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In this article, we consider an insurance risk model where the claim and premium
processes follow some time series models+We first consider the model proposed in
Gerber @2,3#; then a model with dependent structure between premium and claim
processes modeled by using Granger’s causal model is considered+ By using some
martingale arguments, Lundberg-type upper bounds for the ruin probabilities under
both models are obtained+ Some special cases are discussed+

1. INTRODUCTION

In classical ruin theory, it is assumed that the surplus process constitutes a random
walk+ This assumption might not be realistic because serial correlation can be
observed in the annual earnings of an insurance company+

In view of this empirical finding,Gerber @2# used an autoregressive ~AR!model
for the annual earnings+ Results for the probability of ruin were obtained+ Gerber
@3# generalized the results to models with annual earnings being an autoregressive
moving average ~ARMA! model+ In both articles, it was assumed that the adjust-
ment coefficient existed and there was no investment income earned on the existing
surplus+

Another way to model the surplus process is to express it in terms of premiums
received and claims paid+ In a recent article by Yang and Zhang @6# they used two
separate series to model premiums received and claims paid+ In this article, we
consider a model that can be considered as a modification to Gerber’s model+ The
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model includes investment income on surplus and uses the technique of martingale
theory developed in Yang @5# to obtain the bounds for ruin probability+ Note that
Yang and Zhang @6# only used the AR~1! process to model both series, so their
model is not a generalization of that in Gerber @2,3# + Also, it is assumed that the
premium process and the claim process are independent+ It is reasonable to assume
that using information of both claim and premium series to predict the future value
of one series can lower the variance of prediction compared with using only infor-
mation of one series+ We propose to model this by using Granger’s causal model+
That model includes the possibility of having causality between premium and claim
processes in Granger’s sense+We also propose to use more general time series mod-
els than AR~1!+ See Granger @4# for details of Granger’s causal model+ Another
justification for using past values of claims that can predict premium better is that,
as we know, companies often charge a credibility premium based on the past per-
formance of clients+ It is also believed that an increase in premium income might
reflect an increase in exposure, which also increases the potential claim amount+

The rest of this article is organized as follows: In Section 2 the framework of
the model is presented+ In Section 3 we prove results on bounds for ruin probability
under models in which both premium and claim processes are moving average ~MA!
processes+ It serves as a building block for a more general model+ In Section 4 the
results are extended to the Granger’s simple causal model+ In Section 5 we give
some examples+ First, we will show that the model of Yang and Zhang @6# is a
special case of the new model+ Second, we will show that certain credibility models
can be described using the new model+ Section 6 includes some discussion on this
model+

2. THE MODEL

We describe Un, the company’s discounted surplus at time n, in the form

Un � u � G1 � vG2 � {{{� v n�1Gn , (1)

where u � U0 is the initial surplus and Gj is the gain of the company in the j th year
discounted to the beginning of year j and v� ~1 � i !�1 is the discount factor, where
i is the 1-year interest rate+

We suppose that

Gn � r1 Xn � r2Yn , (2)

where Xn is the annual premium received in the nth year, Yn is the annual claim paid
in the nth year, and r1 and r2 are factors for discounting the quantities to the begin-
ning of the year+

In Gerber @2,3# it is assumed that i � 0+ It is immaterial when the payment is
made within a year, so r1 � r2 � 1+ In Yang and Zhang @6# , it is assumed that the
premium is received at the beginning of the year and the claim is paid at the end of
the year, so r1 � 1 and r2 � v+ Since we are considering the aggregate income and
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expense of an insurance company, it might be better to assume that the premium
and the claim arrive at more than one time point throughout a year+ If we assume
that the premium and the claim are received uniformly and continuously within a
year, r1 � r2 � r and

r �
i

~1 � i ! ln~1 � i !
, i � 0

r � 1, i � 0+

(3)

Let

T � inf $t :Ut � 0% (4)

denote the time of ruin+ If Ut � 0 for all t, we write T � `+ We are interested in
finding the probability of ruin ~i+e+, P~T � `!!+

3. MODELS WITH BOTH CLAIM AND PREMIUM ARE MOVING
AVERAGE PROCESSES

In this section we consider the case where both premium and claim processes are
moving average processes+

Xt � Wt � a1Wt�1 � a2Wt�2 � {{{� apWt�p , (5)

