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By employing the Lyapunov method and some inequality techniques, the global point dissipativity
is studied for neural networks with both discrete time-varying delays and distributed time-varying
delays. Simple sufficient conditions are given for checking the global point dissipativity of neural
networks with mixed time-varying delays. The proposed linear matrix inequality approach is com-
putationally efficient as it can be solved numerically using standard commercial software. Illus-
trated examples are given to show the usefulness of the results in comparison with some existing
results. © 2006 American Institute of Physics. �DOI: 10.1063/1.2126940�
t is well known that the stability problem is central to
he analysis of a dynamic system, especially the stability
f an equilibrium point that has captured the attention of
esearchers. Nevertheless, from a practical point of view,
t is not always the case that every dynamic system has its
rbits approach a single equilibrium point. It is possible
hat there is no equilibrium point in some situations.
herefore, the concept such as point dissipativity has
een introduced and investigated. The concept of point
issipativity generalizes the idea of a Lyapunov stability
nd has found application in diverse areas such as stabil-
ty theory, chaos and synchronization theory, system
orm estimation, and robust control. To the best of our
nowledge, so far the point dissipativity problem for gen-
ral neural networks with both discrete and distributed
elays has received little research attention, mainly due to
he mathematical difficulties in dealing with discrete and
istributed delays simultaneously. Hence, it is our inten-
ion in this paper to tackle such an important yet chal-
enging problem. In this paper, simple sufficient condi-
ions are given for checking the global point dissipativity
f neural networks with mixed time-varying delays by
mploying the Lyapunov method and some inequality
echniques.

. INTRODUCTION

In recent years, neural networks have been extensively
nvestigated and many successful applications in different
reas were found. Such applications depend heavily on the
ynamic behavior of the networks. The dynamic behaviors
f various neural networks, such as the stability, the attrac-
ion, and the oscillation, are popular research topics that have
rawn much attention from mathematics, physicists, and
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computer sciences, and a large amount of results are avail-
able in the literature �see Refs. 1–20 and references therein�.
In Refs. 1 and 2 several sufficient conditions are presented
for complete stability of delayed cellular neural networks
with positive cell linking and dominant templates. In Refs.
16–19 several sufficient conditions have been derived for
absolute stability of neural networks. In Refs. 3–15 and 31
the conditions for the existence of an equilibrium point, and
the global stability of various neural networks with delay are
investigated yielding results of significant generality which
are expected to be useful in network design. Various suffi-
cient conditions, either delay dependent or delay indepen-
dent, have been proposed to guarantee global asymptotic or
exponential stability for neural networks. However, in these
recent publications, only discrete time delays have been
treated.

Another type of time delay, namely, distributed delays,
have begun to receive research attention. The main reason is
that a neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of
axon sizes and lengths, therefore, it is desirable to model
them by introducing continuously distributed delays over a
certain duration of time, such that the distant past has less
influence compared to the recent behavior of the state.21

Therefore, when modeling neural networks, both discrete
and distributed time delays should be taken into account.22

Very recently, many results have been reported on the stabil-
ity issue for various neural networks with distributed time
delays.23–26 As is well known, the stability problem is central
to the analysis of a dynamic system where various types of
stability of an equilibrium point have captured the attention
of researchers. Nevertheless, from a practical point of view,
it is not always the case that every neural network has its
orbits approach a single equilibrium point. It is possible that
there is no equilibrium point in some situations. Therefore,

34
the concept such as point dissipativity has been introduced
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nd investigated in Refs. 27–29. The concept of point dissi-
ativity generalizes the idea of a Lyapunov stability and has
ound applications in diverse areas such as stability theory,
haos and synchronization theory, system norm estimation,
nd robust control.28,29 To the best of our knowledge, so far
he point dissipativity problem for general neural networks
ith both discrete and distributed delays has received little

esearch attention, mainly due to the mathematical difficul-
ies in dealing with discrete and distributed delays simulta-
eously. Hence, it is our intention in this paper to tackle such
n important yet challenging problem. Moreover, in practice,
ime-varying delay in neural networks occurs commonly in
ost designs. Thus, the study of neural networks with time-

arying delays is more important in practice than those with
onstant delays.

