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Robust H=° Filtering for Uncertain Markovian Jump considered. Furthermore, when time delays and nonlinearities arise
Systems With Mode-Dependent Time Delays simultaneously in an uncertain system, some sufficient conditions for
the existence of robudf . filters were obtained in [17].
Shengyuan Xu, Tongwen Chen, and James Lam On the other hand, a great deal of attention has recently been devoted

to the study of Markovian jump linear systems. This class of systems

Abstract_This note considers the problem of robustEZ™ filtering for can model stochastic systems with abrupt structural variation resulting
uncertain Markovian jump linear systems with time-delays which are time- from .the occurrence ,Of some Inn.er clllscrete event§ in the system Su?h
varying and depend on the system mode. The parameter uncertainties are &S failures and repairs of machine in manufacturing systems, modi-
time-varying norm-bounded. The aim of this problem is to design a Mar-  fications of the operating point of a linearized model of a nonlinear
kovian jump linear filter that ensures robust exponential mean-square sta-  system, and so on. A great number of estimation and control issues con-
bility of the filtering error system and a prescribed L,-induced gain from o hing these systems have been studied [7], [10]. Some of these results
the noise signals to the estimation error, for all admissible uncertainties. A furth Kovian i ith ti | .
sufficient condition for the solvability of this problem is obtained. The de- Were urther ex_tended to Mar c_’V'an jump systems with time delays in
sired filter can be constructed by solving a set of linear matrix inequalities. [3], where the time delays are independent of the system modes. Very
Anillustrative numerical example is provided to demonstrate the effective- recently, Markovian jump systems with mode-dependent time delays

ness of the proposed approach. have been studied. In [3], some robust stability conditions were pre-
Index Terms—H * filtering, linear matrix inequalities, Markovian jump sented in terms of LMIs. The robuBt.. control results in the discrete
systems, robust filtering, time-delay systems, uncertain systems. context can be found in [2]. However, the robiikt, filtering problem

for such systems has not been fully investigated, which is still open and
remains challenging.

In this note, we are concerned with the problem of rolffist fil-

State estimator design has been an important research topic andtbasg for Markovian jump linear systems with parameter uncertainties
found many practical applications. It has been recognized that onea@ld time delays. The parameter uncertainties are time varying but norm
the most popular estimation approaches is the celebrated Kalmanbbunded. The time delays are assumed to be time varying, and are de-
tering [1]. A common feature of the standard Kalman filtering alggpendent on the system mode. The problem we address is the design of
rithm is that an exact internal model of the system is available anarkovian jump linear filters such that for all admissible uncertainties,
the exogenous input signals are assumed to be Gaussian noises hihtesulting error system achieves robust exponential mean-square sta-
known statistics. In some applications, however, the noise sources ity and the £-2-induced gain from the noise signal to the estimation
not be exactly known and parameter uncertainties may appear ieréor remains bounded by a prescribed value. It is worth mentioning
system model; these limit the scope of applications of the Kalm#were that the advantage of a filter with exponential mean-square sta-
filtering technique. To overcome these difficulties, an alternative apility in comparison with a filter with asymptotic mean-square stability
proach calledd . filtering has been introduced. In thé.. filtering lies in that the former provides fast convergence and desirable accuracy
setting, the noise sources are arbitrary signals with bounded energynaerms of reasonable error covariance of the filtering process [14]. To
average power, and no exact statistics are required to be known [13kdlve the robusH., filtering problem, an LMI approach is developed
has been shown that thi&. filtering technique provides both a guar-and sufficient conditions for the solvability are obtained. The desired
anteed noise attenuation level and robustness against unmodeledfifigr can be constructed through a convex optimization problem, which

|. INTRODUCTION

namics [13]. can be efficiently handled by using standard numerical algorithms [4].
When parameter uncertainty appears in a system model, the robust-
ness ofH ., filters has to be taken into account. This has motivated Il. PROBLEM FORMULATION

