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Theorem 1: Under Assumption 1, the dynamic output-feedback H , Filtering for Singular Systems
control law consisting of (8), (32), and (45) forces the aircraft (1) to
globally asymptotically track the reference model (2) if the design Shengyuan Xu, James Lam, and Yun Zou

constantd:;, 1 < i < 5 are chosen such that (35) and (37) hold.

Abstract—This note considers theH ., filtering problem for linear con-
IV. SIMULATIONS tinuous singular systems. The purpose is the design of a linear filter such
that the resulting error system is regular, impulse-free and stable while the
In this section, we perform a numerical simulation to illustrate theosed-loop transfer function from the disturbance to the filtering error

effectiveness of the proposed controller with= 0.8. The observer output satisfies a prescribedH . -norm bound constraint. Without decom-
and control gains are chosen &si = ko1 = kg1 = 1, k1o = koy = posing the original system matrices, a necessary and sufficient condition for
foao = 2 Bt = ko = 015 ka = 5 by — ke = 0.4 }‘ - k- 7 . the solvability of this problem is obtained in terms of a set of linear matrix
32 = & k1 = 2 = U.2d, B3 = Dy R = A5 = U 'r'“ = N7 = 9y jnequalities (LMIs). When these LMIs are feasible, an explicit expression
6 = 0.1, and initial conditions are1(0) = y1(0) = 5,6(0) = 0.2,  of a desired filter is given. Finally, an illustrative example is presented to
22(0) = y2(0) = w(0) = 0.2, 21(0) = §:1(0) = 3,6(0) = 0.1, demonstrate the applicability of the proposed approach.
21 (0) = 41-(0) = 6:(0) = "’2r((].) = ny.((]) = Uf'r(()) =0, Index Terms—Continuous systems,H,, filtering, linear matrix in-
#2(0) = 92(0) = ©(0) = 0. The goal is of forcing the aircraft to track equality, singular systems.
a sinusoid signal 0¥(sin(0.1¢) + 1.2) in the vertical plane generated
by (2). It is shown that there exists - for this case withu}, > 2
(see Assumption 1) and that conditions (35) and (37) hold. The results I. INTRODUCTION
|nclud|ng' norm of observer errors are plotted in Fig. 1. Itis seen thatTpe filtering problem, which is concerned with estimating the
the tracking errors asymptotically converge to zero. state variables of a dynamic system based on the corrupted system
output measurement data, has been widely studied, and has found
V. CONCLUSION many practical applications [1], [17]. One of the most popular ways

to deal with this problem is the celebrated Kalman filtering approach,

We_ have presented a methodology to deveI(_)p_ an °“‘p“t'feedbaﬁhch generally provides an optimal estimation of the state variables
tracking controller for an underactuated nonminimum phase VTOL

. in tthe sense that the covariance of the estimation error is minimized
aircraft. The control development was based on several change . o )
. e - [1]. It is noted that the Kalman filtering approach is based on
coordinates, Lyapunov’s direct method, and an extension of applyi . : .

! ; . - assumptions that the system under consideration has exactly
the backstepping technique, which was presented in Sub-Step 4, dwn dynamics described by certain well-posed model, and its
Section III-C. Current work is underway to extend the propose I urban}(/:es are stationar Gaﬁssian noises vF\:ith known stétistics [1]
methodology to the more realistic case when the system parame 7l licati h y th ) b tI.
are not perfectly known and the aircraft lands arbitrarily fast. N SOme appiications, NOWEVer, e NOISE sources may Not be exactly

known. Also, it has been shown that the standard Kalman filtering
algorithm cannot guarantee satisfactory performance when there are
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pointing out that when parameter uncertainties appear in a systenThe unforced singular system of (1) with{¢) = 0 is as follows:
model, the robust .. filtering problem has been studied recently, .
and a great number of results on this topic have been reported in the (Tu) : Ei(t) = Ax(t). (4)

literature; see, e.g., [8], [9], [12], [24], and the references thereilaor the sin . -
. gular system (4), we adopt the following definition
On the other hand, a great deal of attention has been devoted totm?)ughout this note.

study of singular systems over the past decades. Singular systems afsfinition 1: [7], [13]
also referred to as descriptor systems, implicit systems, generalize@ o

state-space systems, differential-algebraic systems or semi-state s (2.) is said to be regular flet(sE — 4) is not identically

S . - . zero.