Motivated by the above discussion, the aims of this pa-
er are to study the global point dissipativity of neural net-
orks with both discrete time-varying delays and distributed

ime-varying delays. For the different classes of activation
unctions, we derive several new criteria for checking the
lobal point dissipativity of the considered model by using
ifferent bounding techniques and Lyapunov functions or
unctionals.

The paper is organized as follows: In Sec. II the model
ormulation and some preliminaries are given. The main re-
ults are stated in Sec. III. Illustrated examples are given to
emonstrate the effectiveness of the proposed results in Sec.
V. Finally, concluding remarks are made in Sec. V.

Notation: Throughout this paper, for real symmetric ma-
rices X and Y, the notation X�Y �respectively, X�Y�
eans that the matrix X−Y is positive semidefinite �respec-

ively, positive definite�. The superscript “T ” represents the
ranspose. The notation �x�r denotes a vector norm defined by
x�r= ��i=1

n xi
r�1/r�r�1� when x is a vector. For a matrix A, �A�

enotes the spectral norm defined by �A�= ��max�ATA��1/2.
atrix dimensions, if not explicitly stated, are assumed to be

ompatible for algebraic operations. For sets A and B, the set
ifference A \B is defined as �x �x�A and x�B	.

I. MODEL FORMULATION AND PRELIMINARIES

Consider the following neural networks with both time-
arying discrete delays and distributed time-varying delays:

dx�t�
dt

= − Dx�t� + Af�x�t�� + Bf�x�t − �1�t��	

+ C

t−�2�t�

t

f�x�s��ds + u , �1�

r

dxi�t�
dt

= − dixi�t� + �
j=1

n

aij f j�xj�t�� + �
j=1

n

bij f j�xj�t − �1�t��	

+ �
j=1

n

cij

t−�2�t�

t

f j�xj�s��ds + ui, �2�

here x�t�= �x1�t� ,x2�t� , . . . ,xn�t��T�Rn is the state vector
ssociated with the neurons, D=diag�d1 ,d2 , . . . ,dn��0; A

�aij�n�n, B= �bij�n�n, and C= �cij�n�n denote the connection

ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
weights matrix, the connection weights matrix with discrete
delays, and the connection weights with distributed delays,
respectively; u= �u1 ,u2 , . . . ,un�T�Rn is a constant external
input vector; �1�t� and �2�t� are discrete and distributed time-
varying delays, respectively; and f j is a real activation func-
tion,

f�x�t�� = �f1�x1�t��, f2�x2�t��, . . . , fn�xn�t��	T � Rn,

f�x�t − �1�t��	 = „f1�x1�t − �1�t��	, f2�x2�t − �1�t��	, . . . ,

fn�xn�t − �1�t��	…T � Rn.

Throughout this paper, the time-varying delays are assumed
to satisfy the following assumption.

Assumption A: The time-varying delays �1�t� and �2�t�
are positive, bounded, and differentiable functions with 0
��1�t���1, 0��2�t���2 and 0��1��t���1�1, 0��2��t�
��2�1.

Next, we give the definitions of several classes of acti-
vation functions:

�i� A function g�x�= �g1�x1� ,g2�x2� , . . . ,gn�xn�� is of class
L if for "xi�R, xi�0, it satisfies 0�gi�xi� /xi� li, and
gi�0�=0, i=1,2 , . . . ,n;

A function g�x�= �g1�x1� ,g2�x2� , . . . ,gn�xn�� is of class
L* if for "xi�R, xi�0, it satisfies 0�gi�xi� /xi� li, li�0,
and gi�0�=0, i=1,2 , . . . ,n;

�ii� A function g�x�= �g1�x1� ,g2�x2� , . . . ,gn�xn�� is of
class G if it satisfies 0�D+gi�xi�� +	, and gi�0�=0, i
=1,2 , . . . ,n;