Yt � Zt � b1 Zt�1 � b2 Zt�2 � {{{� bq Zt�q + (6)

We assume that W1,W2, + + + are independent and identically distributed random
variables having generic random variable W and E~W ! � 0+ Z1, Z2, + + + are inde-
pendent and identically distributed random variables having generic random vari-
able Z and E~Z! � 0+ Also, $Wt % and $Zt % are independent for all t+ We have to
specify the initial values w0,w�1, + + + ,w�p�1, z0, z�1, + + + , z�q�1+ Let

a � r1�1 � (
k�1

p

v kak� , (7)

b � r2�1 � (
k�1

q

v kbk� + (8)

We assume the existence of an adjustment coefficient that is the positive solu-
tion, R, of

E~e�RaW !E~eRbZ ! � 1+ (9)
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We need two assumptions on the ai ’s and bi ’s+

aE~W ! � bE~Z!, (10)

�1 � (
k�1

p

ak�E~W ! � �1 � (
k�1

q

bk�E~Z!+ (11)

Condition ~10! is assumed so that the derivative of the left-hand side of ~9! with
respect to R evaluated at R � 0 is negative; this guarantees that the positive solution
R exists+ Condition ~11! is essentially equivalent to the net profit condition

E~Xt ! � E~Yt !+ (12)

Inequality ~12! is a sufficient condition for the ruin probability being less than
one+ The converse is not true for i � 0 because the insurance company also receives
interest as a source of income+ For i � 0, conditions ~10! and ~11! are equivalent+ In
that case, Ut tends to infinity almost surely when t tends to infinity+ For i � 0, we
conjecture that Ut will converge to a finite random variable like the case considered
in Boogaert, Haezendonck, and Delbaen @1# +

Let Fn be the s-field generated by $Wi ; i � 1,2, + + + , n% and $Zi ; i � 1,2, + + + , n% ;
that is,

Fn � s$Wi , Zi , i � n%+ (13)

We have the following results+

Lemma 1:

Mn � exp��R�a�(
s�1

n

v s�1Ws � b (
s�1

n

v s�1 Zs��� , (14)

where n � N is a Fn-supermartingale.

Proof:

E~Mn 6Fn�1! � E�exp��R�a (
s�1

n

v s�1Ws � b (
s�1

n

v s�1 Zs���Fn�1�
� exp��R�a (

s�1

n�1

v s�1Ws � b (
s�1

n�1

v s�1 Zs��
� E~exp $�Rv n�1~aWn � bZn !%!

� Mn�1E~exp@�Rv n�1~aWn � bZn !# !

� Mn�1E~$exp@�R~aWn � bZn !#%
vn�1

!

� Mn�1 $E~exp@�R~aWn � bZn !# !%
vn�1

� Mn�1+ (15)
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The inequality in the second to last line follows from Jensen’s inequality, as
v n�1 � 1 and �x v

n�1

is a convex function for x � 0+ �

We need one more lemma before giving the main result+

Lemma 2: Let

Sn � Un � r1�(
k�0

p�1

~v kak�1 � {{{� v p�1ap !v n�kWn�k�
� r2�(

k�0

q�1

~v kbk�1 � {{{� v q�1bq !v n�k Zn�k� + (16)

Then exp $�RSn%, n � N, is a Fn-supermartingale.

Proof:

r1�(
s�1

n

v s�1Xs� � r1�(
s�1

n

v s�1~Ws � a1Ws�1 � a2Ws�2 � {{{� apWs�p !�
� r1�(

s�1

n

v s�1Ws � a1 v (
s�0

n�1

v s�1Ws � {{{� ap v p (
s��p�1

n�p

v s�1Ws�
� a (

s�1

n

v s�1Ws

� r1 @a1 v~v�1w0 � v n�1Wn !

� a2 v 2~v�1w0 � v�2w�1 � v n�1Wn � v n�2Wn�1!� {{{#

� a (
s�1

n

v s�1Ws

� r1�(
k�0

p�1

~ak�1 v k � {{{� ap v p�1 !~v�kw�k � v n�kWn�k !� +
(17)

Similarly,

r2�(
s�1

n

v s�1Ys�
� b (

s�1

n

v s�1 Zs � r2�(
k�0

q�1

~bk�1 v k � {{{� bq v q�1 !~v�kz�k � v n�k Zn�k !� +
(18)
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From ~1!, ~2!, ~17!, and ~18!, we have

Un � u � (
s�1

n

v s�1Gs �(
s�1

n

v s�1~r1 Xs � r2Ys !

