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Theorem 1: Under Assumption 1, the dynamic output-feedback
control law consisting of (8), (32), and (45) forces the aircraft (1) to
globally asymptotically track the reference model (2) if the design
constantski, 1 � i � 5 are chosen such that (35) and (37) hold.

IV. SIMULATIONS

In this section, we perform a numerical simulation to illustrate the
effectiveness of the proposed controller with" = 0:8. The observer
and control gains are chosen as:k11 = k21 = k31 = 1, k12 = k22 =
k32 = 2, k1 = k2 = 0:15, k3 = 5, k4 = k5 = 0:4, k6 = k7 = 5,
� = 0:1, and initial conditions arex1(0) = y1(0) = 5, �(0) = 0:2,
x2(0) = y2(0) = !(0) = 0:2, x̂1(0) = ŷ1(0) = 3, �̂(0) = 0:1,
x1r(0) = y1r(0) = �r(0) = x2r(0) = y2r(0) = !r(0) = 0,
x̂2(0) = ŷ2(0) = !̂(0) = 0. The goal is of forcing the aircraft to track
a sinusoid signal of5(sin(0:1t) + 1:2) in the vertical plane generated
by (2). It is shown that there existsu1r for this case withu�1r > 2
(see Assumption 1) and that conditions (35) and (37) hold. The results
including norm of observer errors are plotted in Fig. 1. It is seen that
the tracking errors asymptotically converge to zero.

V. CONCLUSION

We have presented a methodology to develop an output-feedback
tracking controller for an underactuated nonminimum phase VTOL
aircraft. The control development was based on several changes of
coordinates, Lyapunov’s direct method, and an extension of applying
the backstepping technique, which was presented in Sub-Step 1.1,
Section III-C. Current work is underway to extend the proposed
methodology to the more realistic case when the system parameters
are not perfectly known and the aircraft lands arbitrarily fast.
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Filtering for Singular Systems

Shengyuan Xu, James Lam, and Yun Zou

Abstract—This note considers the filtering problem for linear con-
tinuous singular systems. The purpose is the design of a linear filter such
that the resulting error system is regular, impulse-free and stable while the
closed-loop transfer function from the disturbance to the filtering error
output satisfies a prescribed -norm bound constraint. Without decom-
posing the original system matrices, a necessary and sufficient condition for
the solvability of this problem is obtained in terms of a set of linear matrix
inequalities (LMIs). When these LMIs are feasible, an explicit expression
of a desired filter is given. Finally, an illustrative example is presented to
demonstrate the applicability of the proposed approach.

Index Terms—Continuous systems, filtering, linear matrix in-
equality, singular systems.

I. INTRODUCTION

The filtering problem, which is concerned with estimating the
state variables of a dynamic system based on the corrupted system
output measurement data, has been widely studied, and has found
many practical applications [1], [17]. One of the most popular ways
to deal with this problem is the celebrated Kalman filtering approach,
which generally provides an optimal estimation of the state variables
in the sense that the covariance of the estimation error is minimized
[1]. It is noted that the Kalman filtering approach is based on
the assumptions that the system under consideration has exactly
known dynamics described by certain well-posed model, and its
disturbances are stationary Gaussian noises with known statistics [1].
In some applications, however, the noise sources may not be exactly
known. Also, it has been shown that the standard Kalman filtering
algorithm cannot guarantee satisfactory performance when there are
parameter uncertainties in a system model [5]; these limit the scope
of applications of the Kalman filtering technique. In view of these,
an alternative estimation method based onH1 filtering technique
has been proposed recently. The objective is to find a filter such that
the resulting filtering error system is asymptotically stable and the
L2-induced norm (for continuous systems) orl2-induced norm (for
discrete systems) from the input disturbances to the filtering error
output satisfies a prescribedH1 performance level. In contrast to
the traditional Kalman filtering, theH1 filtering approach does not
require knowledge of the statistical properties of the external noise.
Furthermore, it has been shown that theH1 filtering technique
provides both a guaranteed noise attenuation level and robustness
against unmodeled dynamics [15]. These features render theH1

filtering technique useful in practical applications. Various approaches,
such as the convex optimization approach or the linear matrix inequality
(LMI) approach [3], [18], interpolation approach [10], polynomial
equation approach [11], algebraic Riccati equation approach [15],
[20], frequency domain approach [19], to name just a few, have been
successfully proposed to solve theH1 filtering problem. It is worth

Manuscript received December 23, 2002; revised April 11, 2003 and Au-
gust 28, 2003. Recommended by Associate Editor C. D. Charalambous. This
work was supported by HKU CRCG under Grant 10203795, William Mong
Young Researcher Award, the Foundation for the Author of National Excellent
Doctoral Dissertation of China under Grant 200240, and the National Science
Foundation of China under Grant 60074007.