the study of the robusH ., filtering problem, which is concerned ) » ) )
with the design of estimators ensuring that the filtering error systemGiven a probability spacey, 7, 7), wheret is the sample spacé,

is asymptotically stable and thé,-induced gain from the noise 'S the“'a|93braOfSU_b56tS ofth_e sample space7anslthe propability
signal to the estimation error is below a prescribed level. A gregte@sure o On this probability space), 7, ), we consider the
number of results on this topic have been reported in the Iiteran_fﬂi'ow'”g class of uncertain linear stocha_stlc systems with Markovian
and various approaches have been proposed: see, e.g., [9] and4fil? Parameters and mode-dependent time delays:

refgrences t.herei.n. Since time delays are f.reqlljently encountered in (%) . i(t) = A(t r)a(t) + Aa(t, r)a (t = 7, (1))

various engineering systems, the robust, filtering problem for + B(tr)w(t)

time-delay systems has been considered recently. For example, by a T

linear matrix inequality (LMI) approach, sufficient conditions for the y(t) =C(t.r)a(t) + Calt, re)a (t — 70, (1))
solvability of this problem was presented in [8] for time-delay systems + D(t,re)w(t) (2)
with structured parameter uncertainty; while in [16], a Riccati-like (t) = L(re)x(t) @)

approach was developed and unstructured parameter uncertainty was
x(t) = (1), Vt € [—p, 0] (3)
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whereh > 0, lim,—o(o(h)/h) = 0, andn;; > 0, for j # i, is the where£{-} denotes the expectation(t, ¢, r¢) denotes the solution of

transition rate from modgat timet to modej at timet + » and the system{X) at timet under the initial conditions(¢) andrg.
In this note, we are concerned with obtaining an estiniate, of
s z(t) via a causal Markovian jump linear filter which guarantees a small
T = — Z Tij- (5)  estimation errorz(t) — 2(t), for all nonzerow € £:[0,00) and all
J=La admissible uncertainties. For eacte S, attention is focused on the

] ) design of a linear, exponential mean-square stable, Markovian jump
In the system(X), .., (t) denotes the time-varying delay when theijter of ordern with the following form:
mode is in7, and satisfies

(Zp): &(t) =Apd(t) + Bray(t) (10)
0<7(t)<pi<oo 7i(t)<h;<1 YieS (6) 2(t) = Lia(t) (11)
where; andh; are real constant scalars for ahg S.In (3),2 =  wherei(t) € R" and3(t) € R?, for eachi € S, the matricesi ;; and
max{u;, i € S}; (1) is a vector-valued initial continuous function B, are to be determined.
defined on the intervdl-y, 0]; A(t, r¢), Aq(t,r¢), B(t,7¢), C(t,74), Then, the robust filtering problem addressed in this note is formu-
Cal(t,r¢), D(t,r(t)) andL(r) are matrix functions of,, and for each |ated as follows: given the uncertain stochastic delay sy$®pand
re €8 a prescribed level of noise attenuatipr> 0, determine an exponen-
tially mean-square stable filtéE ;) in the form of (10) and (11) such
Aty re) = A(r) + AA(t 1) that the filtering error system achieves robust exponential mean-square
Aqg(t,r) = Aa(re) + AAL(t, 7)) stability and
Blt,re) = Blre) + AB(f,me) I = 2lley < Az (12)

C‘(t, 7’1) = C‘(m) + AC(t, l't)

N , ) under zero-initial conditions for any nonzexo € £:[0, 0), where
Calt,re) = Calre) + ACu(t o) || - |I, represents the usudl[0,oc) norm, and||- ||, denotes the
D(t,ri) =D(re) + AD(t,7y) norm in £2((2, F, P), [0, 00)), that is

where A(r:), Aq(re), B(re), C(re), Ca(re), D(r(t)) andL(r;) are o

known real constant matrices representing the nominal system for PSTI / (1) = (D2 dt
eachr, € S, and AA(t,r,), Adq(t.r), AB(t.r), AC(t. 1), e = 2lle. = |=(8) = 2P dt
ACqy(t,r+) and AD(t,r(t)) are unknown matrices representing 0

time-varying parameter uncertainties, and are assumed to be of f}&sre the symbad|- | refers to the Euclidean vector norm.
form