� a (
s�1

n

v s�1Ws � r1�(
k�0

p�1

~ak�1 v k � {{{� ap v p�1 !~v�kw�k � v n�kWn�k !�
� b (

s�1

n

v s�1 Zs � r2�(
k�0

q�1

~bk�1 v k � {{{� bq v q�1 !~v�kz�k � v n�k Zn�k !�;
(19)

rearranging terms, we have

Sn � a (
s�1

n

v s�1Ws � b (
s�1

n

v s�1 Zs � s0 + (20)

Therefore

s0 � u � r1�(
k�0

p�1

~ak�1 v k � {{{� ap v p�1 !~v�kw�k !�
� r2�(

k�0

q�1

~bk�1 v k � {{{� bq v q�1 !~v�kz�k !�, (21)

which is a constant+Multiplying both sides of ~20! by �R and taking the exponen-
tial, we have

exp $�RSn % � Mn exp $�Rs0 %+ (22)

Since exp $�Rs0% is a constant and Mn, n � N, is a Fn-supermartingale by Lemma 1,
then exp $�RSn%, n � N, is a Fn-supermartingale+ �

Now we state one of the main results in this article+

Theorem 1:

P~T �`! � C~u,w0 ,w�1, + + + ,w�p�1, z0 , z�1, + + + , z�q�1!

�
exp~�Rs0 !

E~exp $�RST %6T � `!
+ (23)

Proof: By Lemma 2, exp $�RSn%, n � N, is a Fn-supermartingale+ Let n0 be a pos-
itive integer; then T ∧ n0 is a bounded Fn-stopping time+ By Doob’s optional stop-
ping theorem,

exp $�Rs0 % � E~exp $�RST %IT�n0
!� E~exp $�RSn0

%IT�n0
!, (24)
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which implies

exp $�Rs0 % � E~exp $�RST %IT�n0
!+ (25)

Let n0r `; by the monotone convergence theorem,

exp $�Rs0 % � E~exp $�RST %6T � `!P~T � `!+ �

The ruin probability is a function of p � q � 1 variables: u,w0,w�1, + + + ,
w�p�1, z0, z�1, + + + , z�q�1+ Note that equality holds in ~15! when i � 0, so Mn and
exp $�RSn%, n � N, are martingales+ Therefore, it is plausible that equality holds in
~23!, but we need a stronger condition to facilitate the proof+

Suppose W and Z have finite support; that is,

6W 6 � d1, (26)

6Z 6 � d2 (27)

for some d1,d2 � R�+

Corollary 1: If (26) and (27) hold in addition to other conditions stated earlier
and i � 0,

P~T �`! � C~u,w0 ,w�1, + + + ,w�p�1, z0 , z�1, + + + , z�q�1!

�
exp~�Rs0 !

E~exp $�RST %6T � `!
+ (28)

Proof: Now exp $�RSn%, n � N, is a Fn-martingale+ Let n0 be a positive integer+
Then for all n � N, similar to ~24! we have

exp $�Rs0 % � E~exp $�RST %IT�n0
!� E~exp $�RSn0

%IT�n0
!+ (29)

Let n0r`; the first term on the right-hand side of ~29! converges as earlier by the
monotone convergence theorem and the second term converges to zero by the dom-
inated convergence theorem because it is bounded by the constant

exp�Rr1�(
k�0

p�1

6v kak�1 � {{{� v p�1ap 6d1�
� Rr2�(

k�0

q�1

6v kbk�1 � {{{� v q�1bq 6d2�� + (30)

�

We can find conditions other than conditions ~26! and ~27! such that the second
term on the right-hand side of ~29! is bounded+ For example, if a1, + + + ,ap � 0 and
b1, + + + ,bq � 0, X and Z are positive random variables with infinite support+ The
second term on the right-hand side of ~29! is bounded by one+ In such cases, Cor-
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ollary 1 still holds because the dominated convergence theorem can be applied in
the proof+

So far we have assumed that p and q are finite+ To prove the result in the next
section, we need to extend our result to the infinite number of lag terms case+ In this
case, the number of initial values is still finite because we cannot collect informa-
tion for infinite periods in reality+We set Wt � Zt � 0 for t less than the earliest time
of the available information+ Previous results still hold for this case if some further
conditions are satisfied+ First, we need the following conditions:

(
k�1

`

v kak � `, (
k�1

`

v kbk � `, (
k�1

`

ak � `, (
k�1

`

bk � `+ (31)

We also need ~10! and ~11! to be satisfied with p and q being replaced by infinity,
and we need St to be convergent+ Sufficient conditions for this are

(
k�1

`

k~6ak 6� 6bk 6! � `, i � 0, (32)

and

(
k�1

`

~6ak 6� 6bk 6! � `, i � 0+ (33)

Conditions ~32! and ~33! essentially imply ~31!+

4. GRANGER’S SIMPLE CAUSAL MODEL

Granger @4# proposed a notion of causality in time series models+ The use of the
causal model attempts to lower the variance of predicted values compared to the
models without causality+ This model has useful applications because in many real-
world economic situations, some economic variables tend to affect the value of
other variables+ So using past data of several variables to predict the future value of
a series might be more accurate than using past data of the variable that we want to
predict+ In this article we will adopt the bivariate simple causal model to describe
the dynamics of the premium process and the claim process+

The premium process $Xt % and the claim process $Yt % can be expressed as

Xt � (
j�1

m

aj Xt�j �(
j�1

m

bj Yt�j � Wt, (34)

Yt � (
j�1

m

cj Xt�j �(
j�1

m

dj Yt�j � Zt, (35)

respectively, where W and Z are defined as earlier+
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We have specified past data of premium and claim for m years, ~i+e+, x0,
x�1, + + + , x�m�1, y0, y�1, + + + , y�m�1!+

Let U be the time shift operator ~i+e+, UXt � Xt�1! and let

a~x! � (
j�1

m

aj x j, b~x!�(
j�1

m

bj x j,

c~x!�(
j�1

m

cj x j, d~x!�(
j�1

m

dj x j+

(36)

Note that all constant terms of polynomials a~x!,b~x!, c~x!, and d~x! are zero+ Then
~34! and ~35! can be expressed in matrix form:

�1 � a~U! �b~U!

�c~U! 1 � d~U!
��Xt

Yt
� � �Wt

Zt
�+ (37)

We give some definitions of causality for this model as stated in Granger @4# +

Definition: For a bivariate time series model described by (37), we have the
following:

1. Yt causes Xt provided that b~U! is not the zero polynomial.
2. Xt causes Yt provided that c~U! is not the zero polynomial.
3. There is a feedback relationship between Xt and Yt if both Xt causes Yt and

Yt causes Xt .

For the model in Yang and Zhang @6# , we have a~U!� bU, b~U!� 0, c~U!� 0,
and d~U !� aU, where 0 � a � 1 and 0 � b � 1+ So Xt and Yt do not have causal
relationship in Granger’s sense+ Let

A � �1 � a~U! �b~U!

�c~U! 1 � d~U!
�, (38)

µ~U! � @1 � a~U!# @1 � d~U!#� b~U!c~U!+ (39)

Since the constant term of µ~U! is always one, A�1 exists and

A�1 �
1

µ~U! �1 � d~U! b~U!

c~U! 1 � a~U!+
�+ (40)

From ~37! and ~40! we have

Xt �
1 � d~U!

µ~U!
Wt �

b~U!

µ~U!
Zt , (41)

Yt �
c~U!

µ~U!
Wt �

1 � a~U!

µ~U!
Zt , (42)
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Gt � r1��1 � d~U!

µ~U! ��
r2

r1
� c~U!

µ~U!��Wt � r2��1 � a~U!

µ~U! ��
r1

r2
� b~U!

µ~U!��Zt +

(43)

We make some assumptions about the coefficients of a~x!, b~x!, c~x!, and d~x!:

1+ All of the solutions of the equation µ~x!� 0 lie outside the unit circle of the
complex plane+

2+

$ r1 @1 � d~v!#� r2 c~v!%E~W ! � $ r2 @1 � a~v!#� r1 b~v!%E~Z!+ (44)

3+

$ r1 @1 � d~1!#� r2 c~1!%E~W ! � $ r2 @1 � a~1!#� r1 b~1!%E~Z!+ (45)

Since µ~0!�1 and, by assumption 1, µ~v!� 0 and µ~1!� 0, ~44! and ~45! are
essentially the same as ~10! and ~11!+ Let a*~x! and b*~x! have coefficients ak

* and
bk
*, defined as the expansion of partial fractions:

a*~x! � 1 � (
k�1

`

ak
* x k :� �1 � d~x!

