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Robust Filtering for Uncertain Markovian Jump
Systems With Mode-Dependent Time Delays

Shengyuan Xu, Tongwen Chen, and James Lam

Abstract—This note considers the problem of robust filtering for
uncertain Markovian jump linear systems with time-delays which are time-
varying and depend on the system mode. The parameter uncertainties are
time-varying norm-bounded. The aim of this problem is to design a Mar-
kovian jump linear filter that ensures robust exponential mean-square sta-
bility of the filtering error system and a prescribed -induced gain from
the noise signals to the estimation error, for all admissible uncertainties. A
sufficient condition for the solvability of this problem is obtained. The de-
sired filter can be constructed by solving a set of linear matrix inequalities.
An illustrative numerical example is provided to demonstrate the effective-
ness of the proposed approach.

Index Terms— filtering, linear matrix inequalities, Markovian jump
systems, robust filtering, time-delay systems, uncertain systems.

I. INTRODUCTION

State estimator design has been an important research topic and has
found many practical applications. It has been recognized that one of
the most popular estimation approaches is the celebrated Kalman fil-
tering [1]. A common feature of the standard Kalman filtering algo-
rithm is that an exact internal model of the system is available and
the exogenous input signals are assumed to be Gaussian noises with
known statistics. In some applications, however, the noise sources may
not be exactly known and parameter uncertainties may appear in a
system model; these limit the scope of applications of the Kalman
filtering technique. To overcome these difficulties, an alternative ap-
proach calledH1 filtering has been introduced. In theH1 filtering
setting, the noise sources are arbitrary signals with bounded energy or
average power, and no exact statistics are required to be known [13]. It
has been shown that theH1 filtering technique provides both a guar-
anteed noise attenuation level and robustness against unmodeled dy-
namics [13].

When parameter uncertainty appears in a system model, the robust-
ness ofH1 filters has to be taken into account. This has motivated
the study of the robustH1 filtering problem, which is concerned
with the design of estimators ensuring that the filtering error system
is asymptotically stable and theL2-induced gain from the noise
signal to the estimation error is below a prescribed level. A great
number of results on this topic have been reported in the literature
and various approaches have been proposed; see, e.g., [9] and the
references therein. Since time delays are frequently encountered in
various engineering systems, the robustH1 filtering problem for
time-delay systems has been considered recently. For example, by a
linear matrix inequality (LMI) approach, sufficient conditions for the
solvability of this problem was presented in [8] for time-delay systems
with structured parameter uncertainty; while in [16], a Riccati-like
approach was developed and unstructured parameter uncertainty was
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considered. Furthermore, when time delays and nonlinearities arise
simultaneously in an uncertain system, some sufficient conditions for
the existence of robustH1 filters were obtained in [17].

On the other hand, a great deal of attention has recently been devoted
to the study of Markovian jump linear systems. This class of systems
can model stochastic systems with abrupt structural variation resulting
from the occurrence of some inner discrete events in the system such
as failures and repairs of machine in manufacturing systems, modi-
fications of the operating point of a linearized model of a nonlinear
system, and so on. A great number of estimation and control issues con-
cerning these systems have been studied [7], [10]. Some of these results
were further extended to Markovian jump systems with time delays in
[3], where the time delays are independent of the system modes. Very
recently, Markovian jump systems with mode-dependent time delays
have been studied. In [3], some robust stability conditions were pre-
sented in terms of LMIs. The robustH1 control results in the discrete
context can be found in [2]. However, the robustH1 filtering problem
for such systems has not been fully investigated, which is still open and
remains challenging.

In this note, we are concerned with the problem of robustH1 fil-
tering for Markovian jump linear systems with parameter uncertainties
and time delays. The parameter uncertainties are time varying but norm
bounded. The time delays are assumed to be time varying, and are de-
pendent on the system mode. The problem we address is the design of
Markovian jump linear filters such that for all admissible uncertainties,
the resulting error system achieves robust exponential mean-square sta-
bility and theL2-induced gain from the noise signal to the estimation
error remains bounded by a prescribed value. It is worth mentioning
here that the advantage of a filter with exponential mean-square sta-
bility in comparison with a filter with asymptotic mean-square stability
lies in that the former provides fast convergence and desirable accuracy
in terms of reasonable error covariance of the filtering process [14]. To
solve the robustH1 filtering problem, an LMI approach is developed
and sufficient conditions for the solvability are obtained. The desired
filter can be constructed through a convex optimization problem, which
can be efficiently handled by using standard numerical algorithms [4].