S. Xu and J. Lam are with the Department of Mechanical Engineering, Uni-
versity of Hong Kong, Hong Kong (e-mail: james.lam@hku.hk).

Y. Zou is with the Department of Automation, Nanjing University of Science
and Technology, Nanjing 210094, China.

Digital Object Identifier 10.1109/TAC.2003.820149

0018-9286/03$17.00 © 2003 IEEE



2218 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 12, DECEMBER 2003

pointing out that when parameter uncertainties appear in a system
model, the robustH1 filtering problem has been studied recently,
and a great number of results on this topic have been reported in the
literature; see, e.g., [8], [9], [12], [24], and the references therein.

On the other hand, a great deal of attention has been devoted to the
study of singular systems over the past decades. Singular systems are
also referred to as descriptor systems, implicit systems, generalized
state-space systems, differential-algebraic systems or semi-state sys-
tems. Applications of this class of systems can be found in modeling
and control of electrical circuits, power systems, economics and other
areas [7], [13]. A number of estimation and control issues related to sin-
gular systems have been studied and many results have been reported
[6], [7], [21]–[23], [25]. The filtering problem for singular systems has
also been investigated by many researchers. For example, by changing
an estimable discrete-time linear singular system to an equivalent stan-
dard system via orthogonal transformations, a simple optimal filter was
obtained in [2], where necessary and sufficient conditions for the con-
vergence and stability of the derived optimal filter were provided. The
Kalman filtering problem for singular systems was dealt with in [16],
in which a generalization of the shuffle algorithm was used to solve
this problem and some unnecessary assumptions in some earlier works
were removed. For the problem ofH1 filtering for singular systems,
however, there are still no results available in the literature. This moti-
vates the present study.

In this note, we deal with theH1 filtering problem for singular
systems. Attention is focused on the design of a linear filter such that
the resulting error system is regular, impulse-free and stable while the
closed-loop transfer function from the disturbance to the filtering error
output satisfies a prescribedH1-norm bound constraint. A necessary
and sufficient condition for the solvability of this problem is obtained
in terms of LMIs. The desiredH1 filter can be constructed by solving
several certain LMIs, for which the so called interior point algorithms
can be resorted to [4]. It is shown that such an obtained filter is proper
with a McMillan degree no more than the number of the exponential
modes of the plant. It is worth pointing out that all these results are ob-
tained without decomposing the original system matrices. An example
is provided to demonstrate the effectiveness of the proposed approach.

Notation

Throughout this note, for real symmetric matricesX andY , the
notationX � Y (respectively,X > Y ) means that the matrix
X � Y is positive–semidefinite (respectively, positive definite).I

is the identity matrix with appropriate dimension. The superscript
“T ” and “+” represent the transpose and the Moore–Penrose in-
verse, respectively. The notationL2[0; 1) represents the space of
square-integrable vector functions over [0,1). For a given stable
continuous-time transfer function matrixG(s), its H1 norm is
defined bykGk

1
= sup!2[0;1) �max (G(j!)). Matrices, if not

explicitly stated, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION AND DEFINITIONS

Consider the following class of linear singular systems:

(�) : E _x(t) =Ax(t) +B!(t) (1)

y(t) =Cx(t) +D!(t) (2)

z(t) =Lx(t) (3)

wherex(t) 2 n is the state;y(t) 2 m is the measurement;z(t) 2
q is the signal to be estimated;!(t) 2 p is the disturbance input

which belongs toL2[0; 1). The matrixE 2 n�n may be singular;
we shall assume that rankE = r � n. A, B, C, D andL are known
real constant matrices with appropriate dimensions.

The unforced singular system of (1) with!(t) = 0 is as follows:

(�u) : E _x(t) = Ax(t): (4)

For the singular system (4), we adopt the following definition
throughout this note.

Definition 1: [7], [13]

I) (�u) is said to be regular ifdet(sE � A) is not identically
zero.