tems. Applications of this class of systems can be found in modeling -y . . . L

and control of electrical circuits, power systems, economics and othelll) (““13 ]'; said to be impulse-free Heg(det(sE — A)) =
ramn .

areas [7], [13]. A number of estimation and control issues related to sin-
gular systems have been studied and many results have been reportgg
[6], [7], [21]-[23], [25]. The filtering problem for singular systems has
also been investigated by many researchers. For example, by changi @bl
an estimable discrete-time linear singular system to an equivalent starkI stable. ider the followina filter for th timate )
dard system via orthogonal transformations, a simple optimal filter was ow, we consider the following filter for the estimate ).
obtained in [2], where necessary and sufficient conditions for the con- () : Ef-;i»(t) = As3(t) + Bry(t) (5)
vergence and stability of the derived optimal filter were provided. The ’ ) )
Kalman filtering problem for singular systems was dealt with in [16], (1) =Cra(t) ®)
in which a generalization of the shuffle algorithm was used to 50'Wnerei(t) € R™ andz(t) € R? are the state and the output of the filter,
this problem and some unnecessary assumptions in some ear|ierw?é%§ectively. The matrice; € R**%, 4, € R"™" B, ¢ R"*? and
were removed. For the problem &f. fllterlng for S|.ngular systgms, C € R™*" are to be determined. Let
however, there are still no results available in the literature. This moti-
vates the present study. e(t)y=[=t)" #®)T1"  2(t) = =(t) — 2(¢). 7)

In this note, we deal with thél., filtering problem for singular o )
systems. Attention is focused on the design of a linear filter such thEteM the filtering error dynamics from the systeriy @nd () can
the resulting error system is regular, impulse-free and stable while ff& Written as
closed-loop transfer function from the disturbance to the filtering error () E.é(t) =Ace(t) + Bow(t) ®)
output satisfies a prescribéfl..-norm bound constraint. A necessary ‘
and sufficient condition for the solvability of this problem is obtained
in terms of LMIs. The desired . filter can be constructed by solving ,,here
several certain LMIs, for which the so called interior point algorithms
can be resorted to [4]. It is shown that such an obtained filter is proper E. = {E 0 ] A, = { A 0 ] (10)
with a McMillan degree no more than the number of the exponential 0 Ey B;C Ay
modes of the plant. It is worth pointing out that all these results are ob- B = [ B
tained without decomposing the original system matrices. An example “|BsD
is provided to demonstrate the effectiveness of the proposed approact].he H.

(X.) is said to be stable if all the roots dét(sE — A) =0
have negative real parts.
rlé/) (X, ) is said to be admissible if it is regular, impulse-free and

2(t) =Lee(t) 9)

} L.=[L -C¥]. (11)

filter problem to be addressed in this note is formulated

as follows: given the singular systei)and a prescribed ., bound

~ > 0, determine a filterL ) in the form of (5) and (6) such that the
Throughout this note, for real symmetric matricEsandY’, the filtering error systemY) is admissible and the transfer function from

notation X > Y (respectively, X > Y) means that the matrix w(¢) to z(¢) given as

X — Y is positive—semidefinite (respectively, positive definité). .

is the identity matrix with appropriate dimension. The superscript Ge(s) = Le(sEe — Ac) " Be (12)

“T™ and “+" represent the transpose and the Moore—Penrose Egtisfies

verse, respectively. The notatiafx[0, co) represents the space of

Notation

square-integrable vector functions over [&,). For a given stable Gl < 7 (13)
continuous-time transfer function matrigg(s), its Hoe norm is

defined by||G|l . = sup g ) Tmax (G(jw)). Matrices, if not Remark 1: The requirement on the admissibility of the error dy-
explicitly stated, are assumed to have compatible dimensions. namic systemX) implies that the singular systerix) is admissible.

Therefore, the following development is based on this assumption.

Il. PROBLEM FORMULATION AND DEFINITIONS

. ) . . Ill. MAIN RESULTS
Consider the following class of linear singular systems:

In this section, an LMI approach will be developed to solveihe

(X): Ei(t) =Ax(t) + Bw(t) (1) filtering problem formulated in the previous section. First, we present
y(t) =Ca(t) + Dw(t) (2) the following lemmas which will be used in the proof of our main re-
) sults.
=(t) =La(t) @)

Lemma 1: [14] Consider the singular systerx). Then, the fol-

wherex(t) € R" is the statey(¢) € R™ is the measurement[t) € lowing statements S1) and S2) are equivalent.

