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We propose a strategy to physically implement a universal set of quantum gates based on geometric phases
accumulated in the nondegenerate eigenstates of a designated invariant operator in a periodic physical system.
The system is driven to evolve in such a way that the dynamical phase shifts of the invariant operator
eigenstates are identical �or mod 2�� while the corresponding geometric phases are nontrivial. We illustrate
how this strategy works in a simple but typical NMR-type qubit system.
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Quantum computation, based on fundamental quantum
mechanical principles such as superposition and entangle-
ment, may provide a promising perspective to advance mod-
ern computational science �1,2�. So far, a lot of substantial
efforts have been dedicated to the field of quantum compu-
tation and a number of significant progresses have been
made �2–5�. Nevertheless, quantum computation is still fac-
ing great challenges before it can be put into practice. As one
of them, how to suppress the random errors during gate op-
erations has been paid much attention for the past years.

Recently, geometric quantum computation �GQC�, ex-
pected as an intrinsical fault-tolerant scheme, was proposed
by using NMR �6,7�, superconducting nanocircuits �8,9�,
trapped ions �10�, or semiconducting nanostructures �11�. As
is well known �12–14�, for an adiabatic �or nonadiabatic�
cyclic evolution, the associated total phase shift consists of
both dynamic and geometric components, where the geomet-
ric phase is interpreted as a holonomy of the Hermitian fiber
bundle over the parameter �projective Hilbert� space. Since
the geometric phase depends only on the global geometry of
the path executed in the evolution, quantum logical gates
related only to pure geometric phase shifts in the gate opera-
tions are likely to have an advantage that is insensitive to
stochastic operation errors �15,16�. A kind of adiabatic GQC
based on the conditional Berry phase was first proposed
�6,8,10,11�, while the adiabatic condition may not be satis-
fied in many realistic cases since it requires one to operate a
quantum gate very slowly so that the relevant instantaneous
energy eigenstates follow its Hamiltonian to evolve. On the
one hand, faster operation leads to severe distortions in the
expected outcome, while on the other hand, the operation
must be completed within the decoherence time of the sys-
tem. In order to overcome this disadvantage, another kind of
quantum gates based on the nonadiabatic geometric phase
was suggested �7,9�. These gates likely possess the virtues of
both a fast running speed and intrinsic geometric features of
the adiabatic GQC. It is remarked that a key point in the
above conventional GQC schemes is to avoid or remove the
dynamic phases �6–11,17�, so that only the geometric phases

are accumulated in the whole gate operation. Apart from
these methods, an unconventional GQC was also proposed to
construct quantum gates in several physical systems �18,19�.

In this paper, we propose a strategy to implement a set of
quantum gates based on the geometric phases accumulated in
the nondegenerate eigenstates of a periodic invariant opera-
tor in a physical system. Let the system evolve in such an
intriguing way that the dynamical phase shifts of the invari-
ant operator eigenstates are identical �or mod 2�� while the
corresponding geometric phases are nontrivial. In particular,
we illustrate how to realize our scheme in a simple but typi-
cal NMR-type system. Certainly, the present strategy can
also be applied to other systems.

Consider a physical system whose Hamiltonian Ĥ�t� and

an invariant operator Î�t� are time dependent and evolve pe-
riodically with periodicity � �20�—i.e.,

Ĥ�0� = Ĥ���, Î�0� = Î��� , �1�

where the invariant operator Î is determined by ��=1�

�Î

�t
− i�Î,Ĥ� � 0. �2�

To realize geometric quantum gates based on the invariant
operator strategy, we here focus only on the simple cases in

which all eigenstates of Î are nondegenerate. From Eq. �2�
and the eigenvalue equation Î�n , t�I=�n�n , t�I �n=1,2 , . . . �, it
is straightforward to summarize the following three proper-

ties of Î �20–22�. �i� All eigenvalues ��n	 are time indepen-
dent. �ii� The evolving state �n , t�S=U�t ,0��n ,0�I is always

the eigenstate of Î�t� with the same eigenvalue �n, where
U�t ,0� is the evolution operator satisfying the Schrödinger

equation i �
�tU= ĤU. Since both �n , t�S and �n , t�I are eigen-

states of Î�t� specified by the same eigenvalue �n, there exists
a time-dependent gauge transformation between them:

�n,t�S = ei�n�t��n,t�I, �3�

with*Electronic address: zwang@hkucc.hku.hk

PHYSICAL REVIEW A 75, 014301 �2007�

1050-2947/2007/75�1�/014301�4� ©2007 The American Physical Society014301-1

http://dx.doi.org/10.1103/PhysRevA.75.014301


�n�t� = 

0

t

dt��n,t��i
�

�t�
− Ĥ�t���n,t��I, �4�

where the phase ��n	 is referred to as the Lewis phase �21�.
�iii� Transitions between the eigenstates specified by differ-
ent eigenvalues are impossible, simply because the evolution
operator represented in the basis �n , t�I reads

UI�t,0� = �ei�1�t�

ei�2�t�

�



I

. �5�

In addition, from the periodic condition given by Eq. �1�, it is
straightforward to derive a key relation �n ,��I= �n ,0�I, which
plays an essential role in the present scheme.

Recently, a theory of geometric phases for invariant op-
erators was developed �20�. The corresponding geometric
phase is interpreted as a holonomy inherited from the univer-
sal Stiefel bundle over a Grassmann manifold. For a cyclic
evolution of the eigenstate of I�t�, the Lewis phase in Eq. �4�
is nothing but the total phase shift consisting of the geomet-
ric phase �0

�dt��n , t��i �

�t�
�n , t��I

and the dynamic one

−�0
�dt��n , t��Ĥ�t���n , t��I �14,20,22�. To achieve quantum

gates that depend only on geometric phases, we need to
eliminate the above dynamic phases. We consider a system
whose space bases are the normalized nondegenerate eigen-

states of Î�0�. An arbitrary initial state in the system can be
written as ���0��=�ncn�n ,0�I, where �cn	 are the expansion
coefficients. After operating a periodic evolution as given in
Eq. �1�, the final state becomes

������ = �
n

cnei�n����n,0�I, �6�

where �n��� is the total phase shift of the state �n ,0�I which
consists of the dynamic part �n

d��� and the geometric part
�n

g��� �12,14�. Here, we have used the condition �n ,��I

= �n ,0�I. If the accumulated dynamic phases of ��n ,0�I	 are
identical �or mod 2��, namely,

�n
d��� = �0 + 2Kn� , �7�

where Kn is an integer, the final state ������ is given by

������ = ei�0�
n

cnei�n
g����n,0�I. �8�

Note that the overall identical phase shift �0 in Eq. �8� is
irrelevant to the designed quantum computation, and thus
only the geometric phase is relevant to the gate operation,
which is just a key idea to construct, in principle, geometric
quantum gates �23�. In fact, the present geometric strategy is
to operate quantum gates in such a way that the nondegen-
erate eigenstates of the invariant operator accumulate the
same dynamic phase but with nontrivial relative geometric
phases.

As a simple but typical example, we now illustrate how to
implement the above generic strategy in an NMR-type qubit
system, noting that the NMR approach has been a mature
technique to simply simulate and examine quantum informa-
tion processing schemes. Certainly, the present scheme is

also applicable in principle to other quantum systems that
evolve nonadiabatically. Consider an NMR-type spin-1 /2
system, subject to a rotating magnetic field given by

B� �t� = �− B2 cos �t,− B2 sin �t,− B1� , �9�

where B1 and B2 are, respectively, the amplitudes of the z
and xy-plane components of the field. The corresponding qu-
bit Hamiltonian can be written as

Ĥ�t� = −
1

2
�B	� · B� =

1

2
�1	z +

1

2
�2� 0 e−i�t

ei�t 0
� , �10�

where 	x,y,z are Pauli matrices, and �1=�BB1 and �2
=�BB2 with �B as the Bohr magneton. The corresponding
evolution operator is �24�

U�t,0� = e−i�t	z/2e−iH0t, �11�

where Ĥ0= Ĥ�0�−�	z /2 is just the Hamiltonian denoted in
the rotating framework. An invariant operator satisfying Eq.
�2� is then found to be

Î =
1

2
��1 − ��	z +

1

2
�2� 0 e−i�t

ei�t 0
� . �12�

Obviously, Î�0�= Ĥ0, and the invariant operator follows the
Hamiltonian to evolve cyclically with periodicity �=2� /�.