II) (�u) is said to be impulse-free ifdeg(det(sE � A)) =
rank E.

III) (�u) is said to be stable if all the roots ofdet(sE�A) = 0
have negative real parts.

IV) (�u) is said to be admissible if it is regular, impulse-free and
stable.

Now, we consider the following filter for the estimate ofz(t):

(�f ) : Ef

:

x̂(t) =Af x̂(t) +Bfy(t) (5)

ẑ(t) =Cf x̂(t) (6)

wherex̂(t) 2 n̂ andẑ(t) 2 q are the state and the output of the filter,
respectively. The matricesEf 2

n̂�n̂,Af 2
n̂�n̂,Bf 2

n̂�p and
Cf 2

q�n̂ are to be determined. Let

e(t) = [ x(t)T x̂(t)T ]T ~z(t) = z(t)� ẑ(t): (7)

Then, the filtering error dynamics from the systems (�) and (�f ) can
be written as

(~�) : Ec _e(t) =Ace(t) +Bc!(t) (8)

~z(t) =Lce(t) (9)

where

Ec =
E 0

0 Ef

Ac =
A 0

BfC Af

(10)

Bc =
B

BfD
Lc = [L �Cf ] : (11)

TheH1 filter problem to be addressed in this note is formulated
as follows: given the singular system (�) and a prescribedH1 bound

 > 0, determine a filter (�f ) in the form of (5) and (6) such that the
filtering error system (~�) is admissible and the transfer function from
!(t) to ~z(t) given as

Gc(s) = Lc(sEc � Ac)
�1
Bc (12)

satisfies

kGck1 < 
: (13)

Remark 1: The requirement on the admissibility of the error dy-
namic system (~�) implies that the singular system (�) is admissible.
Therefore, the following development is based on this assumption.

III. M AIN RESULTS

In this section, an LMI approach will be developed to solve theH1
filtering problem formulated in the previous section. First, we present
the following lemmas which will be used in the proof of our main re-
sults.

Lemma 1: [14] Consider the singular system (�). Then, the fol-
lowing statements S1) and S2) are equivalent.

S1) The following conditions i) and ii) hold simultaneously.

i) The singular system (�) with !(t) � 0 is admissible.
ii) The transfer function given asG(s) = L(sE �

A)�1B, satisfieskGk
1
< 
.
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S2) There exists a matrixP satisfying the following LMIs:

E
T
P = P

T
E � 0 (14)

ATP + P TA P TB LT

BTP �
2I 0

L 0 �I

<0: (15)

Lemma 2: [4] The matrix inequality

Z1 Z2

ZT
2 Z3

� 0

holds if and only if

Z3 � 0 Z1 � Z2Z
+

3 Z
T
2 � 0 Z2 I � Z3Z

+

3 = 0:

Now, we are in a position to present our main result on theH1
filtering problem for singular systems.

Theorem 1: Consider the linear singular system (�). Then, there
exists a filter (�f ) in the form of (5) and (6) such that theH1 filtering
problem is solvable if and only if there exist matricesX,Y ,�,	 and�
such that the LMIs shown in (16)–(19) at the bottom of the page hold.
In this case, there exist nonsingular matricesS, ~S,W and ~W such that

E
T ~S =ST

E (20)

EW = ~WT
E

T (21)

XY
�1 =I � ~SW (22)

Y
�1
X =I � ~WS: (23)

Then, the parameters of a desiredH1 filter given in the form of (14)
and (15) can be chosen as

Ef =E Af = S
�T�Y �1W�1 (24)

Bf =S
�T	 Cf = �Y �1W�1

: (25)

Proof:
Sufficiency: Suppose (16)–(19) hold. Under these conditions, we

first show that there always exist nonsingular matricesS, ~S, W and
~W such that (20)–(23) hold. To this end, we claim that the matrixY

satisfying (17) and (19) is nonsingular. If not, then there exists a vector
� 6= 0 such thatY � = 0. Therefore,�T ATY + Y TA � = 0. This
is a contradiction since (19) impliesATY + Y TA < 0. Furthermore,
we assume that, without loss of generality,Y �X is nonsingular. If not,
we choosêY = (1� �)Y , where� > 0 is a sufficiently small scalar
which is not an eigenvalue ofI �XY �1 and satisfies that (19) holds
for Ŷ . Then, it can be seen that (17) and (18) are satisfied for thisŶ .
Furthermore,̂Y � X is nonsingular. Therefore, we can replaceY by
this Ŷ to satisfy the above requirements without violating (17)–(19).
From this, it is easy to show that bothI �XY �1 andI � Y �1X are
nonsingular. Now, we choose two nonsingular matricesM andN such
that [7]