RY is the signal to be estimatedj#) € R” is the disturbance input S1)  The following conditions i) and ii) hold simultaneously.
which belongs taC[0, o). The matrixE € R"*" may be singular; i) The singular systemX) with w(¢) = 0 is admissible.
we shall assume thatradk = r < n. A, B, C, D andL are known i) The transfer function given a&(s) = L(sE —
real constant matrices with appropriate dimensions. A)~' B, satisfied|G||_, < 7.
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S2) There exists a matrik satisfying the following LMIs: Considering this and (16) and (17), we can deduce that the makices
- - andY can be written as
E'P=P"E>0 (14) X0 v 0
ATP+PTA PTB LT X=M""|"" N vy=m"T|_ N (26)
T N X2 Xs Y2 V3
B'P -1 0 | <0. (15) )
I 0 I whereX7 = X; > 0,7, =Y; > 0. Then
- i [vi o
Lemma 2: [4] The matrix inequality Yy~ =N [1; Yf';:| M"
LN whereY?" = Y1 = ¥,7' > 0. Set
ZEa 5 0 S0
_ag—T 1 A ": Y =T Nl N Vs
holds if and only if S=u {52 53] N, 5=M {52 SJ A 27)
Zs >0 Zy— ZuZfZy >0 Zy (I —ZsZf) = 0. w=n WOyt eyt T Oy (g
Wy Wy Wy Wy
_Now, we are in a position to present our main result onte  \ nore the matrices;, S:, Wi, Wi, i = 1,2, 3, are selected to satisfy
filtering problem for singular systems. - ] .

Theorem 1: Consider the linear singular system)( Then, there ) Sp =5 Wi =W (29)
exists a filter E) in the form of (5) and (6) such that tHé.., filtering S 0 _ I-XY 0
problem s solvable if and only if there exist matricésY’, &, ¥ andY SoWi + SsWo  S3Wsy -XuY — XuY, T - X35
such that the LMIs shown in (16)—(19) at the bottom of the page hold. (30)
In this case, there exist nonsingular matriSes, W andW such that { W, S, 0 ] B { I-v.X, 0 ]

E'S —=5'E (20) WoSy + WsSy WiSs | | —YaXy —VsXs I-—Ys5Xs|'
[ 31
EW =W'E" (21) _ o that th o - ( )
Xy-! =T — SW 22) By (26)—(31), it can be verified that the matricgsS, W andW given

- - in (27) and (28) satisfy (20)—(23). Furthermore, the nonsingularity of
YT X=I-WS (23) 71— XY~"andI — Y~'X implies that the matriceS, S5, W andW
are nonsingular too.

Next, we will show that the error syster&) in the form of (8) and
(9), derived from the singular systefl@) and the filter £+) whose
E;=E A;=5""Toy'w! (24) parameters are given in (24) and (25), is admissible and its transfer
B; —5 Ty Cy = Ty-lwl (25) function satisfies (13). For this purpose, we define

Y I I X

Proof: I = {Wf 0} I, = {0 S } (32)

Sufficiency: Suppose (16)—(19) hold. Under these conditions, we — o . .
first show that there always exist nonsingular matrisess, 7 and wherey” =Y~ Itis noted that botfil, andIl, are nonsingular. Set
W such that (20)—(23) hold. To this end, we claim that the matrix P =107 (33)
satisfying (17) and (19) is nonsingular. If not, then there exists a vec
1 # 0 such that’n = 0. Thereforen” (A4'Y +Y " A) n = 0. This I
is a contradiction since (19) implies’ Y + YT A < 0. Furthermore, pP= [‘X S } (34)
we assume that, without loss of generalify- X is nonsingular. If not, S =r
we choosd” = (1 — )Y, wherea > 0 is a sufficiently small scalar where
which is not an eigenvalue df— XY ' and satisfies that (19) holds _
for Y. Then, it can be seen that (17) and (18) are satisfied fofthis r=syw. (35)
FurthermoreY — X is nonsingular. Therefore, we can replaceoy
this 7" to satisfy the above requirements without violating (17)—(19}t follows from (20)(23) that
From this, it is easy to show that bafh- XY~ andl — Y ' X are ETr
?hoags[i;]gular. Now, we choose two nonsingular matrigeandN such ~ _ ETsyw l=w T (WT ET SY) Wwlew TEWSTW !