W=

AA(tr)) AAa(t,r) AB(tr)] _ [Mi(r) lll. MAIN RESULTS
AC(t,re) ACq(tyre) AD(tyre) | | Ma(ry) In this section, a sufficient condition for the existence of roldlist
xF(t,r) [Ni(re) Na(r) Na(r)) Vr, €8 7) filters is proposed and an LMI approach is developed. Before pre-

senting the main results, we first give the following lemmas which will
e used in the proof of our main results.

Lemma 1: The uncertain Markovian jump systefR) achieves ro-
bust exponential mean-square stability if there exist matdtes 0,
P, > 0,...,Py > 0and@ > 0 such that the following LMIs hold
fori = 1,2,...,A

where M (r¢), Ma(r¢), N1(r¢), N2(r:), and N3 (r;) are known real b
constant matrices for all, € S, andF(t,r;), forallr, € S, are the
uncertain time-varying matrices satisfying

F(t,r))"F(t,r) <I  Vr, €8. (8)
N
) ) S m P4 A ()T P
The uncertain matricesAA(t,r:), AAg(t,re), AB(t,7e), = <0 (13)
AC(t,70), AC4(t,7,) andAD(t, r(t)), for eachi € S are said to be FRA () + (1 4+n)Q  PiAw(t)
admissible if both (7) and (8) hold. Aua(t)T P, —(1—h;)Q
For the sake of notation simplification, in the sequel, for each poghere
sibler; = i,i € S, a matrixM (¢, ;) will be denoted byl (t); for 0 = max {|m|,i € S}. (14)

example A(t, r) is denoted by, (t), andB(r;) by B;, and so on.
Remark 1: It shall be pointed out that the technical assumption on Proof: To show the robust exponential mean-square stability for

the time-varying delay variables(t) satisfying; (t) < h: < 1 (for the systemX) under the conditions of the lemma, we consider the
i € §) is quite standard when dealing with the problems of rObughuations in (1) and (3) with(¢) = 0, that is

stability analysis and robust stabilization for systems with time-varying

delays; see, e.g. [12]. SOV : a8 = A(t e (F) 4 A (E . .
Throughout this note, we adopt the following definition. (B @) = Al rdat) + Aatre (t =7 (1) (15)
Definition 1 [11]: The uncertain Markovian jump systegt) (t) = ¢(t), Vt € [=p, 0]. (16)

is said to achieve robust exponential mean-square stability if, when )

w(t) = 0, for any finite p(#) € R™ defined on[—y. 0], and initial  NOte that{(x(t), r.), ¢ > 0} is not a Markov process. To cast our

modero € S, there exist constant scaldrs> 0 ande > 0 such that ~ Modelinvolved into the framework of the Markov processes, we define
a new proces$(x¢, r;), t > 0} by

E{la(t, o, r0)|*} <D 5(0))7 e 9
{|'7“( ,‘tﬁ/rﬂ)| }— _“S;lg)goh’( )| € ( ) T'f(‘;’) :T(f-|—9) f—Trt(f) S s S t.



902 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

Then, similar to [3] and [6], we can verify th@tv:, r+), ¢t > 0} is where we have used
a Markov process with initial state(-), o). Now, define a stochastic : , »
Lyapunov functional candidate for the systéRy ) as 22(t) PiAai(t)a (t—7i(1)) — (1—hi)x (t—7i(t))" Qu (t— u( )
< (1=hi) 'a(t) PAL(HQ ™ Awi(t) Pia(t).