µ~x!
��
r2

r1
� c~x!

µ~x!
�, (46)

b*~x! � 1 � (
k�1

`

bk
* x k :� �1 � a~x!

µ~x!
��
r1

r2
� b~x!

µ~x!
�+ (47)

ak
* and bk

* converge because of assumption 1+ Equation ~43! becomes

Gt � r1 a*~U!Wt � r2 b*~U!Zt + (48)

We set Wt � Zt � 0 for t � �m; using ~41! and ~42!, we obtain Xt � Yt � 0 for
t � �m+ We can uniquely determine w0,w�1, + + + ,w�m�1, z0, z�1, + + + , z�m�1 from
x0, x�1, + + + , x�m�1, y0, y�1, + + + , y�m�1 by ~34! and ~35!+

From the expansion of partial fractions in ~45! and ~46!, we can see that ak
* and

bk
* tend to zero exponentially+ So ~31!–~33! are satisfied+

We can obtain results for ruin probabilities using the result in Section 3 by
replacing ak and bk by ak

* and bk
*, respectively+We can also formulate the result in

terms of ak,bk, ck, and dk+
We obtain the adjustment coefficient by ~9! with

a � r1�1 � (
k�1

`

ak
* v k�� r1�1 � d~v!

µ~v!
�� r2� c~v!

µ~v!
�, (49)

b � r2�1 � (
k�1

`

bk
* v k�� r2�1 � a~v!

µ~v!
�� r1� b~v!

µ~v!
�+ (50)
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We also need to express St in terms of ak,bk, ck, and dk+ Let Xt
d and Yt

d be
deterministic components of Xt and Yt, respectively+ From ~34! and ~35!, we set
ak � bk � ck � dk � 0 for k � m, then we have

Xt
d � (

j�1

t�1

aj Xt�j
d � (

j��m�1

0

at�j xj �(
j�1

t�1

bj Yt�j
d � (

j��m�1

0

bt�j yj , (51)

Yt
d � (

j�1

t�1

cj Xt�j
d � (

j��m�1

0

ct�j xj �(
j�1

t�1

dj Yt�j
d � (

j��m�1

0

dt�j yj + (52)

Observe that

s0 � u � (
s�1

`

v s�1~r1 Xs
d � r2Ys

d!+ (53)

Let

x � (
s�1

`

v s�1Xs
d , y �(

s�1

`

v s�1Ys
d , (54)

k1 � (
k�0

m�1

v�k~ak�1 v k � {{{� am vm�1 !x�k

� (
k�0

m�1

v�k~bk�1 v k � {{{� bm vm�1 !y�k , (55)

k2 � (
k�0

m�1

v�k~ck�1 v k � {{{� cm vm�1 !x�k

� (
k�0

m�1

v�k~dk�1 v k � {{{� dm vm�1 !y�k + (56)

From ~51! and ~52!, we have

x �
1

µ~v!
$k1 @1 � d~v!#� k2 b~v!%, (57)

y �
1

µ~v!
$k2 @1 � a~v!#� k1 c~v!%+ (58)

From ~49!, ~50!, ~53!, ~57!, and ~58!, we have

s0 � u � ak1 � bk2 + (59)
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We obtain the desired expression for s0 in terms of ak, bk, ck, and dk+ Let

Sn � Un � a�(
k�0

m�1

v n�k~ak�1 v k � {{{� am vm�1 !

� Xn�k � (
k�0

m�1

v n�k~bk�1 v k � {{{� bm vm�1 !Yn�k�
� b�(

k�0

m�1

v n�k~ck�1 v k � {{{� cm vm�1 !

� Xn�k � (
k�0

m�1

v n�k~dk�1 v k � {{{� dm vm�1 !Yn�k� + (60)

From the results of Section 3, we have exp $�RSn%, n � N, is a Fn-supermartingale
and

P~T �`! � C~u, x0 , x�1, + + + , x�m�1, y0 , y�1, + + + , y�m�1!

�
exp~�Rs0 !