A function g�x�= �g1�x1� ,g2�x2� , . . . ,gn�xn�� is of class G*

if it satisfies 0�D+gi�xi�� +	, and gi�0�=0, i=1,2 , . . . ,n;
�iii� A function g�x�= �g1�x1� ,g2�x2� , . . . ,gn�xn�� is of

class B if it satisfies �gi�xi���hi, i=1,2 , . . . ,n.
Similar to Ref. 27 we also give the following definitions.
Definition 1: The neural network model (1) is said to be

a globally point dissipative, if there exists a compact set,
S�Rn, such that "x0�Rn, $T�x0��0, when t� t0+T�x0�,
x�t , t0 ,x0��S, where x�t , t0 ,x0� denotes the solution of (1)
from the initial state x0 and initial time t0. In this case, S is
called a globally attractive set. A set S is called a positive
invariant, if "x0�S implies x�t , t0 ,x0��S for t� t0.

Definition 2: Let S be a globally attractive set of neural
network models (1). The neural network model (1) is said to
be a globally exponentially dissipative system, if there exists
a compact S*�S in Rn such that "x0�Rn \S*, there exist a
constant M�x0� and 
�0 such that

inf
x0�Rn\S*

��x�t,t0,x0� − x̃�r�x̃ � S*	 � M�x0�exp�− 
�t − t0�	 .

The set S* is said to be a globally exponentially attractive.
To obtain our main results, we need the following lem-

mas.
Lemma 1 (Ref. 30): Given any real matrices X, Y, P

�0 of appropriate dimensions, the following inequality
holds:

XTY + YTX � XTPX + YTP−1Y .

Lemma 2 (Schur Complement, Ref. 32): For a given matrix,
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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S = �S11 S12

S12
T S22

� � 0,

s equivalent to any one of the following conditions:

i) S22�0, S11−S12S22
−1S12

T �0;
ii) S11�0, S22−S12

T S11
−1S12�0.

emma 3 (Jensen’s Inequality, Ref. 33): For any constant
atrix, V�Rm�m, V�0, scalar 0�r�t��r, vector function
: �0,r�→Rm such that the integrations concerned are well
efined, then

�t�

0

r�t�

�T�s�V��s�ds � 


0

r�t�

��s�ds�T

V


0

r�t�

��s�ds� .

�3�

Consider the following equations:

dxi�t�
dt

= f i�t,xt�, i = 1,2, . . . ,n , �4�

here f i�t ,�� : �0, +	��C�−� ,0�→R is continuous with re-
pect to �t ,��.

Lemma 4: Let V�C�Rn ,R� satisfy V�x�→	 as �x�r

	. Assume there exists a set E= �x�Rn �V�x��K	 for
ome K�0 such that the Dini derivative D+V�x� of V�x�
long with solution x�t� of (4) satisfies D+V��x���4��0 as long
s x�t��Rn \E. Then (4) is point dissipative in Rn.

Proof: Define E1= �x�Rn :V�x��K+1	. Then E�E1

nd E1 is bounded. Furthermore, D+V��x���1��0 for x
Rn \E1. We will show that for any x0�Rn, there is a T
t0 such that x�t , t0 ,x0��E1 for t�T, as long as x is con-

inuous in Rn. This is obviously true if x0�E1. So we con-
ider the case that x0�Rn \E1. Let E2= �x�Rn :K+1�V�x�

V�x0�	. If the conclusion is not true, then x�t , t0 ,x0��E2

or t� t0. Thus along the solution, D+V��x���4�� l, where l
max�D+V�x� �x�E2	�0. Hence V�x�t��� l�t− t0�→−	 as
→	. This contradiction completes the proof. �

Remark 1: The considered model (1) and the model
iven in Ref. 29 are the special cases of (4). The proof of
emma 5 is a minor modification of the proof of Lemma 1.1

n Ref. 29.