Ve, re) = Vilae, me) + Valwe, re) + Va(ae, 7e) a7) On the other hand, applying the Schur complement formula in (13),

where we have that there exists a scatat> 0 such that
Vi(we,re) = x(t)" P(r)a(t) N o
. D omiiPi 4+ Ai()' P+ PA() + (L+90)Q
Va(ze, i) = / I(S)TQw(S)dS a
1) +(1= k) ' PiAa()Q™ AP+ al <0 (22)
—,
o ¢ for eachi € S. Noting (21) and (22), it is easy to show that for each
Va(ae,re) = 7;/ / ,r(s)TQm(s)dsdH. i € § and any scalaf > 0

—p t+0

A [e’BLV(m,i)] < —ae’ |z () + BV (w4, 4). (23)

Let A be the weak infinitesimal generator of the random processfollows from this and (17) that
{x:, 7 }. Then, by some calculations, for each= i, € S and any

scalar3 > 0, it can be verified that A [e V (:Lf,z)] < —ac” |x(t)]? + B [ay |z(t)
N ~ . 2
A[emx’rl(ifui)}=€gl$(t)T< mJ'Pj;v(t)> + Amax (Q) / lz(s)]" ds
j=1 tmm
+ 27w ()" Py [Ai(t)alt "oy
+4j‘(;i')(t—7['(t)()])b() +77A””“(Q)/ / () dsdd | (24)
+ B¢V (e, 1) (18) where e
A[ B ( ] Z - / )L Qu(s)ds a1 = max {Amax(P), 1 € S}.
t—r;(t) Observe
Pa(t) Qu(t)
_ f“(1_ () a (t=1 (1) Qa (t=7i(1)) //I (s)[* dsdf = /(s—fﬂt x(s)[* ds
+ 3e”'V, (¢, %) (29) —Hito t—p
and

Al Vatwr )| = e mpn(t) " Qa(t)

t

<p / ja(s)[? ds.
t—pu

Bt / m(S)TQx(s)ds Tj‘h;s,(}ogether with (24), implies that for ea¢he S and any scalar
-
t—p ‘
Btyr . Bty . ,
3" Vs (21, ). (20) A [c v (mt,z)] —a 4 a1B)e’ e ()]
t
Notingw,; > 0, for j # i and=;; < 0, we have +8e™ (1 4 1) Amax (Q) / lo(s)| ds.
1
Z”“ / 2(s)T Qu(s)ds < Z”‘f / (s ;t(s)ds Therefore, by using Dynkin’s formula [3], [5], we have that for any
7 T>0,8>0,andeach(t) =i,i €S
t—7;(1) 7 o
t t
= -7 / w(s) Qu(s)ds < / 2(s)" Qu(s)ds. S{E’gT‘/r(T/Tai)} V(wo,70) = {/./4 PV (4, ] }
t—n t—p
From this, together with (6) and (17)—(20), it can be deduced that for <(—a+taiB) / " ()| di
eachr, = i,i € S and any scalag > 0 0
N T t
A [eﬂlv(wt’i)] <)’ [Z mi; P+ Ai(t)" P X /6& / la(s)|” dsdt.  (25)
j=1 . .
0 t

+ PiA(1) + (1 + )@ -
+(1—hi) ' PAL(HQ™! Adi(t)Tpi:| (t) By setting

+ 3™V (24,1) (21) az = p(pn + 1) Amax(Q)
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and noting Lemma 2 [15]: Let D and® be F real matrices of appropriate di-
" . 0 mensions withF satisfyingF” F < I. Then, for any scalar > 0 and
, . vectorsz, R"
/e’al / le(s)|” dsdt < /;1,6"9(5'“‘) lz(s)|” ds =y €
a1 —1.7T T Tq,T
0 tp “n 20" DFHy < e 2 DD x+ey H Hy.
T—p