The eigenvalues of Î are evaluated to be ±� /2 with
�=��2

2+ ��1−��2, and the two corresponding eigenstates
are derived as � 1

2� , t�I=cos 

2 �↑ �+ei�t sin 


2 �↓ � and �− 1
2� , t�I

=−sin 

2 �↑ �+ei�t cos 


2 �↓ �, where 
=2 arctan
�+�−�1

�2
, and �↑�

and �↓� are the two eigenstates of 	z. Since Î�0�= Ĥ0,
�± 1

2� ,0�I are also the eigenstates of H0. For a cyclic evolu-
tion and in the basis �± 1

2� ,0�I, the evolution operator UI���
can be simply written as

UI��,0� = �ei��1−�/�� 0

0 ei��1+�/�� �
I

. �13�

Note that, if we choose the computation basis as �↑� and �↓�,
the unitary transformation Ũ�� ,0� between the input and out-
put states can also be given explicitly �25�:

Ũ =�ei� cos2 


2
+ e−i� sin2 


2
i sin 
 sin �

i sin 
 sin � ei� sin2 


2
+ e−i� cos2 


2

 ,

where �=�+=��1−� /�� is the total phase shift of � 1
2� ,0�I in

one cyclic evolution.
Similarly, the total phase shift of �− 1

2� ,0�I is expressed as
�−=��1+� /�� in the cyclic evolution. The corresponding
dynamic phases are derived to be

�±
d = � �

��1
2 + �2

2

�
cos�
 − �� , �14�

with �=arctan��2 /�1�. Here �
−�� is just the angle between
the magnet field and the state vector in the Bloch sphere as
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the eigenstate of Î rotates with Ĥ. The geometric phases of
�± 1

2� ,0�I are found to be

�±
g = ��1 ± cos 
� . �15�

Using Eq. �7� to eliminate the dynamic phases in the gate
operation, we are able to derive a relation for three param-
eters �1, �2, and �:

�� + � − �1���1
2 − ��1 + �2

2�
�2

2 + �� + � − �1�2 =
K�

2
, �16�

where K is an integer. In the simplest case of K=0, we have
�1

2+�2
2=��1. The geometric phases are simply given by

�±
g = ��1 �

�

�
� = ��1 ± cos 
� . �17�

Comparing with existing GQC schemes �9,25�, the
present strategy is simpler and more operable. Also, interest-
ingly, in the adiabatic evolution—i.e., �
�1 ,�2—one has

�Î /�t�0, so that �Î , Ĥ��0 and Î� Ĥ in the present example.

In this case, the two eigenstates of Î are also the instanta-

neous eigenstates of Ĥ and the conventional Berry phase is
recovered �20�. Moreover, under the adiabatic approxima-
tion, a set of adiabatic Abelian geometric gates can be con-
structed more rigorously using the present theory plus a two-
loop gate operation that can simply eliminate the dynamic
phase.

At this stage, we elaborate how to realize a universal two-
qubit quantum gate—namely, to construct a controlled-U
gate given by the following unitary transformation:

Uc�T� = �E O

O U
� , �18�

where E and O represent, respectively, the 2�2 unitary and
zero matrices and T is the operation periodicity of the gate.
For simplicity but without loss of generality, we consider that
the two spin-1 /2 systems are coupled by an ordinary
−J	1z	2z /2 term with the coupling strength J. We also set
B1=0 for each single qubit and let the two resonant magnetic
fields be applied only on the first qubit. The total Hamil-
tonian for this two-qubit system reads

Ĥt = −
1

2
J	1z	2z +

1

2
�0�	1x cos �t + 	1y sin �t� , �19�

where 	1 and 	2 are the Pauli matrices for qubits 1 and 2,
respectively. In the representation of �↑↑�, �↓↑�, �↑↓�, and �↓↓�,
Ĥt can be decomposed into a direct product of the two
single-qubit Hamiltonians as

Ĥt = Ĥ1 � Ĥ2, �20�

where Ĥ1 and Ĥ2 are written as

Ĥ1 =
1

2
� − J �0e−i�t

�0ei�t J
�

and

Ĥ2 =
1

2
� J �0e−i�t

�0ei�t − J
� .