II. MAIN RESULTS

. Results using Lyapunov-Krasovskii functionals

In this section, conditions are given for global point dis-
ipativity of �1� by constructing appropriate Lyapunov-
rasovskii functionals and employing different bounding

echniques.
Theorem 1: Let assumption A be satisfied. Neural net-

ork model (1) is globally point dissipative, if there exists
atrices Q1�0, Q2�0, and diagonal K�0 such that the
ollowing linear matrix inequality (LMI) holds:

ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
�KA + ATK + Q1 + Q2 KB �2KC

BTK − �1 − �1�Q1 0

�2CTK 0 − �1 − �2�Q2
� � 0.

�5�

Moreover,

(i) if f�x��L, the set S1= �x � �f i�xi��� li�ui� /di , i
=1,2 , . . . ,n	 is positively invariant and globally
attractive;

(ii) if f�x��L*, the set S2= �x � �f i�xi���
li�ui� /di , i
=1,2 , . . . ,n	 where 
�1, is positively invariant and
globally attractive;

(iii) if f�x��G, the set S̄1= �x � �xi�� �ui� /di , i=1,2 , . . . ,n	
is positively invariant and globally attractive;

(iv) if f�x��G*, the set S̄2= �x � �xi��
�ui� /di , i
=1,2 , . . . ,n	 where 
�1, is positively invariant and
globally attractive.

Proof: First, denote

xt = x�t + ��, − max��1,�2	 � � � 0.

�i� Consider the following positive radially unbounded
Lyapunov-Krasovskii functional candidate:

V�xt� = 2�
i=1

n

ki

0

xi

f i�s�ds + 

t−�1�t�

t

fT�x�s��Q1f�x�s��ds

+ �2
−1


t−�2�t�

t 

�

t

fT�x�s��Q2f�x�s��dsd� , �6�

where K=diag�k1 ,k2 , . . . ,kn�. By calculating the derivative
along the positive half trajectory of �1�, we have

dV

dt
= 2�

i=1

n

kif i�xi�t���− dixi�t� + ui� + fT�x�t��

��KA + ATK�f�x�t�� + 2fT�x�t��KBf�x�t − �1�t��	

+ 2fT�x�t��KC

t−�2�t�

t

f�x�s��ds + fT�x�t��Q1f�x�t��

− �1 − �1��t��fT�x�t − �1�t��	Q1f�x�t − �1�t��	

− �2
−1�1 − �2��t��


t−�2�t�

t

fT�x�s��Q2f�x�s��ds

+ �2
−1�2�t�fT�x�t��Q2f�x�t�� . �7�

From the Jensen inequality, we have

− 

t−�2�t�

t

fT�x�s��Q2f�x�s��ds

� − �2
−1



t−�2�t�

t

f�x�s��ds�T

Q2


t−�2�t�

t

f�x�s��ds� .

�8�
By Lemma 1, the following inequalities hold:

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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2fT�x�t��KC

t−�2�t�

t

f�x�s��ds

� �2
−2�1 − �2��t��



t−�2�t�

t

f�x�s��ds�T

�Q2


t−�2�t�

t

f�x�s��ds�
+ �2

2�1 − �2��t��
−1fT�x�t��KCQ2

−1CTKf�x�t�� , �9�

2fT�x�t��KBf�x�t − �1�t��	

� �1 − �1��t��fT�x�t − �1�t��	Q1�x�t − �1�t��	

+ �1 − �1��t��
−1fT�x�t��KBQ1

−1BTKf�x�t�� . �10�

t follows from inequalities �8�–�10� that

dV

dt
� 2�

i=1

n

kif i�xi�t��
−
di

li
f i�xi�t�� + ui� + fT�x�t��

��KA + ATK + Q1 + Q2 + �2
2�1 − �2�−1

�KCQ2
−1CTK + �1 − �1�−1KBQ1

−1BTK�f�x�t��

= 2�
i=1

n

kif i�xi�t��
−
di

li
f i�xi�t�� + ui� + fT�x�t���f�x�t��
ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
� − 2�
i=1

n

ki
di

li
�f i�xi�t���
�f i�xi�t��� − �ui�

li

di
� � 0,

when x � Rn \ S1, �11�

where �=KA+ATK+Q1+Q2+�2
2�1−�2�−1KCQ2

−1CTK
+ �1−�1�−1KBQ1

−1BTK. �11� holds because of the negative
definiteness of �. By the Schur complement in Lemma 3,
��0 if and only if �5� holds. Thus the neural network
model �1� is a globally point dissipative system, and the set
S1 is a positive invariant and globally attractive set as �5�
holds.