E =M
I 0

0 0
N:

Considering this and (16) and (17), we can deduce that the matricesX

andY can be written as

X =M
�T X1 0

X2 X3

N Y =M
�T Y1 0

Y2 Y3
N (26)

whereXT
1 = X1 � 0, Y T

1 = Y1 > 0. Then

Y
�1 = N

�1 Ŷ1 0

Ŷ2 Ŷ3
M

T

whereŶ T
1 = Ŷ1 = Y �11 > 0. Set

S =M�T S1 0

S2 S3
N; ~S=M�T

~S1 0
~S2 ~S3

N (27)

W =N�1
W1 0

W2 W3

M
T
; ~W=N�1

~W1 0
~W2

~W3

M
T (28)

where the matricesSi, ~Si,Wi, ~Wi, i = 1; 2; 3, are selected to satisfy

S
T
1 = ~S1 W1 = ~WT

1 (29)
~S1W1 0

~S2W1 + ~S3W2
~S3W3

=
I �X1Ŷ1 0

�X2Ŷ1 �X3Ŷ2 I �X3Ŷ3

(30)
~W1S1 0

~W2S1 + ~W3S2 ~W3S3
=

I � Ŷ1X1 0

�Ŷ2X1 � Ŷ3X3 I � Ŷ3X3

:

(31)

By (26)–(31), it can be verified that the matricesS, ~S,W and ~W given
in (27) and (28) satisfy (20)–(23). Furthermore, the nonsingularity of
I �XY �1 andI � Y �1X implies that the matricesS, ~S,W and ~W
are nonsingular too.

Next, we will show that the error system (~�) in the form of (8) and
(9), derived from the singular system (�) and the filter (�f ) whose
parameters are given in (24) and (25), is admissible and its transfer
function satisfies (13). For this purpose, we define

�1 =
�Y I

W 0
�2 =

I X

0 S
(32)

where�Y = Y �1. It is noted that both�1 and�2 are nonsingular. Set

P̂ = �2�
�1

1 : (33)

Then, it can be verified that̂P is nonsingular, and

P̂ =
X ~S

S ��
(34)

where

� = S �YW�1
: (35)

It follows from (20)–(23) that

E
T�

=ET
S �Y W�1=W�T

W
T
E

T
S �Y W

�1=W�T
E ~WS �Y W�1

=W�T
E I � �Y X �YW�1 =W

�T
E �Y � �Y X �Y W

�1

=W�T
E �Y (Y �X) �YW�1=W�T �Y T

E
T (Y �X) �YW�1

:

E
T
X = X

T
E � 0 (16)

E
T
Y = Y

T
E �0 (17)

E
T (X � Y ) �0 (18)

AT Y + Y TA ATX + Y TA+ CT	T + �T Y TB LT ��T

XTA +AT Y +	C + � XTA +ATX +	C + CT	T XTB +	D LT

BTY BTX +DT	T �
2I 0

L�� L 0 �I

<0: (19)
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By (16)–(18), we have

E
T� = �TE � 0: (36)

Therefore

Ê
T
P̂ = P̂

T
Ê (37)

whereÊ = diag(E;E). Noting the nonsingularity of� and using
(36), (20), and (22), we have

E
T
X +E

T ~S��1 ��TET
+

��TET
S

=ET
X + S

T
E��1 ��TET

+

��TET
S

=ET
X + S

T��TET ��TET
+

��TET
S

=ET
X + S

T��TET
S = E

T
X + S

T
E��1S

=ET
X +E

T ~S��1S = E
T

X + ~S��1S

=ET
X+~SWY =ET

X+ I�X �Y Y =ET
Y �0: (38)

Furthermore, considering thatE��1 is symmetric, we obtain

E
T ~S��1 I � ���TET

���TET
+

=STE��1 I � (E��1)T E��1
+ T

=STE��1 I � E��1
+
(E��1)

T

=STE��1 I � E��1
+
(E��1)

=ST E��1 � (E��1) E��1
+
(E��1) = 0: (39)