II. PROBLEM FORMULATION

Given a probability space (
,F ,P), where
 is the sample space,F
is the�-algebra of subsets of the sample space andP is the probability
measure onF . On this probability space (
, F , P), we consider the
following class of uncertain linear stochastic systems with Markovian
jump parameters and mode-dependent time delays:

(�) : _x(t) =A(t; rt)x(t) + Ad(t; rt)x (t� �r (t))

+B(t; rt)!(t)

y(t) =C(t; rt)x(t) + Cd(t; rt)x (t� �r (t))

+D(t; rt)!(t) (1)

z(t) =L(rt)x(t) (2)

x(t) ='(t); 8t 2 [��; 0] (3)

wherex(t) 2 n is the state;!(t) 2 p is the noise signal which is
assumed to be an arbitrary signal inL2[0;1), whereL2[0;1) is the
space of square-integrable vector functions over[0;1); y(t) 2 q is
the measurement;z(t) 2 m is the signal to be estimated; andfrtg is a
continuous-time Markovian process with right continuous trajectories
and taking values in a finite setS = f1; 2; . . . ;Ng with transition
probability matrix�

�
= f�ijg given by

Prfrt+h = jjrt = ig =
�ijh+ o(h) i 6= j

1 + �iih+ o(h) i = j
(4)
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whereh > 0, limh!0(o(h)=h) = 0, and�ij � 0, for j 6= i, is the
transition rate from modei at timet to modej at timet+ h and

�ii = �
s

j=1;j 6=i

�ij : (5)

In the system(�), �r (t) denotes the time-varying delay when the
mode is in�t and satisfies

0 < �i(t) � �i <1 _�i(t) � hi < 1 8i 2 S (6)

where�i andhi are real constant scalars for anyi 2 S . In (3), � =
maxf�i; i 2 Sg; '(t) is a vector-valued initial continuous function
defined on the interval[��; 0]; A(t; rt),Ad(t; rt),B(t; rt),C(t; rt),
Cd(t; rt),D(t; r(t)) andL(rt) are matrix functions ofrt, and for each
rt 2 S

A(t; rt) =A(rt) + �A(t; rt)

Ad(t; rt) =Ad(rt) + �Ad(t; rt)

B(t; rt) =B(rt) + �B(t; rt)

C(t; rt) =C(rt) + �C(t; rt)

Cd(t; rt) =Cd(rt) + �Cd(t; rt)

D(t; rt) =D(rt) + �D(t; rt)

whereA(rt), Ad(rt), B(rt), C(rt), Cd(rt), D(r(t)) andL(rt) are
known real constant matrices representing the nominal system for
eachrt 2 S , and �A(t; rt), �Ad(t; rt), �B(t; rt), �C(t; rt),
�Cd(t; rt) and �D(t; r(t)) are unknown matrices representing
time-varying parameter uncertainties, and are assumed to be of the
form

�A(t; rt) �Ad(t; rt) �B(t; rt)

�C(t; rt) �Cd(t; rt) �D(t; rt)
=

M1(rt)

M2(rt)

�F (t; rt) [N1(rt) N2(rt) N3(rt)] 8rt 2 S (7)

whereM1(rt), M2(rt), N1(rt), N2(rt), andN3(rt) are known real
constant matrices for allrt 2 S , andF (t; rt), for all rt 2 S , are the
uncertain time-varying matrices satisfying

F (t; rt)
TF (t; rt) � I 8rt 2 S: (8)

The uncertain matrices�A(t; rt), �Ad(t; rt), �B(t; rt),
�C(t; rt), �Cd(t; rt) and�D(t; r(t)), for eachi 2 S are said to be
admissible if both (7) and (8) hold.

For the sake of notation simplification, in the sequel, for each pos-
siblert = i, i 2 S , a matrixM(t; rt) will be denoted byMi(t); for
example,A(t; rt) is denoted byAi(t), andB(rt) byBi, and so on.

Remark 1: It shall be pointed out that the technical assumption on
the time-varying delay variables�i(t) satisfying _�i(t) � hi < 1 (for
i 2 S) is quite standard when dealing with the problems of robust
stability analysis and robust stabilization for systems with time-varying
delays; see, e.g. [12].

Throughout this note, we adopt the following definition.
Definition 1 [11]: The uncertain Markovian jump system(�)

is said to achieve robust exponential mean-square stability if, when
!(t) = 0, for any finite'(t) 2 n defined on[��; 0], and initial
moder0 2 S , there exist constant scalarsb > 0 andc > 0 such that

E jx(t; '; r0)j
2 � b sup

�����0
j'(�)j2 e�ct (9)

whereEf�g denotes the expectation;x(t; '; r0) denotes the solution of
the system(�) at timet under the initial conditions'(t) andr0.

