (2.14) and (3.11) become ill-conditioned as the iterates get close to
the solution. Thus preconditioners are needed to accelerate the convergence of the
conjugate gradient iterations.

For the nonnegative least squares image restoration problem, Saunders [46] used
preconditioned LSQR to solve the linear system at each interior point iteration. He
used a diagonal preconditioner. However, the effectiveness of diagonal preconditioners
is limited in that preconditioned LSQR needed more than 1000 iterations to converge
to a desired level of accuracy at the final stages of the interior point algorithm. Our
experimental results indicate that the conditions of systems (2.14) and (3.11) tend
to be worse than that of the systems in the nonnegative least squares problem. This
should be no surprise since our problems are transformed from nonsmooth problems.

4.1. Saddle point preconditioners. For linear systems (2.10), Benzi and Golub
[7] proposed using the preconditioned GMRES to solve the equivalent system

[
D−2 −AT

A 0

] [
�x
�λ

]
=

[
r̂c
−rb

]
.(4.1)

Their preconditioning strategy is based on the symmetric/skew-symmetric splitting
of the coefficient matrix, that is, they propose using the following matrix as the pre-
conditioner:

Mγ =

[
D−2 + γI 0

0 γI

] [
γI −AT

A γI

]
,(4.2)

where γ is some positive constant. Linear systems in the form of Mγz = r can be
solved by first solving

[
D−2 + γI 0

0 γI

]
z̃ = r,(4.3)

followed by

[
γI −AT

A γI

]
z = z̃.(4.4)

Solving (4.3) is a simple dotwise division. Since our focus is on the shift invariant blur,
system (4.4) can be solved by the discrete cosine transform if the blur is symmetric and
Neumann boundary conditions are applied; see [36], for instance. This preconditioning
technique can also be applied to (2.13), which yields better results in practice.
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4.2. Factorized sparse inverse preconditioner. Our experimental results
indicate that the most efficient way to compute the Newton step is to apply the
factorized sparse inverse preconditioner (FSIP) [27, 8, 47] to systems (2.14) and (3.11).
Let B be a symmetric positive definite matrix, and let its Cholesky factorization be
B = CCT . The idea of FSIP is to find the lower triangular matrix L with the sparsity
pattern S such that

‖I − CL‖F

is minimized, where ‖ · ‖F denotes the Frobenius norm. Kolotilina and Yeremin [27]
showed that L can be obtained by the following algorithm.

Algorithm. Construction of FSIP.

1. Compute L̂ with sparsity pattern S such that[
L̂B

]
ij

= δij , (i, j) ∈ S.

2. Let D̂ = (diag(L̂))−1 and L = D̂1/2L̂.

According to this algorithm, n small linear systems need to be solved, where n is the
number of rows in the matrix B. These systems can be solved in parallel. Thus the
above algorithm is well suited for modern parallel computing.

A special type of FSIP, the factorized banded inverse preconditioner (FBIP), was
proposed by Lin, Ng, and Ching [30] for Toeplitz related matrices. We say that
B ∈ R

m×n has lower bandwidth p if bij = 0 whenever i > j + p. The upper bandwidth
of a matrix is defined similarly. Note that by this definition, a tridiagonal matrix has
upper and lower bandwidth of 1.

Lin, Ng, and Ching [30] proved the following theorem.
Theorem 4.1. Let T be a Hermitian Toeplitz matrix. Denote the kth diagonal

of T by tk. Assume the diagonals of T satisfy

|tk| ≤ ce−γ|k|(4.5)

for some c > 0 and γ > 0, or

|tk| ≤ c(|k| + 1)−s(4.6)

for some c > 0 and s > 3/2. Then for any given ε > 0, there exists p′ > 0 such that
for all p > p′,

‖Lp − C−1‖ ≤ ε,

where Lp is the FBIP of T with the lower bandwidth p, and C is the Cholesky factor
of T .

This theorem indicates that if a Toeplitz matrix T has certain off-diagonal decay
property, then the FBIP will be a good approximation to T−1. Note that if a Toeplitz
matrix is banded, then both (4.5) and (4.6) are satisfied trivially.