�ii� For any 
�1, since ��0, we can choose a suffi-
ciently small P=diag�p1 , p2 , . . . , pn��0 such that

�KA + ATK + Q1 + Q2 KB �2KC

BTK − �1 − �1�Q1 0

�2CTK 0 − �1 − �2�Q2
�

+



2�
 − 1�� AT

BT

�2CT �PD−1�A B �2C� � 0, �12�

or equivalently,
�� = �− 2
1 −
1



�PD PA PB �2PC

ATP KA + ATK + Q1 + Q2 KB �2KC

BTP BTK − �1 − �1�Q1 0

�2CTP �2CTK 0 − �1 − �2�Q2

� � 0. �13�

ext, we consider the following Lyapunov-Krasovskii functional:

Ṽ�xt� = xTPx + V�xt� , �14�

here V�xt� is defined in �6�. By calculating the derivative along the positive half trajectory of �1�, we have

dṼ

dt
= ẋT�t�Px + xT�t�Pẋ�t� +

dV

dt

= − 2xT
1 −
1



�PDx�t� + 2xT�t�PAf�x�t�� + 2xT�t�PBf�x�t − �1�t��	 + 2xT�t�PC


t−�2�t�

t

f�x�s��ds

+ 2�
i=1

n
1



xi�t�pi�− dixi�t� + 
ui� + 2�

i=1

n

kif i�xi�t���− dixi�t� + ui� + fT�x�t���KA + ATK�f�x�t��

+ 2fT�x�t��KBf�x�t − �1�t��	 + 2fT�x�t��KC

t−�2�t�

t

f�x�s��ds + fT�x�t��Q1f�x�t��

− �1 − �1��t��fT�x�t − �1�t��	Q1f�x�t − �1�t��	 − �2
−1�1 − �2��t��


t−�2�t�

t

fT�x�s��Q2f�x�s��ds + �2
−1�2�t�fT�x�t��Q2f�x�t��

� − 2xT
1 −
1



�PDx�t� + 2xT�t�PAf�x�t�� + 2xT�t�PBf�x�t − �1�t��	 + 2xT�t�PC


t−� �t�

t

f�x�s��ds

2
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+ 2�
i=1

n
pi



�xi�t��
−

di

li
�f i�xi�t��� + 
�uj�� + 2�

i=1

n

ki�f i�xi�t���
−
di

li
�f i�xi�t��� + �ui�� + fT�x�t���KA + ATK�f�x�t��

+ 2fT�x�t��KBf�x�t − �1�t��� + 2fT�x�t��KC

t−�2�t�

t

f�x�s��ds + fT�x�t��Q1f�x�t��

− �1 − �1�fT�x�t − �1�t��	Q1f�x�t − �1�t��	

− �2
−2�1 − �2�



t−�2�t�

t

f�x�s��ds�T

Q2


t−�2�t�

t

f�x�s��ds� + fT�x�t��Q2f�x�t��

= 2�
i=1

n
pi



�xi�t��
−

di

li
�f i�xi�t��� + 
�ui�� + 2�

i=1

n

ki�f i�xi�t���
−
di

li
�f i�xi�t��� + �ui�� + �T�t�����t� � 0, when x � Rn \ S2,

�15�
here �T�t�= �xT�t� , fT�x�t�� , fT�x�t−�1�t��	 , �2
−1�t−�2�t�

t

fT�x�s��ds	. Equation �15� holds because of �13�. Hence,
hen �5� holds, the neural network model �1� is globally
oint dissipative, and the set S2 is positively invariant and
lobally attractive.