In this note, we are concerned with obtaining an estimateẑ(t), of
z(t) via a causal Markovian jump linear filter which guarantees a small
estimation error,z(t) � ẑ(t), for all nonzero! 2 L2[0;1) and all
admissible uncertainties. For eachi 2 S , attention is focused on the
design of a linear, exponential mean-square stable, Markovian jump
filter of ordern with the following form:

(�f) : _̂x(t) =Afix̂(t) +Bfiy(t) (10)

ẑ(t) =Lix̂(t) (11)

wherex̂(t) 2 n andẑ(t) 2 q, for eachi 2 S , the matriceŝAfi and
Bfi are to be determined.

Then, the robust filtering problem addressed in this note is formu-
lated as follows: given the uncertain stochastic delay system(�) and
a prescribed level of noise attenuation
 > 0, determine an exponen-
tially mean-square stable filter(�f) in the form of (10) and (11) such
that the filtering error system achieves robust exponential mean-square
stability and

kz � ẑkE < 
k!k2 (12)

under zero-initial conditions for any nonzero! 2 L2[0;1), where
k � k

2
represents the usualL2[0;1) norm, andk � k

E
denotes the

norm inL2((
;F ;P); [0;1)), that is

kz � ẑkE = E

1

0

jz(t)� ẑ(t)j2 dt

where the symbolj � j refers to the Euclidean vector norm.

III. M AIN RESULTS

In this section, a sufficient condition for the existence of robustH1
filters is proposed and an LMI approach is developed. Before pre-
senting the main results, we first give the following lemmas which will
be used in the proof of our main results.

Lemma 1: The uncertain Markovian jump system(�) achieves ro-
bust exponential mean-square stability if there exist matricesP1 > 0,
P2 > 0; . . . ; PN > 0 andQ > 0 such that the following LMIs hold
for i = 1; 2; . . . ;N

N

j=1

�ijPj +Ai(t)
TPi

+PiAi(t) + (1 + ��)Q PiAdi(t)

Adi(t)
TPi �(1� hi)Q

< 0 (13)

where

� = max fj�iij; i 2 Sg : (14)

Proof: To show the robust exponential mean-square stability for
the system(�) under the conditions of the lemma, we consider the
equations in (1) and (3) with!(t) = 0, that is

(�1) : _x(t) =A(t; rt)x(t) +Ad(t; rt)x (t� �r (t)) (15)

x(t) ='(t); 8t 2 [��; 0]: (16)

Note thatf(x(t); rt); t � 0g is not a Markov process. To cast our
model involved into the framework of the Markov processes, we define
a new processf(xt; rt); t � 0g by

xt(s) = x(t+ s) t� �r (t) � s � t:



902 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

Then, similar to [3] and [6], we can verify thatf(xt; rt); t � 0g is
a Markov process with initial state ('(�); r0). Now, define a stochastic
Lyapunov functional candidate for the system(�1) as

V (xt; rt) = V1(xt; rt) + V2(xt; rt) + V3(xt; rt) (17)

where

V1(xt; rt) = x(t)TP (rt)x(t)

V2(xt; rt) =

t

t�� (t)

x(s)TQx(s)ds

V3(xt; rt) = �

0

��

t

t+�

x(s)TQx(s)dsd�:

Let A be the weak infinitesimal generator of the random process
fxt; rtg. Then, by some calculations, for eachrt = i, i 2 S and any
scalar� > 0, it can be verified that

A e
�t
V1(xt; i) = e

�t
x(t)T

N

j=1

�ijPjx(t)

+ 2e�tx(t)TPi [Ai(t)x(t)

+Adi(t)x (t��i(t))]

+ �e
�t
V1(xt; i) (18)

A e
�t
V2(xt; i) = e

�t

N

j=1

�ij

t

t�� (t)

x(s)TQx(s)ds

+ e
�t
x(t)TQx(t)

� e
�t(1� _�i(t))x (t��i(t))

T
Qx (t��i(t))

+ �e
�t
V2(xt; i) (19)

and

A e
�t
V3(xt; i) = e

�t
��x(t)TQx(t)

� e
�t

t

t��

x(s)TQx(s)ds

+ �e
�t
V3(xt; i): (20)

Noting�ij � 0, for j 6= i and�ii � 0, we have

N

j=1

�ij

t

t�� (t)

x(s)TQx(s)ds �
j 6=1

�ij

t

t��

x(s)TQx(s)ds

= ��ii

t

t��

x(s)TQx(s)ds � �

t

t��

x(s)TQx(s)ds:

From this, together with (6) and (17)–(20), it can be deduced that for
eachrt = i, i 2 S and any scalar� > 0