Clearly, Ĥ1 corresponds to the subspace spanned by bases

�↑↑� and �↓↑�, while Ĥ2 is in the subspace spanned by bases
�↑↓� and �↓↓�. These two subspaces are orthogonal. The in-
variant operator in Eq. �2� is found to be

It = I1 � I2, �21�

where

I1 =
1

2
�− J − � �0e−i�t

�0ei�t J + �
�

and

I2 =
1

2
� J − � �0e−i�t

�0ei�t − J + �
� .

The eigenvalues are ±�1 /2 and ±�2 /2, where �1

=��0
2+ �J+��2 and �2=��0

2+ �J−��2, respectively. The cor-

responding eigenstates of I are � 1
2�1 , t�=cos


1

2 �↑ ↑ �
+ei�t sin


1

2 �↑ ↓ �, �− 1
2�1 , t�=−sin


1

2 �↑ ↑ �+ei�t cos

1

2 �↑ ↓ �,
� 1
2�2 , t�=cos


2

2 �↑ ↓ �+ei�t sin

2

2 �↓ ↓ � and �− 1
2�2 , t�

=−sin

2

2 �↑ ↓ �+ei�t cos

2

2 �↓ ↓ �, where 
1=2 arctan
�1+�+J

�0

and 
2=2 arctan
�2+�−J

�0
. For a cyclic evolution, the evolution

operator of Ĥt in the representation of �± 1
2�1 ,0� and

�± 1
2�2 ,0� can be written as

UI��� = U1��� � U2��� , �22�

where

U1��� = �ei��1−�1/�� 0

0 ei��1+�1/�� �
I

and

U2��� = �ei��1−�2/�� 0

0 ei��1+�2/�� �
I

.

By a close inspection of Eq. �22� and considering that �1
��2, we find that once a multicycle evolution T=m� is op-
erated, one may be able to achieve a two-qubit gate given by
Eq. �18�. For such an operation, the unitary transformation is
given by

UI�T� = UI�m�� = UI���m. �23�

Theoretically, for a rational ��1 /��, one may assert the rela-
tion

m��1 + �1/�� = 2N� �24�

to be satisfied, where N is an integer. This condition makes
U1 a unitary matrix—namely,

UI�T� = �E O

O U2�m��
�

I
. �25�

Correspondingly, in the bases ��↑↑�, �↓↑�, �↑↓�, �↓↓��, we have
also a controlled-U gate in the form
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Ũc�T� = �E O

O Ũ2�m��
� . �26�

Under this multicycle operation, the dynamic phase of U2 is
�±

d�m��=m�±
d���. Thus we choose the appropriate parameters

to ensure Eq. �16�—i.e.,

��2 + � − J��J2 − J� + �0
2�

�2
2 + ��2 + � − J�2 =

K�

2m
. �27�

When qubit 2 is down, the geometric phase for K=0 is

�2±
g = m��1 �

�2

�
� . �28�

As a result, a universal geometric quantum gate is realized.
For instance, if we set K=0, N=4, J= 16

27�, and �0= 4�11
27 �,

we could have m=3. The geometric phases are thus �2±
g

=��1��11
3

�.

In summary, we have proposed a strategy to implement a
set of quantum gates based on the geometric phases accumu-
lated in the nondegenerate eigenstates of an invariant opera-
tor in a periodic physical system. An intriguing way is pre-
sented to eliminate the dynamical phase shifts in the
designated gate operation. In addition, we have also illus-
trated how to implement our scheme in a simple but typical
NMR-type system, while the present strategy may also be
feasible in other systems.
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