�iii� Consider the Lyapunov-Krasovskii functional candi-
ate as in �6�. Similar to �11�, we have

dV

dt
� 2�

i=1

n

ki�f i�xi�t����− di�xi�t�� + �ui��

+ fT�x�t���KA + ATK + Q1 + Q2 + �2
2�1 − �2�−1

�KCQ2
−1CTK + �1 − �1�−1KBQ1

−1BTK�f�x�t��

� 2�
i=1

n

ki�f i�xi�t����− di�xi�t�� + �ui�� � 0,

when x � Rn \ S̄1. �16�

ence, when �5� holds, the neural network model in �1� is

lobally point dissipative and the set S̄1 is positively invari-
nt and globally attractive.

�iv� Consider the Lyapunov-Krasovskii functional as in
14�. Similar to �15�, we have

dṼ

dt
� 2�

i=1

n

�
j=1

n
pi



�xi�t���− dj��xj�t��� + 
�uj�	

+ 2�
i=1

n

kif i�xi�t���− dixi�t� + ui� + �T�t�����t� � 0,

when x � Rn \ S̄2, �17�

here �T�t�= �xT�t� , fT�x�t�� , fT�x�t−�1�t��	, �2
−1�t−�2�t�

t

fT�x�s��ds	 and �� is defined as �13�. Inequality �17� holds
ue to the negative definiteness of ��. Hence, when LMI �5�
s satisfied, the neural network model in �1� is globally point

issipative, and the set S̄2 is positively invariant and globally
ttractive. This completes the proof. �

In the special case that cij =0, model �2� can be written

s the following neural networks with only discrete delays:

ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
dxi�t�
dt

= − dixi�t� + �
j=1

n

aij f j�xj�t�� + �
j=1

n

bij f j�xj�t − �1�t��	 + ui.

�18�

For model �18�, we have the following corollaries which can
be obtained easily from Theorem 1.

Corollary 1: Let assumption A be satisfied with C=0.
Neural network �18� is a globally point dissipative system if
there exist matrices Q1�0 and diagonal K�0 such that the
following LMI holds:

�KA + ATK + Q1 KB

BTK − �1 − �1�Q1
� � 0. �19�

Moreover, (i), (ii), (iii), and (iv) in Theorem 1 hold.
Corollary 2: Let assumption A be satisfied with �1�t�

being constant. Neural network �18� is a globally point dis-
sipative system, if the following LMI holds:

�A + AT + 2I B

BT − 2I
� � 0.

Moreover, (i), (ii), (iii), and (iv) in Theorem 1 hold.
Remark 2: Case (i) of Corollary 2 coincides with Theo-

rem 3 in Ref. 27. Hence, our result improves and generalizes
an earlier result.

B. Results using Lyapunov functions

In this section, conditions are given for global point dis-
sipativity of �1� by constructing appropriate Lyapunov func-
tions and employing different bounding techniques.

Theorem 2: Let f�x��B and Assumption A be satisfied.
Neural network (1) is globally point dissipative, and the set
E= �x � �xi��Mi	, where Mi�� j=1

n di
−1���aij�+ �bij�+�2�cij��hj

+ �ui��, is positively invariant and globally attractive.
Proof: Construct a radially unbounded and positive defi-

nite Lyapunov function candidate as
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



B

w

F
�
x
�
T

N
t
s
b

E

B
a

w
s
�

013105-6 Cao et al. Chaos 16, 013105 �2006�

D

V�x� = �
i=1

n �xi�r

r
.