Now, we are in a position to give the robust,, filtering results.
Theorem 1: Consider the uncertain Markovian jump systém)
and lety > 0 be a given scalar. Then, there exists a Markovian jump
. ) linear filter (X ) in the form of (10) and (11) such that, for all admis-
pe” T a ()| ds sible uncertainties, the filtering error system is robustly exponentially
mean-square stable and (12) holds for any nonzee £2[0, oo), if
for eachi € S there exist matrice® > 0, X; > 0,Y; > 0, W;, Z;
Bl |lz(t))? dt and scalars; > 0 such that the LMIs shown in (27)—(30) at the bottom
of the page hold, and the scalgis given in (14). In this case, a suitable
robustH . filter (Xy) in the form of (10) and (11) has parameters as

+ ///,C’B(H"") lz(s)|” ds
0

+
T

L~

:IJ,

—

—u

we have that for each€ S and any scalas > 0 follows:
ELPTV (wp i)Y < Vo, ro) + (—a+ a1 8
(" Vi) (To o)+ ( 19) A YW, Bh—Y-'z.  ies. a1
Gt 2 .
P (BT dt Yo 3 ) )
x ,/() () dt + o Proof: Let z(t) = «(t) — &(¢) then from the systemiX) and
0

" filter (X ), it can be verified that for eache S

x / AT ()2t
Z
<V(zo,r0) + (—oz + a1 3+ (12,136'3“)
A
X /6/3t|.’l’(t)|2dt + g BePH

B(t) = Api(t) + [Ai(t) — Ay — BpCi(t)] a(t)
+[Aui(t) = BpiCai(®)] a(t = (1)
+ [Bi(t) = BriDi(t)] w(t).

) Define
y / () dt. (26) e(t) = [0, 3)"] 201 = =)~ 200

Now, choose? > 0 to be the unique solution to the following equation:Then, for each, = ¢ € S, the filtering error dynamics from the
) systemgX¥) and(X ) is described by
—a+ a1 8+ e’ = 0.

Then, by this and (26), we have (D): é(t) = As(t)e(t) + Aai(t)He (t — 7i(t))
0 + Bi(t)w(t) (32)
& {cﬁTV(mT,i)} < Vo, ro) + azfe’” / () |* dt 2(t) = Lie(t) (33)
2 where
and, hence, the uncertain stochastic systEmachieves robust expo- f%'”/) = ‘L + A“Ei(” Aui(t) = Aai + AAai(t)
nential mean-square stability. This completes the proof. O B;(t) = B; + AB;(t)
Q AY, - WE =t zF XiAgi 4+ eiN{;Noy  X;Bi + e, N{; N, XM
Y;A; - W, — Z,C; ®; YAy — Z:Cy Y:B;, — Z; D, Yi My, — Z; Mo;
ALX; + e N&i N ALY - Chzt V; €i N3 N, 0 <0 7
BYX, + e NLNy; BIY, - DI z" €; NJi No, €N Nai —7°T 0
MELX; MEY; — MLz 0 0 —el
where
Q= Z T X+ AL X+ XA+ (L + ) Q + 6NNy, (28)
j=1
=W+ W+ Z 7Yy + LT L (29)
j=1

Vi = e;NdiNoi — (1= hi)Q (30)
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A = [ Ai 0 On the other hand, noting
! _A,' —Afi —BfiC; Afl'

i [ AAi(t) 0 [AA(1)T Adu(t) ABi(H)] =My F(t) [Ny Nay Ny
AA () = s L RS L Ad \ b RS — 4 PR )[Z\fl I\"z Zv‘z]
A= | A4yt) - BrACH) 0} ' o

Ay = Aai and using Lemma 2, we have

| Adi — ByiCus
Adu(t)y=| Adai(t) , ] H=[I 0] AA) P+ PIAA(t) PAAL()
»Afldi(t) — By ACy(t) N .
i - B, :| AAdi(f) P; 0 .
=\ B. — B:D: P My o NGl o 8
:BZ Bi‘gl(t) <et {P“:)Ih] [MLP; 0]+e ,ll [N DNai].
AR. — £ o\t T _ . Vo
ABi(t) = _ABim_BﬁADi(t)} Li=[0 L.