Taking into account (38) and (39) and using Lemma 2, we can deduce

ETX ET ~S��1

��TETS ���TET � 0: (40)

Premultiplying (40) bydiag(I; �T ) and postmultiplying (40) by
diag(I; �) give

ETX ET ~S

ETS �ET�
� 0: (41)

By noting (37), we can rewrite (41) as

Ê
T
P̂ = P̂

T
Ê � 0: (42)

On the other hand, premultiplying (19) bydiag(�Y T ; I; I; I) and
post-multiplying (19) bydiag(�Y ; I; I; I), we have the equation shown
at the bottom of the page. This can be rewritten as

�T
1 A

T
c P̂�1 +�T

1 P̂
TAc�1 �T

1 P̂
TBc �T

1 L
T
c

BT
c P̂�1 �
2I 0

Lc�1 0 �I

< 0 (43)

where the matricesAc, Bc andLc are given in (10) and (11) with
the parametersAf , Bf andCf given in (24) and (25). Then, pre-
multiplying (43) by diag(��T1 ; I; I) and postmultiplying (43) by
diag(��11 ; I; I), we obtain

AT
c P̂ + P̂ TAc P̂ TBc LTc

BT
c P̂ �
2I 0

Lc 0 �I

< 0: (44)

Noting this and (42) and using Lemma 1, we have that the error system
(~�) resulting from the singular system (�) and the filter (�f ) with the
parameters given in (24) and (25) is admissible and its transfer function
satisfies (13). This completes the proof of sufficiency.

Necessity: Suppose that theH1 filtering problem is solvable;
that is, there exists a filter (�f ) such that the error system (~�) in the
form of (8) and (9) is admissible and its transfer function satisfies (13).
Then, by Lemma 1, there exists a matrixPc such that

E
T
c Pc = P

T
c Ec � 0 (45)

AT
c Pc + P T

c Ac P T
c Bc LTc

BT
c Pc �
2I 0

Lc 0 �I

<0: (46)

Without loss of generality, we assume

n̂ � n+ rank Ef : (47)

If not, we can choose~Ef 2
~n�~n, ~Af 2

~n�~n, ~Bf 2
~n�p and

~Cf 2
q�~n to replaceEf , Af , Bf andCf , respectively, such that

~n � n+ rankEf and (45) and (46) still hold for some~Pc as follows.
First, set

~Ef =
Ef 0

0 0
~Af =

Af 0

0 �I
~Bf=

Bf

0

~Cf = [Cf 0 ] (48)

with ~n � n + rank Ef . Then, choose

~Pc =
Pc 0

0 I
: (49)

It can be verified that~Ef , ~Af , ~Bf and ~Cf in (48) together with~Pc in
(49) satisfy (45) and (46). Therefore, the required assumption is satis-
fied. Now, it is easy to see that the LMI in (46) implies

A
T
c Pc + P

T
c Ac < 0: (50)

This implies that the matrixPc is nonsingular. WritePc andP�1c as

Pc =
Pc1 Pc2

Pc3 Pc4
P
�1
c =

Qc1 Qc2

Qc3 Qc4

(51)

where the partition is compatible with that ofAc. Next, we will show
thatPc4 andQc1 are nonsingular. To this end, we note that from (45)
it can be seen that

E
T
Pc1 =P

T
c1E � 0 (52)

E
T
f Pc4 =P

T
c4Ef � 0: (53)

On the other hand, it is easy to see that the 2–2 block of (50) gives

P
T
c4Af +A

T
f Pc4 < 0 (54)

which implies that Pc4 is nonsingular. Now, premultiplying
(45) by P�Tc and postmultiplying (45) byP�1c result in

�Y TAT + A �Y �Y TATX + A+ �Y TCT	T + �Y T�T B �Y TLT � �Y T�T

XTA �Y + AT +	C �Y + ��Y XTA+ATX +	C + CT	T XTB +	D LT

BT BTX +DT	T
�
2I 0

L�Y ���Y L 0 �I

< 0:
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P�Tc ET
c = EcP

�1

c � 0. The 1–1 block of this inequality
gives

Q
T
c1E

T = EQc1 � 0: (55)