A e
�t
V (xt; i) � e

�t
x(t)T

N

j=1

�ijPj + Ai(t)
T
Pi

+ PiAi(t) + (1 + ��)Q

+(1� hi)
�1

PiAdi(t)Q
�1

Adi(t)
T
Pi x(t)

+ �e
�t
V (xt; i) (21)

where we have used

2x(t)TPiAdi(t)x (t��i(t))� (1�hi)x (t��i(t))
T
Qx (t��i(t))

� (1�hi)
�1

x(t)TPiAdi(t)Q
�1

Adi(t)
T
Pix(t):

On the other hand, applying the Schur complement formula in (13),
we have that there exists a scalar� > 0 such that

N

j=1

�ijPj +Ai(t)
T
Pi + PiAi(t) + (1 + ��)Q

+(1� hi)
�1

PiAdi(t)Q
�1

Adi(t)
T
Pi + �I < 0 (22)

for eachi 2 S . Noting (21) and (22), it is easy to show that for each
i 2 S and any scalar� > 0

A e
�t
V (xt; i) < ��e�t jx(t)j2 + �e

�t
V (xt; i): (23)

It follows from this and (17) that

A e
�t
V (xt; i) < � �e

�t jx(t)j2 + �e
�t

�1 jx(t)j
2

+ �max(Q)

t

t��

jx(s)j2 ds

+��max(Q)

0

��

t

t+�

jx(s)j2 dsd� : (24)

where

�1 = max f�max(Pi); i 2 Sg :

Observe

0

��

t

t+�

jx(s)j2 dsd� =

t

t��

(s� t+ �) jx(s)j2 ds

��

t

t��

jx(s)j2 ds:

This, together with (24), implies that for eachi 2 S and any scalar
� > 0

A e
�t
V (xt; i) < (��+ �1�)e

�t jx(t)j2

+�e�t(�� + 1)�max(Q)

t

t��

jx(s)j2 ds:

Therefore, by using Dynkin’s formula [3], [5], we have that for any
T > 0, � > 0, and eachr(t) = i, i 2 S

E e
�T

V (xT ; i) �V (x0; r0) = E

T

0

A e
�s
V (xs; i) ds

< (��+�1�)

T

0

e
�t jx(t)j2 dt

+ �(��+1)�max(Q)

�

T

0

e
�t

t

t��

jx(s)j2 dsdt: (25)

By setting

�2 = �(�� + 1)�max(Q)
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and noting

T

0

e
�t

t

t��

jx(s)j2 dsdt �

0

��

�e
�(s+�) jx(s)j2 ds

+

T��

0

�e
�(s+�) jx(s)j2 ds

+

T

T��

�e
�(s+�) jx(s)j2 ds

=�

T

��

e
�(s+�) jx(t)j2 dt

we have that for eachi 2 S and any scalar� > 0

E e
�T
V (xT ; i) <V (x0; r0) + (��+ �1�)

�

T

0

e
�tjx(t)j2dt+ �2�

�

T

��

e
�(t+�)jx(t)j2dt

�V (x0; r0) + �� + �1� + �2�e
��

�

T

0

e
�tjx(t)j2dt+ �2�e

��

�

0

��

jx(t)j2dt: (26)

Now, choose� > 0 to be the unique solution to the following equation:

��+ �1� + �2�e
�� = 0:

Then, by this and (26), we have

E e
�T
V (xT ; i) < V (x0; r0) + �2�e

��

0

��

jx(t)j2 dt

and, hence, the uncertain stochastic system(�) achieves robust expo-
nential mean-square stability. This completes the proof.

Lemma 2 [15]: LetD andH beF real matrices of appropriate di-
mensions withF satisfyingF TF � I . Then, for any scalar� > 0 and
vectorsx, y 2 n

2xTDFHy � �
�1
x
TDDT

x + �y
THTHy:

Now, we are in a position to give the robustH1 filtering results.
Theorem 1: Consider the uncertain Markovian jump system(�)

and let
 > 0 be a given scalar. Then, there exists a Markovian jump
linear filter (�f ) in the form of (10) and (11) such that, for all admis-
sible uncertainties, the filtering error system is robustly exponentially
mean-square stable and (12) holds for any nonzero! 2 L2[0;1), if
for eachi 2 S there exist matricesQ > 0, Xi > 0, Yi > 0, Wi, Zi

and scalars�i > 0 such that the LMIs shown in (27)–(30) at the bottom
of the page hold, and the scalar� is given in (14). In this case, a suitable
robustH1 filter (�f) in the form of (10) and (11) has parameters as
follows:

Afi = Y
�1
i Wi Bfi = Y

�1
i Zi; i 2 S: (31)