y computing D+V along the trajectory of �1�, we have

�D+V�x���1� = �
i=1

n

�xi�r−1 sgn�xi�
dxi

dt

= �
i=1

n

�xi�r−1 sgn�xi��− dixi�t� + �
j=1

n

aij f j�xj�t�� + �
j=1

n

bij f j�xj�t − �1�t��	 + �
j=1

n

cij

t−�2�t�

t

f j�xj�s��ds + ui�
� �

i=1

n �− di�xi�r + �
j=1

n

��aij� + �bij� + �2�cij��hj�xi�r−1 + �ui��xi�r−1�
= − �

i=1

n

di�xi�r + �
i=1

n

�
j=1

n

���aij� + �bij� + �2�cij��hj + �ui���xi�r−1

= − �
i=1

n

�xi�r−1�di�xi� − �
j=1

n

���aij� + �bij� + �2�cij��hj + �ui��� � 0, �20�
hen x�Rn \E, where

E = �x��xi� � di
−1�

j=1

n

���aij� + �bij� + �2�cij��hj + �ui���	 .

rom Lemma 4, the neural network �1� is point dissipative.
20� implies that "x0�E, x�t , t0 ,x0��E holds, t� t0. For

0�E, there exists T�x0��0 such that x�t , t0 ,x0��E, t
T�x0�+ t0, therefore E is positively invariant and attractive.

he proof is completed. �

Theorem 3: Let f�x��B and Assumption A be satisfied.
eural network (1) is globally exponentially point dissipa-

ive, and the set E*= �x � �xi��diMi / �di−
�	, where 
�0 is a
ufficiently small constant, is positively invariant and glo-
ally exponentially attractive.

Proof: Obviously, E* is a positive invariant set because
*�E. Now we consider a Lyapunov function candidate

V�x� = �
i=1

n
e
t�xi�r

r
.

y calculating the D+V along the solution of the model �1�
nd by �20�, we have

�D+V�x�t����2� = �
i=1

n �e
t d

dt

 �xi�r

r
� + 
e
t �xi�r

r
�

�
e
t

r
�
i=1

n

�xi�r−1��
 − di��xi� + diMi� � 0, �21�

hen �xi��diMi / �di−
�, that is, x�Rn \E*. Integrating two
ides of �21� from t0 to an arbitrary t� t0, we have V�x�t��
V�x�t0��. Therefore, we have

ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
�
i=1

n

�xi�t��r � e−
�t−t0��
i=1

n

�xi�t0��r.

It follows that

inf
x0�Rn\E*

��x�t,t0,x0� − x̃�r�x̃ � E*	

� �x�t,t0,x0��r

= 
�
i=1

n

�xi�t,t0,x0��r�1/r

� e−
�t−t0�/r
�
i=1

n

�xi�t0��r�1/r

.

If we take M�x0�= �x0�r, we have

inf
x0�Rn\E*

��x�t,t0,x0� − x̃�r�x̃ � E*	 � M�x0�e−
�t−t0�/r. �22�

The inequality in �22� means that the set E* is globally ex-
ponentially attractive, that is, the models �1� or �2� are glo-
bally exponentially point dissipative. This completes the
proof. �

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following neural network
model with discrete time delay and distributed delay:

dx�t�
dt

= − Dx�t� + Af�x�t�� + Bf�x�t − �1�t��	

+ C

t−�2�t�

t

f�x�s��ds + u , �23�
where f i�xi�=arctan�xi� and

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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D = �1 0

0 1
�, A = �− 0.9 0

0 − 0.9
� ,

B = � 0 − 0.02

0.02 − 0.06
�, C = � 0.10 − 0.02

− 0.26 0.1
� ,

u = �1

1
� .

or notational and computational convenience, let �1�t�
�2�t�=1, then �1=�2=0. Take K= I and Q1=Q2= 1

2 I, the
atrix inequality �5� in Theorem 1 holds, that is,

A + AT + Q1 + Q2 B C

BT − Q1 0

CT 0 − Q2
�

= �
− 0.8 0 0 − 0.02 0.1 − 0.02

0 − 0.8 0.02 − 0.06 − 0.26 0.1

0 0.02 − 0.5 0 0 0

− 0.02 − 0.06 0 − 0.5 0 0

0.1 − 0.26 0 0 − 0.5 0

− 0.02 0.1 0 0 0 − 0.5

� � 0.

rom Theorem 1, the model in �23� is globally point dissi-
ative. Note that li=1 and the activation functions f i�·��L,
hus the globally attractive set is S1= �x � �arctan�xi��

li�ui� /di=1, i=1,2 , . . . ,n	; also the activation functions

f i�·��G, then the globally attractive set is S̄1= �x � �xi�
�ui� /di=1, i=1,2 , . . . ,n	. To compare the results in Ref.