Premultiplying (50) byP�Tc and postmultiplying (50) byP�1c , we
haveP�Tc AT

c + AcP
�1

c < 0. Then, the 1–1 block of this inequality
givesAQc1 +QT

c1A < 0. This implies thatQc1 is nonsingular.
In the following, without loss of generality, we assume that the ma-

trix Pc3 is of full column rank. If not, we can choose anotherP̂c to re-
placePc such thatP̂c satisfies the assumption and the inequalities (45)
and (46) simultaneously as follows. First, considering (47), we choose
a matrix
 2 n̂�n with full-column rank satisfyingET

f 
 = 0. Then,
we choose a nonsingular matrixQ such that

Q
 =

1
0

where
1 2 n�n is nonsingular. PartitionQPc3 as

QPc3 =
Pc31

Pc32

wherePc31 2 n�n. Now, we choose a sufficiently small scalar� >
0 such that� is not an eigenvalue of�
�1

1
Pc31 and the matrixP̂c

defined as

P̂c = Pc + �
0 0


 0
(56)

satisfies (45) and (46). Then, the 2–1 block ofP̂c in (56) is

Pc3 + �
 = Q�1 (QPc3 + �Q
) = Q�1
�
1 + Pc31

Pc32

which is of full-column rank. Note thatET
c P̂c = P̂ T

c Ec = ET
c Pc � 0.

Thus,P̂c given in (56) satisfies the assumption. Now, by some calcula-
tion, it can be verified thatQc3 = �P

�1

c4 Pc3(Pc1 � Pc2P
�1

c4 Pc3)
�1.

SincePc3 can be chosen to be of full-column rank, we have thatQc3

can be chosen to be of full-column rank too. Set

~�1 =
Qc1 I

Qc3 0
~�2 =

I Pc1

0 Pc3
:

Then, it can be seen that both~�1 and~�2 are of full-column rank. Fur-
thermore, it is easy to see that

Pc ~�1 = ~�2: (57)

Now, premultiplying (46) bydiag(~�T
1 ; I; I) and postmultiplying

(46) bydiag(~�1; I; I), we have (58), as shown at the bottom of the
page, where the relationship in (57) is used. Premultiplying (58) by

diag(Q�Tc1 ; I; I; I) and postmultiplying (58) bydiag(Q�1c1 ; I; I; I)
give (59), as shown at the bottom of the page. Set

X =Pc1 Y = Q
�1

c1 ; � = P
T
c3AfQc3Q

�1

c1

	 =PT
c3Bf ; � = CfQc3Q

�1

c1 :

Then, the inequalities in (52) and (59) provide (16) and (19), respec-
tively. Also, (55) impliesETQ�1c1 = Q�Tc1 E � 0, which gives (17).
NotingQc1 = Pc1 � Pc2P

�1

c4 Pc3
�1

, and using (53), we have

E
T (Pc1 �Q

�1

c1 ) = E
T
Pc2P

�1

c4 Pc3 = P
T
c3EfP

�1

c4 Pc3 � 0

which provides (18). This completes the proof.
Remark 2: Theorem 1 provides a necessary and sufficient condition

for the design of filters such that the resulting error system is admis-
sible and the transfer function satisfies a prescribedH1-norm bound
constraint. It is noted that a desired filter can be obtained by solving
LMIs in (16)–(19), which can be implemented easily by resorting to
the so-called interior point algorithms and no tuning of parameters is
required [4]. It is also worth mentioning that the optimal filter in the
sense that the minimumH1 norm
 is approached can be obtained by
solving the following optimization problem:

min
X;Y;�;	;�




subject to
 > 0 and the LMIs in (16)–(19).
Remark 3: From the proof of Theorem 1, it can be seen that the de-

signed filter (�f ) with parameters given by (24) and (25) is admissible
and the number of the finite modes of this filter equals to rankE; in
other words, this filter is proper with a McMillan degree no more than
the number of the exponential modes of the given plant.

Remark 4: In the case when the matrixE = I , that is, the singular
system (�) reduces to a usual state-space system, it can be shown that
the result presented in Theorem 1 coincides with that in [12] if there are
no parameter uncertainties in a state-space model. Therefore, Theorem
1 can be regarded as an extension of the existingH1 results for state-
space systems to singular systems.

Remark 5: In the case when a filter to be designed is assumed to
be with the same dimension of the descriptor variable vector as the
plant, a Luenberger-type filter can be adopted. Under the assumption of
the detectability, the filter gain can be determined through the method
given in [7]. It is noted that Luenberger-type filters are different from
those considered in the present note. Therefore, different assumptions
will be required for singular systems.