Proof: Let ~x(t) = x(t) � x̂(t) then from the system(�) and
filter (�f), it can be verified that for eachi 2 S

_~x(t) =Afi~x(t) + [Ai(t)� Afi �BfiCi(t)] x(t)

+ [Adi(t)�BfiCdi(t)]x(t� �i(t))

+ [Bi(t)�BfiDi(t)]!(t):

Define

e(t) = x(t)T ; ~x(t)T
T

~z(t) = z(t)� ẑ(t):

Then, for eachrt = i 2 S , the filtering error dynamics from the
systems(�) and(�f) is described by

(~�) : _e(t) = ~Ai(t)e(t) + ~Adi(t)He (t� �i(t))

+ ~Bi(t)!(t) (32)

~z(t) = ~Lie(t) (33)

where
~Ai(t) = ~Ai +� ~Ai(t) ~Adi(t) = ~Adi +� ~Adi(t)

~Bi(t) = ~Bi +� ~Bi(t)


i AT
i Yi �WT

i � CT
i Z

T
i XiAdi + �iN

T
1iN2i XiBi + �iN

T
1iN3i XiM1i

YiAi �Wi � ZiCi �i YiAdi � ZiCdi YiBi � ZiDi YiM1i � ZiM2i

AT
diXi + �iN

T
2iN1i AT

diYi � CT
diZ

T
i Vi �iN

T
2iN3i 0

BT
i Xi + �iN

T
3iN1i BT

i Yi �DT
i Z

T
i �iN

T
3iN2i �iN

T
3iN3i � 
2I 0

MT
1iXi MT

1iYi �MT
2iZ

T
i 0 0 ��iI

< 0 (27)

where


i =

s

j=1

�ijXj +A
T
i Xi +XiAi + (1 + ��)Q+ �iN

T
1iN1i (28)

�i =Wi +W
T
i +

s

j=1

�ijYj + L
T
i Li (29)

Vi = �iN
T
2iN2i � (1� hi)Q (30)
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~Ai =
Ai 0

Ai � Afi �BfiCi Afi

� ~Ai(t) =
�Ai(t) 0

�Ai(t)�Bfi�Ci(t) 0

~Adi =
Adi

Adi �BfiCdi

� ~Adi(t) =
�Adi(t)

�Adi(t)�Bfi�Cdi(t)
H = [ I 0 ]

~Bi =
Bi

Bi �BfiDi

� ~Bi(t) =
�Bi(t)

�Bi(t)�Bfi�Di(t)
~Li = [ 0 Li ] :

Now, we establish the robust exponential mean-square stability of the
filtering error system(~�) in (32) and (33) under the conditions of the
theorem. To this end, we consider (32) with!(t) = 0,that is

_e(t) = ~Ai(t)e(t) + ~Adi(t)He (t� �i(t)) : (34)

For eachrt = i, i 2 S , we define a matrix~Pi > 0 by

~Pi =
Xi 0

0 Yi
:

Then, with the parameters in (31), it can be verified that, for eachi 2 S ,
the LMIs in (27) can be rewritten as shown in (35)–(38) at the bottom
of the page.

It is easy to see that (35) implies that for eachi 2 S

~
i + ��1i
~Pi

~M1i
~MT
1i
~Pi

+�i ~N
T
1i
~N1i

~Pi
~Adi + �i ~N

T
1i
~N2i

~AT
di
~Pi + �i ~N

T
2i
~N1i �i ~N

T
2i
~N2i � (1� hi)Q

< 0: (39)

On the other hand, noting

[ � ~Ai(t)
T � ~Adi(t) � ~Bi(t) ] = ~M1iFi(t) [ ~N1i

~N2i
~N3i ]

and using Lemma 2, we have

� ~Ai(t)
T ~Pi + ~Pi� ~Ai(t) ~Pi� ~Adi(t)

� ~Adi(t)
T ~Pi 0

� �
�1

i

~Pi
~M1i

0
[ ~MT

1i
~P1i 0 ] + �i

~NT
1i

~NT
2i

[ ~N1i
~N2i ] :

It then follows from this and the LMIs in (39) that for eachi 2 S , (40),
shown at the bottom of the page, holds. Define a stochastic Lyapunov
functional candidate for (34)

V (et; rt) = e(t)T ~P (rt)e(t) +

t

t��

e(s)THT
QHe(s)ds

+�

0

��

t

t+�

e(s)THT
QHe(s)dsd�: (41)

Then, by noting (40) and following a similar line as in the proof of
Lemma 1, we can deduce that the filtering error system(~�) achieves
robust exponential mean-square stability.