Then, the parameters of a desit#d, filter given in the form of (14)
and (15) can be chosen as

t'Pl’r1en, it can be verified tha? is nonsingular, and

=WTTEI-YX)YW '=W TE(Y -YXY)W™'

LY I 0 7 1 ¥, ¥, 1 T~xrT T < 1

E=M, 4N =W 'EY (Y - X)YW '=w 'Y [E (v - X)] ywo
E'X=X'E>0 (16)
E'Y=Y"E >0 @7
E"(X -Y)>0 (18)

ATY 4774 ATX +YTA+CTOT + 07 Y'B LT -7
XTA+ATY +9C+d XTA+A'X+9C +CtO?" X'B4+OD L <0 (19)
BTY BTX + DT@T —~?] 0 )

L-7 L 0 -1
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By (16)—(18), we have

Efr=T'E<0. (36)

Therefore

E"P=P"E (37)

where E = diag(E, E). Noting the nonsingularity of and using
(36), (20), and (22), we have

E'X + ETST! ( TET) r~"E"S
:ETX+STEF’1( ) r7p’s
=E'X +5'T'E! (r* B! ) r'g’s
=ET'X 4+ ST TETS=E"X + STEr 'S
—E"X +ETSrT's = E" (X + 5T s)

=E" (X+SWY)=E" [X+(I-XT) Y]=E'Y>0. (38)
Furthermore, considering th&il ! is symmetric, we obtain
EYST {I— (-rE") (—r*’f’E’)q
=S"Er? {I — (BT " ((EF’1)+)T}
=s" B! {I— ((er=)* (Ef‘l))T]
=s" B0 [1- (BT )" (BT )]
=57 [El"’l —(Br Yy (Er1)"* (EF’I)] —0. (39

Taking into account (38) and (39) and using Lemma 2, we can deduce

ETX  ETST!
|:F—TE'TS —F_TET:| 2 0 (40)

Premultiplying (40) bydiag(I, T7) and postmultiplying (40) by

diag(I, T') give

E'X E'S
By noting (37), we can rewrite (41) as
E"P=P"E>0 (42)

On the other hand, premultiplying (19) kjag(Y'T, I, I, I) and

post-multiplying (19) byliag(Y", I, I, I'), we have the equation shown

at the bottom of the page. This can be rewritten as
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where the matricest., B. and L. are given in (10) and (11) with
the parametersiy, By and Cy given in (24) and (25). Then, pre-
multiplying (43) by diag(II; ~,I,I) and postmultiplying (43) by

diag(II7", I, 1), we obtain
ATp+PTa, P'B. LT
B'P -1 0 | <o. (44)
L. 0o I

Noting this and (42) and using Lemma 1, we have that the error system
(%) resulting from the singular systeril) and the filter £ ;) with the
parameters given in (24) and (25) is admissible and its transfer function
satisfies (13). This completes the proof of sufficiency.

Necessity: Suppose that thél.. filtering problem is solvable;
that is, there exists a filte?{;) such that the error systerix) in the
form of (8) and (9) is admissible and its transfer function satisfies (13).
Then, by Lemma 1, there exists a matfix such that

E'P.=P'E. >0 (45)
AlP.+P'A. PI'B. LI
BTP. —*I 0 | <o. (46)
L. 0 -1
Without loss of generality, we assume
ft > n + rank Ej. (47)

If not, we can choos&; € R"*", A; € R"*" B; € R"*” and
C; € R to replaceEy, Ay, By andCf, respectlvely, such that
7 > n+rank Ey and (45) and (46) still hold for som. as follows.
First, set

- Ef 01 - [A; 01 5 [By
EfZ{Of 0} Af:[oj —I} Bf:[of}

Cr=1Cy 0] (48)
with 72 > n + rank E¢. Then, choose
- P. 0

r=[5 7] (49)

It can be verified thaF';, A, By andC/s in (48) together withP. in
(49) satisfy (45) and (46). Therefore, the required assumption is satis-
fied. Now, it is easy to see that the LMI in (46) implies

Al'P.+ P <o (50)
This implies that the matri¥®. is nonsingular. Writd”. and "
Pcl PCZZ —1 |:ch Q62 :|
P. = P = 51
|:PC'J Pc4:| QC3 Qc4 ( )

where the partition is compatible with that df. Next, we will show
that P, and().: are nonsingular. To this end, we note that from (45)
it can be seen that

E"P,=PTE>0
Ef P =PLE; > 0.