It then follows from this and the LMIs in (39) that for eack S, (40),
Now, we establish the robust exponential mean-square stability of #tgown at the bottom of the page, holds. Define a stochastic Lyapunov
filtering error systerr(E) in (32) and (33) under the conditions of thefunctional candidate for (34)

theorem. To this end, we consider (32) witk¢) = 0,that is

é(t) = Ai(t)e(t) + Awi(t)He (t — T (t)). (34)  Vierr) =e(t) Plro)e(t) + / e(s)" H" QHe(s)ds
t—Tr,
Foreachr; = i,i € S, we define a matri® > 0 by 0t
v o +7;/ / e(s)' H' QHe(s)dsdf. (41)
Pi = |:AOZ Y"j| . —p t+0

Then, by noting (40) and following a similar line as in the proof of
;.nemma 1, we can deduce that the filtering error systém achieves
robust exponential mean-square stability.

Next, we will show that (12) is satisfied for any nonzero
w € L3][0,00). To this end, we set

Then, with the parameters in (31), it can be verified that, for eaels,
the LMIs in (27) can be rewritten as shown in (35)—(38) at the botto
of the page.

It is easy to see that (35) implies that for edch S

Qi + ejlpiﬂuﬂlfﬂﬁi

T
eV D eiNigNai | <0, (39) JT)=¢€ /[S(t)Tf(f) —w(t) w(t)] at (42)
ALP + eiNLN1: e NENo — (1 —1)Q

0

Q, + €; 7\7 7\71, =+ L L P,‘/—idl‘ + F,j[Vf;[VQ,‘ P,B7 + F,j[Vf;[Vg,‘ P,‘Z\Nl]i

A(“Pg =+ eiNg,;_ZVh' eu\@é.@i — (]. — hi)Q Eg_f’v%,:ﬂvgi 0
T B T &7 OT &7 T &7 2 <0 (35)
Bi P+ 61']\/'31']\'“ fiJ\T‘JZ‘J\/Qi EZ'JVL;Z-]\/gi - I 0
MLP 0 0 —eil
where
~ A’ ~ ~ ~ ~ ~
Q= Zm»P» + AP+ PA+ L+ gH QH (36)
My, ~
M, = Mo, = Ms; — D ¢; Ms;
! {Mh - Bf,M%] Hai = M m Bz S
;711‘ = 1 /14 0] Nzi = Ny; Nm‘ = N3;. (38)

N N o _ s
Z TI'iij + x—L‘(t)TPL' + P,'Ai(t) + (1 + 7],u)HTQH PL'Adi(t)
=1
r’idl‘(f)Tﬁ,j —(1 — h,)Q
Qi + 6;1PL'A~/[1,'Z\T[17;pi + 61[\711;[\711' ﬁz‘fid,‘ + 6“’7\”’71:’;[\?2,'

o o o <0.  (40)
Agipi + Ei_]\rg;_;\rh_ Ei./\'rr_)zz./\rzi — (1 — hl‘)Q
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forT" > 0. Observe for any € S, w(t) # 0 can be solved by means of numerically efficient convex programming
algorithms [4].
Remark 3: As pointed out earlier that a filter with exponential
} e(t) mean-square stability can provide faster convergence and desirable

N
AV (er,i) <e(t)” [Z 7P+ (1+ ) H QH
accuracy in terms of reasonable error covariance of the filtering

j=1

— (1= hi)z(t— ()" Qu(t —7(t)) process compared with a filter with asymptotic mean-square stability
: P 7 14]. However, it is worth pointing out that the introduction of the
2e(t TP{ A+ AA (¢ (T [ i e .
+2et)" I K + ( )) e(t) exponential mean-square stability instead of the usual asymptotic
+ (Adl. + AAy (t)) 2 (t— (1)) mean-square stability might lead to conservative solutions.
3 3 In the case whes = {1}, that is, there is only one mode in opera-
+ (Bi + AB; (t)) w(t)] . (43) tion, we haver;; = 0,i € S = {1}, and the systerf®) reduces to the

following uncertain time-delay system with no jumping parameters:
Using Lemma 2 again, we obtain
(Z2):  z(t)=[A+ AA®)]=(t)