Next, we will show that (12) is satisfied for any nonzero
! 2 L2[0;1). To this end, we set

J(T ) = E

T

0

~z(t)T ~z(t)� 

2
!(t)T!(t) dt (42)

~
i + �i ~N
T
1i
~N1i + ~LT

i
~Li

~Pi
~Adi + �i ~N

T
1i
~N2i

~Pi
~Bi + �i ~N

T
1i
~N3i

~Pi
~M1i

~AT
di
~Pi + �i ~N

T
2i
~N1i �i ~N

T
2i
~N2i � (1� hi)Q �i ~N

T
2i
~N3i 0

~BT
i
~Pi + �i ~N

T
3i
~N1i �i ~N

T
3i
~N2i �i ~N

T
3i
~N3i � 
2I 0

~MT
1i
~Pi 0 0 ��iI

< 0 (35)

where

~
i =

N

j=1

�ij ~Pj + ~AT
i
~Pi + ~Pi

~Ai + (1 + ��)HT
QH (36)

~M1i =
M1i

M1i �BfiM2i

~M2i =M3i �DfiM2i (37)

~N1i = [N1i 0 ] ~N2i = N2i
~N3i = N3i: (38)

N

j=1

�ij ~Pj + ~Ai(t)
T ~Pi + ~Pi

~Ai(t) + (1 + ��)HTQH ~Pi
~Adi(t)

~Adi(t)
T ~Pi �(1� hi)Q

�

~
i + ��1i
~Pi

~M1i
~MT
1i
~Pi + �i ~N

T
1i
~N1i

~Pi
~Adi + �i ~N

T
1i
~N2i

~AT
di
~Pi + �i ~N

T
2i
~N1i �i ~N

T
2i
~N2i � (1� hi)Q

< 0: (40)
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for T > 0. Observe for anyi 2 S , !(t) 6= 0

AV (et; i) � e(t)T
N

j=1

�ij ~Pj + (1 + ��)HT
QH e(t)

� (1� hi)x (t� �i(t))
T
Qx (t� �i(t))

+ 2e(t)T ~Pi
~Ai +� ~Ai(t) e(t)

+ ~Adi +� ~Adi(t) x (t� �i(t))

+ ~Bi +� ~Bi(t) !(t) : (43)

Using Lemma 2 again, we obtain

2e(t)T ~Pi � ~Ai(t)e(t)+� ~Adi(t)x (t��(t))+� ~Bi(t)!(t)

� �
�1
i e(t)T ~Pi

~M1i
~MT
1i
~Pie(t)+�i�(t)

T �NT �N�(t) (44)

where

�(t) = [ e(t)T x (t��i(t))
T

!(t)T ]T

�N = [ ~N1i
~N2i

~N3i ] :

Thus, under zero initial conditions, it follows from (42)–(44) that for
anyT > 0, i 2 S , !(t) 6= 0

J(T ) = E

T

0

~z(t)T ~z(t)�
2!(t)T!(t)+AV (et; i) dt

� E

T

0

AV (et; i)dt

�E

T

0

�(t)T��(t)dt (45)

where

� =

~
+��1i
~Pi

~M1i
~MT
1i
~Pi+~LT

i
~Li Pi

~Adi Pi
~Bi

~AT
diPi �(1�hi)Q 0
~BT
i Pi 0 �
2I

+ �i �N
T �N:

Now, applying the Schur complement formula to (35), we have� < 0.
This together with (45) implies thatJ(T ) < 0 and, hence, (12) holds
for any nonzero! 2 L2[0;1). This completes the proof.

Remark 2: Theorem 1 provides sufficient conditions for the solv-
ability of the robustH1 filtering problem for uncertain Markovian
jump systems with mode-dependent time delays, and the desired filter
can be constructed by solving a set of LMIs. We remark that these LMIs

can be solved by means of numerically efficient convex programming
algorithms [4].

Remark 3: As pointed out earlier that a filter with exponential
mean-square stability can provide faster convergence and desirable
accuracy in terms of reasonable error covariance of the filtering
process compared with a filter with asymptotic mean-square stability
[14]. However, it is worth pointing out that the introduction of the
exponential mean-square stability instead of the usual asymptotic
mean-square stability might lead to conservative solutions.