7 let C=0 in model �23�, and then consider the neural net-
ork model with only discrete time delay. Take K= I and

1= 1
2 I, then the linear matrix inequality in Corollary 1

olds, that is,

�A + AT + Q1 B

BT − Q1
�

= �
− 1.3 0 0 − 0.02

0 − 1.3 0.02 − 0.06

0 0.02 − 0.5 0

− 0.02 − 0.06 0 − 0.5
� � 0.

y Corollary 1, we conclude that the model with only dis-
rete time delays is a globally point dissipative system. How-
ver,

A + AT + 2I B

BT − 2I
� = �

0.2 0 0 − 0.02

0 0.2 0.02 − 0.06

0 0.02 − 2 0

− 0.02 − 0.06 0 − 2
�

s not negative definite; hence the criterion given in Ref. 27
s not applicable. This implies that the proposed results im-
rove and generalize those in Ref. 27.

Note that �arctan�xi���� /2, hence the activations f i�xi�
arctan�xi��B. By virtue of Theorem 2, we have M1

0.52�+1 and M2=0.67�+1, the globally attractive set is
T
= �x= �x1 ,x2� � �x1��0.52�+1, �x2��0.67�+1	.

ownloaded 31 Jul 2007 to 147.8.21.130. Redistribution subject to AIP 
The following example is given to illustrate that when
the sufficient condition ensuring the global point dissipativity
is not satisfied, the complex dynamics will appear.

Example 2: Consider the following neural network
model with discrete time delay:

dx�t�
dt

= − Dx�t� + Af�x�t�� + Bf�x�t − �1�t��	 + u , �24�

where f i�xi�=tanh�xi�, �i=1,2�, �1�t�=1, and D= � 1 0
0 1

�.
In Corollary 1, if

A = � 2 − 0.1

− 5 4.5
�, B = �− 1.5 − 0.1

− 0.2 − 3
� ,

the linear matrix inequality �19� does not have a feasible
solution, in other words, the system �24� is not a dissipative
system. Figure 1 depicts the states of system �24� with initial
conditions x1�t��−0.4, x2�t��2, t� �−1,0�, and input vec-
tors u= � 0

1
�.

FIG. 1. Transient response of state variables x1�t� and x2�t�.
FIG. 2. Transient response of state variables x1�t� and x2�t�.

license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Similarly, in Corollary 1, if

A = �2 0.1

5 4.5
�, B = �− 1.5 0.1

0.2 − 8.5
� ,

he linear matrix inequality �19� does not have a feasible
olution, in other words, the system �24� is not a dissipative
ystem. Here, Fig. 2 depicts the states of system �24� with
nitial conditions x1�t��0.4, x2�t��0.2, t� �−1,0�, and input
ectors u= � 0

1.5
�; Fig. 3 depicts the states of system �24� with

nitial conditions x1�t��0.6, x2�t��0.6, t� �−1,0�, and zero
nput vectors.

. CONCLUSIONS

In this paper, we have studied the global point dissipa-
ivity of neural networks with both discrete time-varying de-
ays and distributed time-varying delays. Using Lyapunov
ethods and LMI techniques, several new sufficient condi-

ions and globally attractive sets have been derived for the
oint dissipativity of neural networks with mixed time-
arying delays. The advantage of the proposed approach is
hat the developed criteria can be performed efficiently via
umerical algorithms such as interior-point algorithms for
olving LMIs. The new results given in this paper generalize
nd improve the earlier ones, and the new conditions are
asy to check and apply in practice. Illustrated examples are
lso given to demonstrate the effectiveness of the proposed
esults.
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