Lin, Ng, and Ching [30] also considered Toeplitz-related systems of the form
I +TTDT , where D is a positive diagonal matrix, and proved the following corollary.

Corollary 4.2. Let T be a Toeplitz matrix with its diagonals satisfying (4.5) or
(4.6). Let D = diag(di) with 0 < di ≤ d, and

B = I + TTDT.
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Then for any given ε > 0, there exists p′ > 0 such that for all p > p′,

‖Lp − C−1‖ ≤ ε,

where Lp is the FBIP of B with the lower bandwidth p, and C is the Cholesky factor
of B.

The matrices we are trying to precondition are the coefficient matrices in (2.14)
and (3.11), that is, B = D−2

1 + HT (D2
2 + D2

3)
−1H + α2RT (D2

4 + D2
5)

−1R and B =
2HTH + D−2

1 + α2RT (D2
2 + D2

3)
−1R. Although the focus of this research is on two-

dimensional images, we have the following lemma for the one-dimensional problem.
Lemma 4.3. Let T be a Toeplitz matrix with its diagonals satisfying (4.5) or

(4.6). Let D1, D2, and D3 be diagonal matrices with positive diagonal entries. Let

B = TTD1T + D2 + RTD3R(4.7)

be a well-conditioned matrix, where R is the first order or the second order difference
operator. Then for any given ε > 0, there exists p′ > 0 such that for all p > p′,

‖Lp − C−1‖ ≤ ε,

where Lp is the FBIP of B with lower bandwidth p, and C is the Cholesky factor of
B.

Proof. The proof is similar to the proof of Corollary 4 in [30].
Lemma 4.3 indicates that the linear system in the one-dimensional LMN and

LAD problems can be efficiently preconditioned by the FBIP.
It is important to note that in order to construct the FBIP for B, it is not

necessary to explicitly calculate all the elements of B when p is small. The following
lemma indicates that only certain diagonals of B need to be calculated.

Lemma 4.4. Let Lp be the FBIP with lower bandwidth p for a symmetric matrix
B. Then Lp can be determined by the first p bands of the lower triangular part of B.

Proof. For i = 1, 2, . . . , p−1, the nonzero elements of the ith row of Lp is L(i, 1 : i).
They are determined by B(1 : i, 1 : i).

On the other hand, for i = p, p + 1, . . . , n, the nonzero elements of the ith row of
Lp is L(i, i + 1 − p : i). They are determined by B(i + 1 − p : i, i + 1 − p : i).

Therefore, Lp can be determined by the first upper and lower p bands of B. Since
B is symmetric, the result follows.

For two-dimensional problems, we assume that the blurring matrix H has a block-
level off-diagonal decay property, and each block also has off-diagonal decay property.
This is true if the blurring function decays in spatial domain, or if the support of the
blur is small. In this case, we can set the FSIP to be a triangular block banded matrix
with each block being a banded matrix. Let p be the block-level lower bandwidth of
the FSIP and let q be the lower and the upper bandwidths of each block. Figure
4.1(a) shows the sparsity pattern of an FSIP with p = 2 and q = 1. Note that if
p = q = 0, then the FSIP becomes a diagonal preconditioner.

Similar to the one-dimensional case, when constructing the FSIP, it is not neces-
sary to calculate all the elements of the coefficient matrix in (2.14) or (3.11). However,
the situation for the two-dimensional case is a bit more complicated.

Lemma 4.5. Let L be the FSIP of the coefficient matrix in (2.14) or (3.11), and
let p be the block-level lower bandwidth and q the upper and the lower bandwidths of
the blocks of L. Then L can be determined by those elements that are in the lower
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Fig. 4.1. (a) FSIP with p = 2 and q = 1. (b) Sparsity pattern of the elements of the coefficient
matrix that needs to be calculated.

triangular part of the coefficient matrix and have a block-level lower bandwidth of p
with each block having upper and lower bandwidth of 2q.