(52)
(53)
On the other hand, it is easy to see that the 2—-2 block of (50) gives

N7 AT P, + 07 PTAIL, OTPTB. niL? Pydj+A; Pt <0 (54)
[ BIPII, —~*I 0 ] <0 (43) which implies that P.. is nonsingular. Now, premultiplying
L., 0 _I (45) by P-T and postmultiplying (45) byP~'  result in
VA" + AY ViA'X +A+Y e + Yy e B viLt -yt
XTAY + AT 4 ¥CY + oY XTA+ATX +vC + 0Tt X'B+ 9D L
BT BTX +DTw" AT 0 <0
LY —YY L 0 -1
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P-TET = E.P-' > 0. The 1-1 block of this inequality diag(Q;",I,1,I) and postmultiplying (58) byliag(Q=',I,1,1)
gives give (59), as shown at the bottom of the page. Set
QLE" = EQ.i > 0. (55) X=P1 Y=Qi, ®=P34;Q:Q.

v —1
Premultiplying (50) byP~" and postmultiplying (50) by?~", we ¥=FaBs  T=Crlala
haveP-T AT + A.P7' < 0. Then, the 1-1 block of this inequality Then, the inequalities in (52) and (59) provide (16) and (19), respec-
givesAQ.: + Q5 A < 0. This implies thaty.., is nonsingular. tively. Also, (55) implies’ Q. = Q,,TE > 0, which gives (17).

In the following, without loss of generality, we assume that the maNoting Q.1 = (Pcl - PczP;fPC;;)_l, and using (53), we have

trix P.s is of full column rank. If not, we can choose anottferto re- 7 . 7 _ - i
placeP, such that?. satisfies the assumption and the inequalities (45) £ (Pt = Qo) = E" PoPly Pes = P EpPiy Pos 20
and (46) simultaneously as follows. First, considering (47), we chooggich provides (18). This completes the proof. 0

: ft X1 H : : T —
amatrix(2 € R""" with full-column rank satisfyingZs €2 = 0. Then,  pemark 2: Theorem 1 provides a necessary and sufficient condition
we choose a nonsingular matri such that for the design of filters such that the resulting error system is admis-
O ] sible and the transfer function satisfies a prescrilied-norm bound

Q0 = [ constraint. It is noted that a desired filter can be obtained by solving

0 LMls in (16)—(19), which can be implemented easily by resorting to

whereQ; € R"*" is nonsingular. Partitio@ P; as the so-called interior point algorithms and no tuning of parameters is
P required [4]. It is also worth mentioning that the optimal filter in the
QP.3 = {P?ﬂ ] sense that the minimuti ., norm-~ is approached can be obtained by

solving the following optimization problem:
whereP.;; € R™™"™. Now, we choose a sufficiently small scatar> .
0 such thatx is not an eigenvalue of(2; ! P.3; and the matrixP, x,»%,%x v

defined as subject toy > 0 and the LMIs in (16)~(19).
P=Pta {0 0} (56) Remark 3: From the proof of Theorem 1, it can be seen that the de-
© ; Q0 signed filter £ ) with parameters given by (24) and (25) is admissible
. and the number of the finite modes of this filter equals to r&hkn
satisfies (45) and (46). Then, the 2-1 blockl®fin (56) is other words, this filter is proper with a McMillan degree no more than
. . [aSh + P the number of the exponential modes of the given plant.
Pis+aQ=Q  (QPFPs+aQ)=2Q { P } Remark 4: In the case when the matri® = I, that is, the singular

system E) reduces to a usual state-space system, it can be shown that
which is of full-column rank. Note thaE! . = PYE. = E'' P. > 0. theresult presented in Theorem 1 coincides with that in [12] if there are
Thus, P. given in (56) satisfies the assumption. Now, by some calcul&0 parameter uncertainties in a state-space model. Therefore, Theorem

tion, it can be verified thaf).3 = _P;lpcg(Pﬂ — PCQP;lpcg)—‘ . 1can be regarded as an extension of the exidingresults for state-

SinceP.s can be chosen to be of full-column rank, we have thag  Space systems to singular systems.