IV. A N ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is provided to demonstrate the
applicability of the proposed approach.

AQc1+Q
T
c1A

T A+QT
c1A

TPc1+Q
T
c1C

TBT
f Pc3+Q

T
c3A

T
f Pc3 B QT

c1L
T�QT

c3C
T
f

AT+P T
c1AQc1+P

T
c3BfCQc1+P

T
c3AfQc3 P T

c1A+A
TPc1+P

T
c3BfC+C

TBT
f Pc3 P T

c1B+P
T
c3BfD LT

BT BTPc1+D
TBT

f Pc3 �
2I 0

LQc1�CfQc3 L 0 �I

< 0 (58)

Q�Tc1 A+A
TQ�1c1 Q�Tc1 A+A

TPc1+C
TBT

f Pc3+Q
�T
c1 Q

T
c3A

T
f Pc3 Q�Tc1 B LT�Q�Tc1 Q

T
c3C

T
f

ATQ�1c1+P
T
c1A+P

T
c3BfC+P

T
c3AfQc3Q

�1

c1 P T
c1A+A

TPc1+P
T
c3BfC+C

TBT
f Pc3 P T

c1B+P
T
c3BfD LT

BTQ�1c1 BTPc1+D
TBT

f Pc3 �
2I 0

L�CfQc3Q
�1

c1 L 0 �I

<0:

(59)
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Consider the linear singular system (�) with parameters as follows:

E =

�2 �2 0

�2 4 �6

1 4 �3

; A =

1:5 0:4 �0:9

�0:6 �4:4 1:8

0:7 2:4 4:3

B =

�0:6 �1:1

4:2 5:2

5:2 3:7

C =
�0:4 1:2 �0:4

1:7 1:4 0:7

D =
1 0

�1 0:5
; L =

0 2 0

�0:5 �1 1:5
:

The purpose of this example is to design a filter in the form of (5) and
(6) such that the resulting error system is admissible and the transfer
function satisfies a prespecifiedH1-norm bound. In this example, we
suppose that theH1-norm bound
 is specified to be 0.8. To solve the
problem, we resort to the Matlab LMI Control Toolbox and obtain the
solutions to the LMIs in (16)–(19) as follows:

X =

�0:9773 �1:6997 �0:3836

0:0247 0:6069 �0:0293

�0:2138 �0:9876 �0:3322

Y =

�0:5301 �0:6252 �0:1239

0:0701 0:1925 �0:0129

�0:2012 �0:3293 �0:0908

	 =

0:6831 0:1768

1:1537 �0:5911

2:6919 1:1420

� =

2:4627 0:8777 0:7006

5:8168 6:2856 3:3932

0:2743 �3:2426 1:4838

� =
0 2 0

�0:5 �1 1:5
:

Therefore, it follows from Theorem 1 that theH1 filtering problem is
solvable. To construct a desired filter, we chooseS = ~S = X, and

W = ~W =

4:0229 2:8495 �6:2607

�2:1620 �4:3194 3:6649

�3:2722 8:5221 11:1959

:

Then, it can be shown that the matricesS, ~S,W and ~W chosen before
satisfy (20)–(23). Thus, by Theorem 1 again, a desired filter can be
constructed as

(�f ) :

�2 �2 0

�2 4 �6

1 4 �3

:

x̂(t)

=

4:9440 4:8051 �0:2140

�12:1272 �31:7857 1:5735

�4:9056 �17:0092 6:4728

x̂(t)

+

0:8920 0:4435

�9:1515 �5:3872

�8:3272 �3:4752

y(t)

ẑ(t) =
�0:4670 �2:9770 0:0162

0:7433 1:5629 �2:0665
x̂(t):

It is easy to verify that this filter is admissible, and the resulting error
system satisfies the design requirements. Furthermore, the optimalH1
norm can be calculated to be 0.1895.

V. CONCLUSION

In this note, we have studied theH1 filtering problem for contin-
uous singular systems. In terms of a set of LMIs, a necessary and suf-

ficient condition for the existence of a linear filter has been obtained,
which guarantees that the resulting error system is regular, impulse-free
and stable while the closed-loop transfer function from the disturbance
to the filtering error output satisfies a prescribedH1-norm bound con-
straint. An example has been provided to illustrate the effectiveness of
the proposed approach.
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