Lemma 4.5 is actually a bit conservative. Figure 4.1(b) shows the sparsity pattern
of the elements of the coefficient matrix that needs to be calculated if the FSIP has a
sparsity pattern shown in Figure 4.1(a). Note that the blocks in the last block diagonal
have lower bandwidth of q. If the original blurring matrix H is sparse enough such that
there is no need to use the FFT [31] for matrix multiplications, the cost of calculating
these elements is no more than (p + 1)(2q + 1) plain conjugate gradient iterations.

Other than explicitly calculating certain diagonals of the coefficient matrix in
(2.14) or (3.11), the cost of constructing the FSIP consists of calculating the lower
triangular factor L. Since this step solves mn linear systems of size (p+1)(2q+1)×(p+
1)(2q+1), the complexity of this step is O(p3q3mn). Because this cost grows cubically
with the increase of p and q, the benefit of the decrease in the number of iterations will
be offset by the cost of constructing the preconditioner with the increase of p and q.
Therefore, it is important to choose suitable values of p and q in practical applications.

Usually the linear system to be solved is well-conditioned at the first few interior
point iterations. Due to the initial cost of constructing the FSIP, it is too expensive to
choose a big p or q for early iterates. However, as the iterates get close to the solution,
the ill-conditioning of the linear system makes choosing bigger p and q necessary.
Therefore, the best strategy is to choose small p and q (say p = q = 0) at the beginning,
and increase p and q gradually. For details, see experimental results in the next section.

5. Experimental results. Most of our experiments are based on the camera-
man image shown in Figure 5.1. The blurring function is chosen to be a two-dimen-
sional Gaussian,

h(i, j) = e−2(i/3)2−2(j/3)2 ,

truncated such that the function has a support of 7 × 7.
We generate two observed images. For the first one, a Gaussian white noise with

standard deviation 0.05 is added. For the second one, we randomly pick 50% of the
pixels to be contaminated by noise; the type and standard deviation of the noise is
the same as in the first one. The observed images are shown in Figure 5.2. For the



�2-�1 AND �1-�1 NORMS FOR IMAGE RESTORATION 1895

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 5.1. The original image.
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Fig. 5.2. Observed images: (a) all pixels are contaminated by noise; (b) only 50% of the pixels
are contaminated by noise.
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Fig. 5.3. (a) The least squares solutions for the first observed image, PSNR = 20.46 db.
(b) The least squares solution for the second observed image, PSNR = 20.87 db.

first observed image, since the noise is normal, we consider only the LMN solution.
For the second one, we consider both the LMN solution and the LAD solution.

Neumann boundary conditions are used to build the blurring matrix H. Figure
5.3 shows the least squares restoration of the two observed images, respectively. The
optimal regularization parameter (the one that yields the highest peak signal-to-noise
ratio (PSNR)) is used.

The interior point algorithms are implemented in MATLAB, except the construc-
tion of the FSIP, which is written as a MATLAB callable C function. Recall that in
order to construct the FSIP, mn small linear systems need to be solved. Doing this
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Fig. 5.4. The LMN solution for the first observed image, PSNR = 20.78 db.
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Fig. 5.5. (a) The LMN solution for the second observed image, PSNR = 21.30 db. (b) The
LAD solution for the second observed image, PSNR = 22.82 db.

in MATLAB would be slow because MATLAB loops are inefficient.
The LMN solution for the first observed image is shown in Figure 5.4. The PSNR

of this image indicates it is superior to the least squares solution. It is interesting to
note that the LMN solution is quite different from the least squares solution. The
least squares solution tends to smooth out the edges but undersmooths flat areas.
The LMN solution tends to sharpen the edges and makes flat areas even flatter.

The LAD and LMN solutions for the second observed image is shown in Figure 5.5.
As can be seen, both solutions have a higher PSNR than the least squares solution.
Furthermore, the LAD solution is superior to the LMN solution.