E~exp $�RST %6T � `!
+ (61)

If ~26! and ~27! are satisfied and i � 0,

P~T �`! � C~u, x0 , x�1, + + + , x�m�1, y0 , y�1, + + + , y�m�1!

�
exp~�Rs0 !

E~exp $�RST %6T � `!
+ (62)

Note that the ruin probability is a function of initial surplus and past values of the
premium and claim+

5. EXAMPLES

5.1. The Yang–Zhang Model

We consider the model in Yang and Zhang @6# + The model can be written as

�1 � bU 0

0 1 � aU
��Xt

Yt
� � �Wt

Zt
�, (63)

where 0 � a � 1 and 0 � b � 1+ Furthermore, r1 � 1 and r2 � v+ We can easily
check that assumption 1 in Section 4 holds because 0 � a � 1 and 0 � b � 1+
Suppose that E~W ! � E~Z! and a � bv� i; then both ~44! and ~45! hold+
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We have a � 10~1 � bv! and b � v0~1 � av!; so from ~9!, ~49!, and ~50! the
adjustment coefficient R satisfies

E�exp��
R

1 � bv
W��E�exp� RvZ

1 � av�� � 1, (64)

Sn � Un �
bv nXn

1 � bv
�

av n�1Yn

1 � av
+ (65)

We can obtain the bound for ruin probability, which is a function of u, x0, and
y0+ Since the definition of Un in Yang and Zhang @6# is the accumulated value of
surplus after time n, so our result gives the same expression as Yang and Zhang @6#
if we have taken this into account+

The Yang–Zhang model can be thought of as a model for changing exposure of
a company, where a proportion of customers in a year will stay to the next year and
a random number of new customers will arrive+

5.2. Credibility Model

Next we consider a credibility model+ For simplicity, let the annual claim Yi be
nonnegative, independent, and identically distributed with generic random variable
Y+We assume that the company charges a credibility premium that is a combination
of a manual rate Pd and the average of past n claims, for 0 � Z � 1 being the
credibility factor:

Xt � Z�Yt�1 � {{{� Yt�n

n
�� ~1 � Z!Pd + (66)

We have a~U!� c~U!� d~U!� 0 and b~U!� ~Z0n!~U � {{{� Un!+ Clearly,
assumption 1 in Section 4 is satisfied+ Let i � 0 such that r1 �r2 �1 for simplicity+
If Pd � E~Y !, then ~45! and ~46! hold+

From ~9!, ~49!, and ~50!, the adjustment coefficient R satisfies

E~eR~1�Z!Y ! � eR~1�Z!Pd+ (67)

Suppose R ' is the adjustment coefficient for the case in which a constant pre-
mium Pd is received each year and an annual claim amount follows Yi + Then the
adjustment coefficient R for the credibility model is

R �
R '

1 � Z
+ (68)

We also have

Sn � Un � Z�(
k�0

n�1�1 �
k

n
�Yn�k� + (69)
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Since

Gt � ~1 � Z!Pd ��Yt �
Z

n
~Yt�1 � {{{� Yt�n !� , (70)

which satisfies b1, + + + ,bn � 0, Corollary 1 holds and the ruin probability is a func-
tion of u, y0, + + + , y�n�1+

6. DISCUSSIONS

The model presented in this article can have applications other than in the insur-
ance sector+ We can treat the premium process as an input process of any system
and the claim process as an output process of that system+ The system can be mon-
etary reserve or stock of a commodity, where we are interested in its surplus after
some time+We can apply the results in Sections 3 and 4 to find out the probability
that the reserve will ever become negative+

In the article, we assumed that the dynamics of the premium and claim are
given+ In reality, we do not know the exact parameters and we need to estimate
them from past data+ The estimation will be subject to error and the result for ruin
probabilities will also be an estimated value+

In Gerber @2,3# , he considered an alternative coordinate that can express the
ruin probabilities in terms of Ut + Since UT � 0 and Ut � 0 for all t � T � 1, by
imposing some conditions, a Lundberg-type inequality can be found+ In our model,
because the two series have different coefficients, we cannot find the ruin proba-
bility in terms of Ut and we cannot guarantee that E~exp $�RST %6T � `! � 1+

For the results presented in this article we need to assume that the adjustment
coefficient, R, exists, similar to the result in Yang and Zhang @6# +We can obtain a
nonexponential bound when the adjustment coefficient does not exist+
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