2 () P, [A‘ii(t)e(t)+A/idi(t);u (t—T(t))+Al§i(t)w(t)] F[Ag + Ada(®)] 2 (8 — (1)
< E;lﬁ(f)TPi_rrL?[uf\Z[E;Pi6(t)+EiE(t)T_N7T_NTE(ﬂ (44) +[B+ AB(t)]w(t)
where y(t) = [C+ AC(t)] ()
) =[e() a(t-m()" ('] +[Ca + ACa(t)]x (t — 7(1))
N=[Nu No Nil. +[D+ AD(#)]w(t)
—-— L 2(t) = La(t)
Thus, under zero initial conditions, it follows from (42)—(44) that for
anyT > 0,i € S,w(t) #0 w(t) = (1), Yt € [~p, 0]
T whereAA(t), Ady(t), AB(t), AC(t), AC4(t) andAD(t) are un-
J(T) =€ {/ [g(t)Tz(t)—~,/%(t)Tw(t)—|—A1/’(eL,z’)] dt} known matrices, and are assumed to be of the form
0
T AA(t) AAy(t) AB(¥) M, .
: = F(t)[N1 N2 N:
iy { / mel,ndt} 30t sewn an] = [ PO ¥ X
0
T whereM, M, My, N,, and N, are known constant matrices, and
<g /E(t)'[(-)E(t)dt (45) F(1) is the uncertain time-varying matrices satisfyifigr)" F(t) <
- ] I. The time-varying delay-(¢) satisfies) < 7(¢) < p < oo and
where 7(t) < h < 1. Inthis case, Theorem 1 reduces to the following result.
Qde 'PAMED+ LT L, PA, P.B; Corollary 1: Consider the uncertain time-delay systéEy) and
o= ! o ' ! ' let v > 0 be a given scalar. Then, there exists a causal linear filter
- %chiPi —(1-1)Q 0? such that, for all admissible uncertainties, the filtering error system is
B P 0 -1 exponentially stable and
+ €; ]\77’]\7.

||z — 2

|2 < A)”H“"'Hz

Now, applying the Schur complement formula to (35), we Hawe 0.

This together with (45) implies thak(T') < 0 and, hence, (12) holds holds for any nonzere € £, [0, o) under zero initial conditions, if

for any nonzeras € £3[0, o). This completes the proof. O there exist matrice® > 0, X > 0,Y > 0,W, Z, and a scalas > 0
Remark 2: Theorem 1 provides sufficient conditions for the solvSuch that the LMI shown at the bottom of the page holds. In this case,

ability of the robustH.. filtering problem for uncertain Markovian & Suitable robust . filter for the system(X-) is given by

jump systems with mode-dependent time delays, and the desired filter

can be constructed by solving a set of LMIs. We remark that these LMIs 2(t) = Apa(t) + Bpy(t) (t) = La(t) (46)
Q ATY —=WT —CTZ" XAq+eN]No XB+eNTN; X M,
YA-W - ZC ) YA, —2ZCy YB-ZD YM,—ZM;
ATX 4+ NN, ATy —clz” 1% eNS N3 0 <0
BTX 4+ eNI NV, BTy — pTz7 eNT N, eNINy — 421 0
MEX MY - MIzZ" 0 0 —el
where

Q=A"X4+XA+Q+eN/ N\, d=W4+W  +LTL, V =eNJ Ny — (1 - 1)Q.
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where
Ap=Y'W B, =Y"'Z
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The purpose is the design of a robiist, filter in the form of (10) and

(11) such that the filtering error system achieves robust mean-square
stability and (12) is satisfied. In this example, we assume the noise
attenuation levely = 1.2.