Similar to the total variation deblurring [43], using the �1 norm for the regular-
ization term is very effective in recovering “blocky” images. Using the �1 norm for the
residual term yields very good results if only a small portion of the pixels are contam-
inated by noise. Figure 5.6(a)–(e) show an original “blocky” image, blurred image
with 50% of the pixels contaminated by additive noise, least squares restoration, the
LMN solution, and the LAD restoration.

Figures 5.7 and 5.8 show the convergence of the primal-dual interior point algo-
rithm for the LMN and LAD solutions, respectively. Theoretically, the interior point
iterations should exhibit superlinear convergence. The experimental results do not
seem to confirm the theoretical predictions. This can be explained as follows. The
linear systems are approximately solved such that the residual is below a certain level.
Because the conditions of the linear systems get worse as the iterates get closer to the
solution, the error in the calculated search directions becomes bigger, causing poorer
convergence. In fact, for small images, if direct methods are used to solve the linear
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Fig. 5.6. (a) An original wheel image. (b) The observed noisy image with 50% of the pixels
contaminated by noise. (c) The least squares restoration, PSNR = 29.25 db. (d) The LMN solution,
PSNR = 30.64 db. (e) The LAD solution, PSNR = 35.26 db.
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Fig. 5.7. Convergence of the primal-dual interior point method for the LMN solution: (a) the
duality measure; (b) the infinity norm of Δf .
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Fig. 5.8. Convergence of the primal-dual interior point method for the LAD solution: (a) the
duality measure; (b) the infinity norm of Δf .

Table 5.1

Number of conjugate gradient iterations and the CPU time needed at each interior point iter-
ation for the LAD solution when different preconditioning strategies are used. The preconditioning
strategies used include (1) NOR, (2.12) is solved, using a diagonal preconditioner; (2) BENZI, the
Benzi and Golub preconditioner is applied to (2.13); (3) No Pre, plain conjugate gradient is applied
to (2.14); (4) Diag Pre, diagonal preconditioner is applied to (2.14); (5) FSIP2, FSIP with p = q = 2
is applied to (2.14); (6) FSIP3, FSIP with p = q = 3; (7) FSIP4, FSIP with p = q = 4.

PD Itn NOR BENZI No Pre Diag Pre FSIP2 FSIP3 FSIP4
10 >3000 295 644 544 48 22 18

– 161.78 78.68 68.72 15.24 13.32 17.08
12 >3000 483 982 804 51 26 21

– 237.70 125.92 105.53 15.75 14.14 18.01
14 >3000 1047 1603 1334 60 31 25

– 589.68 207.05 175.88 17.42 15.31 18.99
16 >3000 1791 2452 1934 77 43 34

– 969.84 305.14 242.51 20.90 18.47 22.14
18 >3000 >2000 >3000 2607 106 54 41

– – – 339.06 25.85 20.87 25.11
20 >3000 >2000 >3000 >3000 170 85 58

– – – – 37.71 28.18 28.91

systems, a slightly superlinear convergence is observed.

Table 5.1 shows the number of conjugate gradient iterations and CPU time at each
interior point iteration for the LAD solution when different preconditioning strategies
are used. The CPU time listed here includes the time for constructing the precondi-
tioners. Table 5.2 shows the same kind of results for the linear systems in the LMN
solution. As can be seen, in both cases, the FSIP with proper choices of p and q can
significantly speed up the convergence.

We remark that the performance of the FSIP depends on the support of the
blurring function and on how fast the function decays in space. The effect of the
support of the blurring matrix on the effectiveness of the FSIP is twofold. On one
hand, a big support means a relatively dense blurring matrix, therefore, allowing
the preconditioner to be relatively dense. On the other hand, a big support usually
means a relatively dense preconditioner is needed in order to improve the condition
significantly. Table 5.3 shows the performance of the FSIP with a different choice
of p and q when the support of the blur is 5 × 5 (the same Gaussian blur is used).
Table 5.4 shows the same kind of information when the support of the blur is 9 × 9.
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Table 5.2

Number of conjugate gradient iterations and the CPU time needed at each interior point iter-
ation for the LMN solution when different preconditioners are used. The preconditioning strategies
used include (1) No Pre, plain conjugate gradient is applied to (3.11); (2) Diag Pre, diagonal pre-
conditioner is applied to (3.11); (3) FSIP2, FSIP with p = q = 2 is applied to (3.11); (4) FSIP3,
FSIP with p = q = 3; (5) FSIP4, FSIP with p = q = 4.