In the case whenS = f1g, that is, there is only one mode in opera-
tion, we have�ii = 0, i 2 S = f1g, and the system(�) reduces to the
following uncertain time-delay system with no jumping parameters:

(�2) : _x(t) = [A +�A(t)]x(t)

+ [Ad +�Ad(t)]x (t� � (t))

+ [B +�B(t)]!(t)

y(t) = [C +�C(t)]x(t)

+ [Cd +�Cd(t)]x (t� � (t))

+ [D +�D(t)]!(t)

z(t) =Lx(t)

x(t) ='(t);8t 2 [��; 0]

where�A(t), �Ad(t), �B(t), �C(t), �Cd(t) and�D(t) are un-
known matrices, and are assumed to be of the form

�A(t) �Ad(t) �B(t)

�C(t) �Cd(t) �D(t)
=

M1

M2

F (t)[N1 N2 N3]

whereM1, M2, M3, N1, andN2 are known constant matrices, and
F (t) is the uncertain time-varying matrices satisfyingF (t)TF (t) �
I . The time-varying delay� (t) satisfies0 < �(t) � � < 1 and
_� (t) � h < 1. In this case, Theorem 1 reduces to the following result.

Corollary 1: Consider the uncertain time-delay system(�2) and
let 
 > 0 be a given scalar. Then, there exists a causal linear filter
such that, for all admissible uncertainties, the filtering error system is
exponentially stable and

kz � ẑk
2
< 
k!k

2

holds for any nonzero! 2 L2[0;1) under zero initial conditions, if
there exist matricesQ > 0,X > 0, Y > 0,W , Z, and a scalar� > 0
such that the LMI shown at the bottom of the page holds. In this case,
a suitable robustH1 filter for the system(�2) is given by

_̂x(t) =Af x̂(t) +Bfy(t) ẑ(t) = Lx̂(t) (46)


 ATY �WT � CTZT XAd + �NT
1 N2 XB + �NT

1 N3 XM1

Y A�W � ZC � Y Ad � ZCd Y B � ZD YM1 � ZM2

AT
dX + �NT

2 N1 AT
d Y � CT

d Z
T V �NT

2 N3 0

BTX + �NT
3 N1 BTY �DTZT �NT

3 N2 �NT
3 N3 � 
2I 0

MT
1 X MT

1 Y �MT
2 Z

T 0 0 ��I

< 0

where


 = A
T
X +XA+Q+ �N

T
1 N1; � =W +W

T + L
T
L; V = �N

T
2 N2 � (1� h)Q:
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where

Af =Y �1W Bf = Y
�1
Z:

Remark 4: The robustH1 filtering problem for uncertain time-
delay systems is investigated in [17]. It is noted that the time-delay con-
sidered in [17] is constant, and the filter parameterAf is constrained
to be equivalent to the nominal system matrixA. In view of this, the
result presented in Corollary 1 here is more general than that in [17,
Cor. 1].

IV. NUMERICAL EXAMPLE

In this section, we shall give a numerical example to demonstrate the
applicability of the proposed approach.

Consider an uncertain linear Markovian jump system with mode-
dependent time delays in the form (1)–(3) with two modes. For mode
1, the dynamics of the system are described as

A1 =

�3 1 0

0:3 �2:5 1

�0:1 0:3 �3:8

Ad1 =

�0:2 0:1 0:6

0:5 �1 �0:8

0 1 �2:5

B1 =

1

0

1

C1 = [ 0:8 0:3 0 ]

Cd1 =[ 0:2 �0:3 �0:6 ]

L1 = [ 0:5 �0:1 1 ]

D1 =0:2

M11 =

0:1

0

0:2

M21 =0:2 N11 = [ 0:2 0 0:1 ]

N21 = [ 0:1 0:2 0 ] N31 = 0:2

and the time-varying delay�1(t) satisfies (6) with�1 = 1:2,h1 = 0:2.
For mode 2, the dynamics of the system are described as

A2 =

�2:5 0:5 �0:1

0:1 �3:5 0:3

�0:1 1 �2

Ad2 =

0 �0:3 0:6

0:1 0:5 0

�0:6 1 �0:8

B2 =

�0:6

0:5

0

C2 = [�0:5 0:2 0:3 ] Cd2 = [ 0 �0:6 0:2 ]

L2 = [ 0 1 0:6 ] D2 = 0:5

M12 =

0:1

0:1

0

M22 = 0:1 N12 = [ 0:1 0:1 0 ]

N22 =[ 0 �0:1 0:2 ] N32 = 0:1

and the time-varying delay�2(t) satisfies (6) with�2 = 0:5,h2 = 0:3.
Suppose the transition probability matrix is given by

� =
�0:5 0:5

0:3 �0:3
:

The purpose is the design of a robustH1 filter in the form of (10) and
(11) such that the filtering error system achieves robust mean-square
stability and (12) is satisfied. In this example, we assume the noise
attenuation level
 = 1:2.