can be chosen to be of full-column rank too. Set Remark 5: In the case when a filter to be designed is assumed to
R Ou T } I P, be with the same dimen;ion of the descriptor variable vector as the
I = {sz 0] I, = {O PPJ . plant, a Luenberger-type filter can be adopted. Under the assumption of

the detectability, the filter gain can be determined through the method
Then, it can be seen that bdih andil, are of full-column rank. Fur- 9iven in [7]. It is noted that Luenberger-type filters are different from
thermore, it is easy to see that those considered in the present note. Therefore, different assumptions
. . will be required for singular systems.
PO, = 1I,. (57)

Now, premultiplying (46) bydiag(II¥,I,I) and postmultiplying IV. AN ILLUSTRATIVE EXAMPLE

(46) by diag(II;, I, I), we have (58), as shown at the bottom of the In this section, an illustrative example is provided to demonstrate the
page, where the relationship in (57) is used. Premultiplying (58) lapplicability of the proposed approach.

AQu+QhH A" A4QL AT Pat Qi CT Bf PestQis A} Pes B QLL"-QLCY
A'4PYAQa+PLBrCQu+P5A; Qs PAA+A" PutPLB;C+C " Bf Pis PhB+P5ByD Lt <0 (58)
B! B! PutD' B Pus —*T 0
Lch _CchJ L 0 -1
JQa AT Q' A+AT PatCT B Pt QGATPs - QE'B LT-Q5"QACT
AT Q4P A+PL B CHPL A Qus Q! PLA+AT Po+PLByCHC" B Pes PLB+PLB;D L’ 0
BY Q' B' P.+D" B} P.s 2T 0 :
L-CrQeQ5! L 0 g

(59)
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Consider the linear singular systei)(with parameters as follows: ficient condition for the existence of a linear filter has been obtained,
which guarantees that the resulting error system is regular, impulse-free

2 2 0 1.5 04 —0.9

E=|-2 4 —6|,A=]-06 —44 18
1 4 -3 0.7 24 4.3
—0.6 —1.1

B=| 42 52 C:{_lof ﬁ _00%4]
52 3.7 ' ‘ :

1 0 0 2 0
D_{—l 0.5]’L_ {—0.5 -1 1.5]' H
The purpose of this example is to design a filter in the form of (5) and g
(6) such that the resulting error system is admissible and the transfer
function satisfies a prespecifiédl.. -norm bound. In this example, we  [3]
suppose that th& ..-norm boundy is specified to be 0.8. To solve the 4]
problem, we resort to the Matlab LMI Control Toolbox and obtain the
solutions to the LMIs in (16)—(19) as follows:

[5]

—0.9773 —1.6997 —0.3836
X=| 00247 06069 —0.0293
—0.2138 —0.9876 —0.3322 (61
T—0.5301 —0.6252 —0.1239 7]
Y =] 00701 01925 —0.0129
| —0.2012 —0.3293 —0.0908 (8]
r0.6831  0.1768 [9]
¥ = | 11537 —0.5011
12,6019 1.1420 0]
[2.4627  0.8777 0.7006
®=|58168 62856 3.3032
|0.2743 —3.2426  1.4838 (11
0 2 0
T:[—os -1 1.5}' [12]

Therefore, it follows from Theorem 1 that t#&.. filtering problem is

solvable. To construct a desired filter, we choése S = X, and [13]

4.0229  2.8495 —6.2607 (14]
W=W=|-21620 —4.3194  3.6649
—3.2722 85221 11.1959 [15]

Then, it can be shown that the matricgsS, W andW chosen before
satisfy (20)—(23). Thus, by Theorem 1 again, a desired filter can b&el
constructed as

2 2 0 (17]
(Zy) : -2 4 =6 [18]
1 4 -3
4.9440  4.8051 —0.2140 [19]
= | -12.1272 —31.7857  1.5735 | &(¢)
—4.9056 —17.0092  6.4728 [20]
0.8920  0.4435
+ | -9.1315 —5.3872 | y(t) [21]
~8.3272 —3.4752
) —0.4670 —2.9770  0.01627 ..
) = 15620 —2.0665 |~ 1221

0.7433

It is easy to verify that this filter is admissible, and the resulting error[23]

system satisfies the design requirements. Furthermore, the ogfimal

norm can be calculated to be 0.1895. [24]
V. CONCLUSION

. . — . 25
In this note, we have studied tHé.. filtering problem for contin- [25]
uous singular systems. In terms of a set of LMIs, a necessary and suf-

and stable while the closed-loop transfer function from the disturbance
to the filtering error output satisfies a prescribiéd. -norm bound con-
straint. An example has been provided to illustrate the effectiveness of
the proposed approach.
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