PD Itn No Pre Diag Pre FSIP2 FSIP3 FSIP4
10 368 180 31 21 15

45.01 22.94 6.15 6.89 10.52
12 618 281 51 32 22

76.27 35.27 9.71 9.24 12.72
14 908 438 85 48 32

112.37 55.28 16.12 13.35 15.86
16 1391 626 139 71 49

171.36 78.27 25.95 18.31 20.84
18 2202 989 225 123 67

265.25 119.56 40.32 29.99 26.55
20 >3000 1814 408 228 120

– 222.30 72.91 54.15 41.62

Table 5.3

Number of conjugate gradient iterations and the CPU time needed at each interior point itera-
tion for the LAD solution when different FSIP is used. The support of the blur is 5 × 5.

PD Itn No Pre Diag Pre FSIP2 FSIP3 FSIP4
10 839 669 57 24 14

79.10 64.95 11.40 9.39 11.76
12 1406 1140 96 38 21

130.74 108.45 17.16 11.94 13.40
14 2199 1672 129 52 28

208.98 164.74 22.31 14.61 15.54
16 >3000 2296 175 73 39

– 222.31 29.55 19.45 18.64
18 >3000 >3000 266 106 54

– – 43.23 26.57 22.80
20 >3000 >3000 378 142 74

– – 59.50 32.89 28.19

Table 5.4

Number of conjugate gradient iterations and the CPU time needed at each interior point itera-
tion for the LAD solution when different FSIP is used. The support of the blur is 9 × 9.

PD Itn No Pre Diag Pre FSIP2 FSIP3 FSIP4
10 1184 578 74 46 30

198.76 100.03 26.66 24.41 25.43
12 1759 940 115 67 46

286.54 157.77 36.17 30.23 31.29
14 2394 1432 175 98 65

389.36 241.66 49.39 38.63 38.23
16 >3000 2093 272 153 97

– 353.55 71.68 54.44 48.50
18 >3000 >3000 409 237 143

– – 100.86 76.32 65.62
20 >3000 >3000 710 402 236

– – 166.37 121.45 96.83



1900 H. FU, M. K. NG, M. NIKOLOVA, AND J. L. BARLOW

Table 5.5

Number of conjugate gradient iterations and the CPU time needed at each interior point itera-
tion for the LAD solution when different FSIP is used. The blur is a 7 × 7 uniform blur.

PD Itn No Pre Diag Pre FSIP2 FSIP3 FSIP4
10 454 346 96 94 88

57.25 44.83 23.69 30.28 38.72
12 731 535 118 113 105

92.19 69.10 28.16 33.76 45.07
14 1241 1022 169 156 141

158.31 135.20 37.24 44.61 55.51
16 1826 1596 250 229 197

221.76 199.87 50.20 61.90 72.77
18 2796 2306 334 287 269

347.30 295.07 66.21 75.45 92.30
20 >3000 >3000 550 464 411

– – 104.73 117.31 136.25

In general, the faster the blurring function decays in space, the more effective the
FSIP is. In that sense, the worst blurring function is a uniform blur. Table 5.5 shows
the performance of the FSIP if a 7 × 7 uniform blur is used.

6. Conclusions. In conclusion, we have proposed efficient algorithms for finding
the LAD or LMN solution for the image restoration problem. We formulated these
problems as solutions to smooth linear or quadratic programming problems, which
are solved by a primal-dual interior point method. The linear system at each interior
point iteration is first reduced to a more compact system and then solved by the PCG
method. The FSIP is used to speed up the convergence of the conjugate gradient
method.

Experimental results indicate that the LAD and LMN solutions have advantages
over the least squares solution. We also demonstrated that the FSIP can speed up
the convergence considerably if a proper sparsity pattern is chosen.
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