By resorting to the Matlab LMI Control Toolbox to solve the LMIs
in (27), we obtain the solution as follows:

X1 =

1:3866 �0:3430 0:0230

�0:3430 0:9297 �0:3753

0:0230 �0:3753 1:2080

X2 =

1:3027 �0:2205 0:0515

�0:2205 0:5002 �0:1818

0:0515 �0:1818 1:6222

Y1 =

3:3288 3:3944 �0:0412

3:3944 4:4025 �0:1197

�0:0412 �0:1197 0:3685

Y2 =

7:6675 7:8160 �0:1527

7:8160 8:9294 0:2110

�0:1527 0:2110 0:7280

W1 =

�13:0965 �6:7241 2:9448

�12:2930 �10:0564 2:0232

0:2390 �1:3219 �2:0676

W2 =

�23:1622 �20:9810 0:2088

�20:1789 �24:8354 1:0332

�0:8298 0:3666 �0:8119

Z1 =

4:5713

7:3286

1:7094

Z2 =

�5:4160

�4:7364

�0:8827

Q =

1:5722 �0:9511 0:4941

�0:9511 2:1202 �1:5764

0:4941 �1:5764 3:0137

�1 =0:3878 �2 = 4:0350:

Therefore, by Theorem 1, the corresponding parameters of a suitable
robust MarkovianH1 filter can be chosen as

Af1 =

�5:1167 1:7777 2:3648

1:1651 �3:7804 �1:5225

0:4543 �4:6164 �5:8408

Bf1 =

�1:9102

3:2868

5:4927

Af2 =

�8:4713 1:7986 �1:6240

5:2601 �4:4067 1:5824

�4:4416 2:1581 �1:9146

Bf2 =

�2:4376

1:6553

�2:2037

:

V. CONCLUSION

In this note, we have studied the problem of robustH1 filtering
for Markovian jump linear systems with parameter uncertainties and
mode-dependent time-varying delays. An LMI approach has been de-
veloped to design a Markovian jump linear filter, which guarantees ro-
bust exponential mean-square stability of the resulting error system and
a prescribed bound on theL2-induced gain from the noise signal to the
estimation error, irrespective of the parameter uncertainties. The de-
sired filter can be constructed through a convex optimization problem.
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Comments on “Robust Stabilization of a Class of
Time-Delay Nonlinear Systems”

Xinping Guan, Changchun Hua, and Guangren Duan

I. INTRODUCTION

In this paper, we point out an error in [1], which will show that the
main result of the paper cannot stand. In [1], the author considered
the problem of robust stabilization of a class of triangular nonlinear
system, and developed an iterative procedure of constructing a stabi-
lization controller based on the constructive use of appropriate Lya-
punov–Krasovskii functions. However, we show in this note that there
is an error in [1], which leads to the failure of the iterative procedure,
so the conclusion cannot stand.

II. M AIN RESULTS

In [1], the following system was considered:

_xi (t) = Fi (wi (t)) +Hi (wi (t� � ))

+Gi (wi (t))xi+1

_xn (t) = Fn (wn (t)) +Hn (wn (t� � ))

+Gn (wn (t))u

(1)

and then the following nonlinear coordinates transformation was intro-
duced:

x1 (t) = z1 (t)

xi (t) = zi (t) + �i�1 (ri�1 (t)) ; for (i = 2; . . . ; n)
(2)

then (1), under the transformation, became

_z1 (t) = f1 (z1 (t)) + h1 (z1 (t� � ))

+ g1 (z1 (t)) [z2 + �1 (z1 (t))] (3)

_zi (t) = fi (ri (t)) + hi (ri (t� � ))

+ gi (ri (t)) [zi+1 + �i (ri (t))] +Mi (ri (t)) r
t
i (t)

+Di�1 (ri�1 (t)) ~Ht
i�1 (ri�1 (t� � )) ;

for (i = 2; . . . ; n� 1) (4)

_zn (t) = fn (rn (t)) + hn (rn (t� � )) + gn (rn (t))u

+Mn (rn (t)) rtn (t)

+Dn�1 (rn�1 (t)) ~Ht
n�1 (rn�1 (t� � )) (5)

where fi (ri (t)) ; hi (ri (t� � )) and gi (ri (t)) were functions
Fi (wi (t)) ; Hi (wi (t� � )) and Gi (wi (t)) in new coordi-
nates, respectively.Mi (ri (t)) r

t
i (t) ; ~Ht

i�1 (ri�1 (t� � )) and
Di�1 (ri�1 (t)) were defined in [1], and the time delay part of
equations was required to satisfy the following assumption of [1,
AssumptionC2]:

jhi (ri (t� � ))j <=

i

j=1

jzj (t� � )j ~�ij (rj (t� � )) (6)

where~�ij (rj (t� � )) were known smooth nonlinear functions.
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