Remark 4: The robustH . filtering problem for uncertain time-
delay systems is investigated in [17]. It is noted that the time-delay can-
sidered in [17] is constant, and the filter paramedgris constrained
to be equivalent to the nominal system matfixIn view of this, the

By resorting to the Matlab LMI Control Toolbox to solve the LMIs
In (27), we obtain the solution as follows:

result presented in Corollary 1 here is more general than that in [17, _ 1.3866  —0.3430 0.0230
Cor. 1]. Xy = |-0.3430 09297 —-0.3753
L 0.0230 —-0.3733 1.2080 |
IV. NUMERICAL EXAMPLE [ 13027 —0.2205  0.0515 ]
. ) ) . X = | -0.2205 0.5002 —0.1818
In_thls_s_ectlon,we shall give a numerical example to demonstrate the | 00515  —0.1818 1.6222 |
applicability of the proposed approach. - . 2
Consider an uncertain linear Markovian jump system with mode- . 3.3288  3.3944  —0.0412
dependent time delays in the form (1)—(3) with two modes. For mode Yi=| 33944 44025 —0.1197
1, the dynamics of the system are described as [ —-0.0412 —0.1197  0.3685 ]
[ 7.6675 7.8160 —0.1527
_3 1 0 Yo = | 7.8160 8.9294 0.2110
A= 03 =25 1 | —0.1527 0.2110 0.7280
—01 0.3 —38 [—13.0965 —6.7241  2.9448
—0.2 0.1 0.6 Wi = |-12.2930 -10.0564 2.0232
An=105 -1 —08 0.2390 —-1.3219 —2.0676
0 1 =25 [—23.1622 —20.9810 0.2088
1 Wy = | —20.1789 —24.8354 1.0332
Bi=l0 | —0.8298  0.3666 —0.8119
1 [4.5713 —5.4160
1 =[0.8 0.3 0] Zy = | 7.3286 Zo = | —4.7364
| 1.7094 —0.8827
Car =[0.2 =03 =06] [ 1.5722  —0.9511 0.4941
L =[05 -01 1] Q=|-09511 21202 —1.5764
Dy =0.2 | 0.4941 —-1.5764 3.0137
0.1 e1 =0.3878 ez = 4.0350.
Miu=10
0.2 Therefore, by Theorem 1, the corresponding parameters of a suitable
My =02 Niy=[02 0 0.1] robust MarkovianH ., filter can be chosen as
Nor =[0.1 02 0] Nai =02 (51167 L7777 2.3648
_ _ o ) Ap = | 1.1651 —3.7804 —1.5225
and the time-varying del_am(t) satisfies (6) withu, :_1.2,hl =0.2. | 04543  —4.6164 —5.8408
For mode 2, the dynamics of the system are described as F—1.0102
r—2.5 0.5 0.1 Bri= | 3.2868
Ay=] 01 -35 03 L 54927
—0.1 1 _9 —8.4713 1.7986  —1.6240
S0 03 06 06 App = | 5.2601 —4.4067 1.5824
A 0.1 0.5 0 By= | 05 :—4.4416 2.1581 —1.9146
|—06 1 -08 0 —24376
. o ‘ By = | 1.6553
Co=[-05 02 03] Cp=[0 —-0.6 0.2] | 22037
L.=[0 1 0.6] D2=05
[0.1
Mis 0.1 My =01 Ni2=[01 01 0] V. CONCLUSION
L 0 In this note, we have studied the problem of robfst filtering
Nz =[0 =0.1 0.2] Ns» =01 for Markovian jump linear systems with parameter uncertainties and

and the time-varying dela; (¢) satisfies (6) with:z = 0.5, ho = 0.3.
Suppose the transition probability matrix is given by

mode-dependent time-varying delays. An LMI approach has been de-
veloped to design a Markovian jump linear filter, which guarantees ro-

bust exponential mean-square stability of the resulting error system and
a prescribed bound on th& -induced gain from the noise signal to the

} estimation error, irrespective of the parameter uncertainties. The de-

—-0.5 0.5
= { sired filter can be constructed through a convex optimization problem.

0.3 -03
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